Commit
·
6ef12b9
1
Parent(s):
bab1cdc
Delete DistilBERT.py
Browse files- DistilBERT.py +0 -145
DistilBERT.py
DELETED
@@ -1,145 +0,0 @@
|
|
1 |
-
import transformers
|
2 |
-
import torch
|
3 |
-
from torch.utils.data import Dataset, DataLoader, RandomSampler, SequentialSampler
|
4 |
-
from transformers import DistilBertTokenizer, DistilBertModel
|
5 |
-
import logging
|
6 |
-
logging.basicConfig(level=logging.ERROR)
|
7 |
-
import torch.nn as nn
|
8 |
-
from torch.nn import functional as F
|
9 |
-
import torch.optim as optim
|
10 |
-
import pandas as pd
|
11 |
-
import numpy as np
|
12 |
-
|
13 |
-
# Điều chỉnh các tham số
|
14 |
-
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
15 |
-
MAX_LEN = 100
|
16 |
-
TRAIN_BATCH_SIZE = 4
|
17 |
-
VALID_BATCH_SIZE = 4
|
18 |
-
EPOCHS = 1
|
19 |
-
LEARNING_RATE = 1e-05
|
20 |
-
tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-uncased', truncation=True, do_lower_case=True)
|
21 |
-
|
22 |
-
# Tạo dataframe
|
23 |
-
train_df_DB = pd.read_csv('./data/train.csv')
|
24 |
-
train_df_DB['label'] = train_df_DB.iloc[:, 1:].values.tolist()
|
25 |
-
test_df_DB = pd.read_csv('./data/test.csv')
|
26 |
-
test_df_DB = test_df_DB[['text', 'preprocess_sentence', 'label']]
|
27 |
-
test_df_DB['label'] = test_df_DB.iloc[:, 2:].values.tolist()
|
28 |
-
|
29 |
-
# Tạo class
|
30 |
-
class BinaryLabel(Dataset):
|
31 |
-
|
32 |
-
def __init__(self, dataframe, tokenizer, max_len):
|
33 |
-
self.tokenizer = tokenizer
|
34 |
-
self.data = dataframe
|
35 |
-
self.text = dataframe.text
|
36 |
-
self.targets = self.data.label
|
37 |
-
self.max_len = max_len
|
38 |
-
|
39 |
-
def __len__(self):
|
40 |
-
return len(self.text)
|
41 |
-
|
42 |
-
def __getitem__(self, index):
|
43 |
-
text = str(self.text[index])
|
44 |
-
text = " ".join(text.split())
|
45 |
-
|
46 |
-
inputs = self.tokenizer.encode_plus(
|
47 |
-
text,
|
48 |
-
None,
|
49 |
-
add_special_tokens=True,
|
50 |
-
max_length=self.max_len,
|
51 |
-
pad_to_max_length=True,
|
52 |
-
return_token_type_ids=True
|
53 |
-
)
|
54 |
-
ids = inputs['input_ids']
|
55 |
-
mask = inputs['attention_mask']
|
56 |
-
token_type_ids = inputs["token_type_ids"]
|
57 |
-
|
58 |
-
|
59 |
-
return {
|
60 |
-
'ids': torch.tensor(ids, dtype=torch.long),
|
61 |
-
'mask': torch.tensor(mask, dtype=torch.long),
|
62 |
-
'token_type_ids': torch.tensor(token_type_ids, dtype=torch.long),
|
63 |
-
'targets': torch.tensor(self.targets[index], dtype=torch.float)
|
64 |
-
}
|
65 |
-
|
66 |
-
train_params = {'batch_size': TRAIN_BATCH_SIZE,
|
67 |
-
'shuffle': True,
|
68 |
-
'num_workers': 0
|
69 |
-
}
|
70 |
-
|
71 |
-
test_params = {'batch_size': VALID_BATCH_SIZE,
|
72 |
-
'shuffle': True,
|
73 |
-
'num_workers': 0
|
74 |
-
}
|
75 |
-
|
76 |
-
training_set = BinaryLabel(train_df_DB, tokenizer, MAX_LEN)
|
77 |
-
testing_set = BinaryLabel(test_df_DB, tokenizer, MAX_LEN)
|
78 |
-
|
79 |
-
training_loader = DataLoader(training_set, **train_params)
