Spaces:
Sleeping
Sleeping
Commit
·
ff871f8
1
Parent(s):
166f16e
functions needed
Browse files- functions.py +42 -0
functions.py
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import re
|
3 |
+
from contractions import contractions_dict
|
4 |
+
from nltk.corpus import stopwords
|
5 |
+
from nltk.tokenize import word_tokenize
|
6 |
+
|
7 |
+
def sentiment_analysis_LR(input):
|
8 |
+
# Assuming you have a Logistic Regression model and TfidfVectorizer in the pipeline
|
9 |
+
input = preprocess_text(input)
|
10 |
+
|
11 |
+
vectorizer = model_LR.named_steps['tfidfvectorizer']
|
12 |
+
lr_classifier = model_LR.named_steps['logisticregression']
|
13 |
+
|
14 |
+
# Transform the user input using the TF-IDF vectorizer
|
15 |
+
user_input_tfidf = vectorizer.transform([input])
|
16 |
+
|
17 |
+
# Make predictions
|
18 |
+
user_pred = lr_classifier.predict(user_input_tfidf)
|
19 |
+
|
20 |
+
# Display the prediction
|
21 |
+
if user_pred[0] == 0:
|
22 |
+
return 0
|
23 |
+
else:
|
24 |
+
return 1
|
25 |
+
|
26 |
+
def sentiment_analysis_NB(input):
|
27 |
+
input = preprocess_text(input)
|
28 |
+
|
29 |
+
vectorizer = model_NB.named_steps['tfidf']
|
30 |
+
nb_classifier = model_NB.named_steps['nb']
|
31 |
+
|
32 |
+
# Transform the user input using the TF-IDF vectorizer
|
33 |
+
user_input_tfidf = vectorizer.transform([input])
|
34 |
+
|
35 |
+
# Make predictions
|
36 |
+
user_pred = nb_classifier.predict(user_input_tfidf)
|
37 |
+
|
38 |
+
# Display the prediction
|
39 |
+
if user_pred[0] == 0:
|
40 |
+
return 0
|
41 |
+
else:
|
42 |
+
return 1
|