perman2011 commited on
Commit
fa750e4
·
1 Parent(s): 95912a1

Update DistilBERT.py

Browse files
Files changed (1) hide show
  1. DistilBERT.py +69 -2
DistilBERT.py CHANGED
@@ -11,6 +11,7 @@ import pandas as pd
11
  import numpy as np
12
 
13
  # Điều chỉnh các tham số
 
14
  MAX_LEN = 100
15
  TRAIN_BATCH_SIZE = 4
16
  VALID_BATCH_SIZE = 4
@@ -19,7 +20,11 @@ LEARNING_RATE = 1e-05
19
  tokenizer_DB = DistilBertTokenizer.from_pretrained('distilbert-base-uncased', truncation=True, do_lower_case=True)
20
 
21
  # Tạo dataframe
22
-
 
 
 
 
23
 
24
  # Tạo class
25
  class BinaryLabel(Dataset):
@@ -72,4 +77,66 @@ training_set = BinaryLabel(train_df_DB, tokenizer, MAX_LEN)
72
  testing_set = BinaryLabel(test_df_DB, tokenizer, MAX_LEN)
73
 
74
  training_loader = DataLoader(training_set, **train_params)
75
- testing_loader = DataLoader(testing_set, **test_params)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11
  import numpy as np
12
 
13
  # Điều chỉnh các tham số
14
+ device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
15
  MAX_LEN = 100
16
  TRAIN_BATCH_SIZE = 4
17
  VALID_BATCH_SIZE = 4
 
20
  tokenizer_DB = DistilBertTokenizer.from_pretrained('distilbert-base-uncased', truncation=True, do_lower_case=True)
21
 
22
  # Tạo dataframe
23
+ train_df_DB = pd.read_csv('./data/train.csv')
24
+ train_df_DB['label'] = train_df_DB.iloc[:, 1:].values.tolist()
25
+ test_df_DB = pd.read_csv('./data/test.csv')
26
+ test_df_DB = test_df_DB[['text', 'preprocess_sentence', 'label']]
27
+ test_df_DB['label'] = test_df_DB.iloc[:, 2:].values.tolist()
28
 
29
  # Tạo class
30
  class BinaryLabel(Dataset):
 
77
  testing_set = BinaryLabel(test_df_DB, tokenizer, MAX_LEN)
78
 
79
  training_loader = DataLoader(training_set, **train_params)
80
+ testing_loader = DataLoader(testing_set, **test_params)
81
+
82
+ # Create model
83
+ class DistilBERTClass(torch.nn.Module):
84
+ def __init__(self):
85
+ super(DistilBERTClass, self).__init__()
86
+ self.l1 = DistilBertModel.from_pretrained("distilbert-base-uncased")
87
+ self.pre_classifier = torch.nn.Linear(768, 768)
88
+ self.dropout = torch.nn.Dropout(0.1)
89
+ self.classifier = torch.nn.Linear(768, 1)
90
+
91
+ def forward(self, input_ids, attention_mask, token_type_ids):
92
+ output_1 = self.l1(input_ids=input_ids, attention_mask=attention_mask)
93
+ hidden_state = output_1[0]
94
+ pooler = hidden_state[:, 0]
95
+ pooler = self.pre_classifier(pooler)
96
+ pooler = torch.nn.ReLU()(pooler)
97
+ pooler = self.dropout(pooler)
98
+ output = self.classifier(pooler)
99
+ return output
100
+
101
+ model_DB = DistilBERTClass()
102
+ model_DB.to(device)
103
+
104
+ # Validation function
105
+ def validation(testing_loader):
106
+ model_DB.eval()
107
+ fin_targets=[]
108
+ fin_outputs=[]
109
+ with torch.no_grad():
110
+ for _, data in tqdm(enumerate(testing_loader, 0)):
111
+ ids = data['ids'].to(device, dtype = torch.long)
112
+ mask = data['mask'].to(device, dtype = torch.long)
113
+ token_type_ids = data['token_type_ids'].to(device, dtype = torch.long)
114
+ targets = data['targets'].to(device, dtype = torch.float)
115
+ outputs = model_DB(ids, mask, token_type_ids)
116
+ fin_targets.extend(targets.cpu().detach().numpy().tolist())
117
+ fin_outputs.extend(torch.sigmoid(outputs).cpu().detach().numpy().tolist())
118
+ return fin_outputs, fin_targets
119
+
120
+ # Train function
121
+ def train(epoch):
122
+ model.train()
123
+ for _,data in tqdm(enumerate(training_loader, 0)):
124
+ ids = data['ids'].to(device, dtype = torch.long)
125
+ mask = data['mask'].to(device, dtype = torch.long)
126
+ token_type_ids = data['token_type_ids'].to(device, dtype = torch.long)
127
+ targets = data['targets'].to(device, dtype = torch.float)
128
+
129
+ outputs = model(ids, mask, token_type_ids)
130
+
131
+ optimizer.zero_grad()
132
+ loss = loss_fn(outputs, targets)
133
+ if _%50==0:
134
+ print(f'Epoch: {epoch}, Loss: {loss.item()}')
135
+ if loss.item() < 0.07:
136
+ print(f'Breaking the loop as loss is below 0.07: {loss.item()}')
137
+ break
138
+ loss.backward()
139
+ optimizer.step()
140
+
141
+ for epoch in range(3):
142
+ train(epoch)