|
80 |
-
testing_loader = DataLoader(testing_set, **test_params)
|
81 |
-
|
82 |
-
# Create model
|
83 |
-
class DistilBERTClass(torch.nn.Module):
|
84 |
-
def __init__(self):
|
85 |
-
super(DistilBERTClass, self).__init__()
|
86 |
-
self.l1 = DistilBertModel.from_pretrained("distilbert-base-uncased")
|
87 |
-
self.pre_classifier = torch.nn.Linear(768, 768)
|
88 |
-
self.dropout = torch.nn.Dropout(0.1)
|
89 |
-
self.classifier = torch.nn.Linear(768, 1)
|
90 |
-
|
91 |
-
def forward(self, input_ids, attention_mask, token_type_ids):
|
92 |
-
output_1 = self.l1(input_ids=input_ids, attention_mask=attention_mask)
|
93 |
-
hidden_state = output_1[0]
|
94 |
-
pooler = hidden_state[:, 0]
|
95 |
-
pooler = self.pre_classifier(pooler)
|
96 |
-
pooler = torch.nn.ReLU()(pooler)
|
97 |
-
pooler = self.dropout(pooler)
|
98 |
-
output = self.classifier(pooler)
|
99 |
-
return output
|
100 |
-
|
101 |
-
|
102 |
-
# Validation function
|
103 |
-
def validation(testing_loader):
|
104 |
-
model_DB.eval()
|
105 |
-
fin_targets=[]
|
106 |
-
fin_outputs=[]
|
107 |
-
with torch.no_grad():
|
108 |
-
for _, data in tqdm(enumerate(testing_loader, 0)):
|
109 |
-
ids = data['ids'].to(device, dtype = torch.long)
|
110 |
-
mask = data['mask'].to(device, dtype = torch.long)
|
111 |
-
token_type_ids = data['token_type_ids'].to(device, dtype = torch.long)
|
112 |
-
targets = data['targets'].to(device, dtype = torch.float)
|
113 |
-
outputs = model_DB(ids, mask, token_type_ids)
|
114 |
-
fin_targets.extend(targets.cpu().detach().numpy().tolist())
|
115 |
-
fin_outputs.extend(torch.sigmoid(outputs).cpu().detach().numpy().tolist())
|
116 |
-
return fin_outputs, fin_targets
|
117 |
-
|
118 |
-
# Train function
|
119 |
-
def train(epoch):
|
120 |
-
model.train()
|
121 |
-
for _,data in tqdm(enumerate(training_loader, 0)):
|
122 |
-
ids = data['ids'].to(device, dtype = torch.long)
|
123 |
-
mask = data['mask'].to(device, dtype = torch.long)
|
124 |
-
token_type_ids = data['token_type_ids'].to(device, dtype = torch.long)
|
125 |
-
targets = data['targets'].to(device, dtype = torch.float)
|
126 |
-
|
127 |
-
outputs = model(ids, mask, token_type_ids)
|
128 |
-
|
129 |
-
optimizer.zero_grad()
|
130 |
-
loss = loss_fn(outputs, targets)
|
131 |
-
if _%50==0:
|
132 |
-
print(f'Epoch: {epoch}, Loss: {loss.item()}')
|
133 |
-
if loss.item() < 0.07:
|
134 |
-
print(f'Breaking the loop as loss is below 0.07: {loss.item()}')
|
135 |
-
break
|
136 |
-
loss.backward()
|
137 |
-
optimizer.step()
|
138 |
-
def loss_fn(outputs, targets):
|
139 |
-
return torch.nn.BCEWithLogitsLoss()(outputs, targets)
|
140 |
-
|
141 |
-
model_DB = DistilBERTClass()
|
142 |
-
optimizer = torch.optim.Adam(params = model_DB.parameters(), lr=LEARNING_RATE)
|
143 |
-
|
144 |
-
loaded_model_path = './model_DB_1.pt'
|
145 |
-
model_DB.load_state_dict(torch.load(loaded_model_path, map_location=torch.device('cpu')))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|