from collections import deque, defaultdict import torch from tensorboardX import SummaryWriter import os from lib.config.config import cfg from termcolor import colored class SmoothedValue(object): """Track a series of values and provide access to smoothed values over a window or the global series average. """ def __init__(self, window_size=20): self.deque = deque(maxlen=window_size) self.total = 0.0 self.count = 0 def update(self, value): self.deque.append(value) self.count += 1 self.total += value @property def median(self): d = torch.tensor(list(self.deque)) return d.median().item() @property def avg(self): d = torch.tensor(list(self.deque)) return d.mean().item() @property def global_avg(self): return self.total / self.count class Recorder(object): def __init__(self, cfg): if cfg.local_rank > 0: return log_dir = cfg.record_dir if not cfg.resume: print(colored('remove contents of directory %s' % log_dir, 'red')) os.system('rm -r %s/*' % log_dir) self.writer = SummaryWriter(log_dir=log_dir) # scalars self.epoch = 0 self.step = 0 self.loss_stats = defaultdict(SmoothedValue) self.batch_time = SmoothedValue() self.data_time = SmoothedValue() # images self.image_stats = defaultdict(object) if 'process_' + cfg.task in globals(): self.processor = globals()['process_' + cfg.task] else: self.processor = None def update_loss_stats(self, loss_dict): if cfg.local_rank > 0: return for k, v in loss_dict.items(): self.loss_stats[k].update(v.detach().cpu()) def update_image_stats(self, image_stats): if cfg.local_rank > 0: return if self.processor is None: return image_stats = self.processor(image_stats) for k, v in image_stats.items(): self.image_stats[k] = v.detach().cpu() def record(self, prefix, step=-1, loss_stats=None, image_stats=None): if cfg.local_rank > 0: return pattern = prefix + '/{}' step = step if step >= 0 else self.step loss_stats = loss_stats if loss_stats else self.loss_stats for k, v in loss_stats.items(): if isinstance(v, SmoothedValue): self.writer.add_scalar(pattern.format(k), v.median, step) else: self.writer.add_scalar(pattern.format(k), v, step) if self.processor is None: return image_stats = self.processor(image_stats) if image_stats else self.image_stats for k, v in image_stats.items(): self.writer.add_image(pattern.format(k), v, step) def state_dict(self): if cfg.local_rank > 0: return scalar_dict = {} scalar_dict['step'] = self.step return scalar_dict def load_state_dict(self, scalar_dict): if cfg.local_rank > 0: return self.step = scalar_dict['step'] def __str__(self): if cfg.local_rank > 0: return loss_state = [] for k, v in self.loss_stats.items(): loss_state.append('{}: {:.4f}'.format(k, v.avg)) loss_state = ' '.join(loss_state) recording_state = ' '.join(['epoch: {}', 'step: {}', '{}', 'data: {:.4f}', 'batch: {:.4f}']) return recording_state.format(self.epoch, self.step, loss_state, self.data_time.avg, self.batch_time.avg) def make_recorder(cfg): return Recorder(cfg)