import numpy as np from lib.utils import base_utils import cv2 from lib.config import cfg import trimesh def get_rays(H, W, K, R, T): # calculate the camera origin rays_o = -np.dot(R.T, T).ravel() # calculate the world coodinates of pixels i, j = np.meshgrid(np.arange(W, dtype=np.float32), np.arange(H, dtype=np.float32), indexing='xy') xy1 = np.stack([i, j, np.ones_like(i)], axis=2) pixel_camera = np.dot(xy1, np.linalg.inv(K).T) pixel_world = np.dot(pixel_camera - T.ravel(), R) # calculate the ray direction rays_d = pixel_world - rays_o[None, None] rays_o = np.broadcast_to(rays_o, rays_d.shape) return rays_o, rays_d def get_bound_corners(bounds): min_x, min_y, min_z = bounds[0] max_x, max_y, max_z = bounds[1] corners_3d = np.array([ [min_x, min_y, min_z], [min_x, min_y, max_z], [min_x, max_y, min_z], [min_x, max_y, max_z], [max_x, min_y, min_z], [max_x, min_y, max_z], [max_x, max_y, min_z], [max_x, max_y, max_z], ]) return corners_3d def get_bound_2d_mask(bounds, K, pose, H, W): corners_3d = get_bound_corners(bounds) corners_2d = base_utils.project(corners_3d, K, pose) corners_2d = np.round(corners_2d).astype(int) mask = np.zeros((H, W), dtype=np.uint8) cv2.fillPoly(mask, [corners_2d[[0, 1, 3, 2, 0]]], 1) cv2.fillPoly(mask, [corners_2d[[4, 5, 7, 6, 5]]], 1) cv2.fillPoly(mask, [corners_2d[[0, 1, 5, 4, 0]]], 1) cv2.fillPoly(mask, [corners_2d[[2, 3, 7, 6, 2]]], 1) cv2.fillPoly(mask, [corners_2d[[0, 2, 6, 4, 0]]], 1) cv2.fillPoly(mask, [corners_2d[[1, 3, 7, 5, 1]]], 1) return mask def get_near_far(bounds, ray_o, ray_d): """calculate intersections with 3d bounding box""" norm_d = np.linalg.norm(ray_d, axis=-1, keepdims=True) viewdir = ray_d / norm_d viewdir[(viewdir < 1e-5) & (viewdir > -1e-10)] = 1e-5 viewdir[(viewdir > -1e-5) & (viewdir < 1e-10)] = -1e-5 tmin = (bounds[:1] - ray_o[:1]) / viewdir tmax = (bounds[1:2] - ray_o[:1]) / viewdir t1 = np.minimum(tmin, tmax) t2 = np.maximum(tmin, tmax) near = np.max(t1, axis=-1) far = np.min(t2, axis=-1) mask_at_box = near < far near = near[mask_at_box] / norm_d[mask_at_box, 0] far = far[mask_at_box] / norm_d[mask_at_box, 0] return near, far, mask_at_box def sample_ray(img, msk, K, R, T, bounds, nrays, split): H, W = img.shape[:2] ray_o, ray_d = get_rays(H, W, K, R, T) pose = np.concatenate([R, T], axis=1) bound_mask = get_bound_2d_mask(bounds, K, pose, H, W) msk = msk * bound_mask if split == 'train': nsampled_rays = 0 face_sample_ratio = cfg.face_sample_ratio body_sample_ratio = cfg.body_sample_ratio ray_o_list = [] ray_d_list = [] rgb_list = [] near_list = [] far_list = [] coord_list = [] mask_at_box_list = [] while nsampled_rays < nrays: n_body = int((nrays - nsampled_rays) * body_sample_ratio) n_face = int((nrays - nsampled_rays) * face_sample_ratio) n_rand = (nrays - nsampled_rays) - n_body - n_face # sample rays on body coord_body = np.argwhere(msk != 0) coord_body = coord_body[np.random.randint(0, len(coord_body), n_body)] # sample rays on face coord_face = np.argwhere(msk == 13) if len(coord_face) > 0: coord_face = coord_face[np.random.randint( 0, len(coord_face), n_face)] # sample rays in the bound mask coord = np.argwhere(bound_mask == 1) coord = coord[np.random.randint(0, len(coord), n_rand)] if len(coord_face) > 0: coord = np.concatenate([coord_body, coord_face, coord], axis=0) else: coord = np.concatenate([coord_body, coord], axis=0) ray_o_ = ray_o[coord[:, 0], coord[:, 1]] ray_d_ = ray_d[coord[:, 0], coord[:, 1]] rgb_ = img[coord[:, 0], coord[:, 1]] near_, far_, mask_at_box = get_near_far(bounds, ray_o_, ray_d_) ray_o_list.append(ray_o_[mask_at_box]) ray_d_list.append(ray_d_[mask_at_box]) rgb_list.append(rgb_[mask_at_box]) near_list.append(near_) far_list.append(far_) coord_list.append(coord[mask_at_box]) mask_at_box_list.append(mask_at_box[mask_at_box]) nsampled_rays += len(near_) ray_o = np.concatenate(ray_o_list).astype(np.float32) ray_d = np.concatenate(ray_d_list).astype(np.float32) rgb = np.concatenate(rgb_list).astype(np.float32) near = np.concatenate(near_list).astype(np.float32) far = np.concatenate(far_list).astype(np.float32) coord = np.concatenate(coord_list) mask_at_box = np.concatenate(mask_at_box_list) else: rgb = img.reshape(-1, 3).astype(np.float32) ray_o = ray_o.reshape(-1, 3).astype(np.float32) ray_d = ray_d.reshape(-1, 3).astype(np.float32) near, far, mask_at_box = get_near_far(bounds, ray_o, ray_d) near = near.astype(np.float32) far = far.astype(np.float32) rgb = rgb[mask_at_box] ray_o = ray_o[mask_at_box] ray_d = ray_d[mask_at_box] coord = np.zeros([len(rgb), 2]).astype(np.int64) return rgb, ray_o, ray_d, near, far, coord, mask_at_box def sample_ray_h36m(img, msk, K, R, T, bounds, nrays, split): H, W = img.shape[:2] ray_o, ray_d = get_rays(H, W, K, R, T) pose = np.concatenate([R, T], axis=1) bound_mask = get_bound_2d_mask(bounds, K, pose, H, W) msk = msk * bound_mask bound_mask[msk == 100] = 0 if split == 'train': nsampled_rays = 0 face_sample_ratio = cfg.face_sample_ratio body_sample_ratio = cfg.body_sample_ratio ray_o_list = [] ray_d_list = [] rgb_list = [] near_list = [] far_list = [] coord_list = [] mask_at_box_list = [] while nsampled_rays < nrays: n_body = int((nrays - nsampled_rays) * body_sample_ratio) n_face = int((nrays - nsampled_rays) * face_sample_ratio) n_rand = (nrays - nsampled_rays) - n_body - n_face # sample rays on body coord_body = np.argwhere(msk == 1) coord_body = coord_body[np.random.randint(0, len(coord_body), n_body)] # sample rays on face coord_face = np.argwhere(msk == 13) if len(coord_face) > 0: coord_face = coord_face[np.random.randint( 0, len(coord_face), n_face)] # sample rays in the bound mask coord = np.argwhere(bound_mask == 1) coord = coord[np.random.randint(0, len(coord), n_rand)] if len(coord_face) > 0: coord = np.concatenate([coord_body, coord_face, coord], axis=0) else: coord = np.concatenate([coord_body, coord], axis=0) ray_o_ = ray_o[coord[:, 0], coord[:, 1]] ray_d_ = ray_d[coord[:, 0], coord[:, 1]] rgb_ = img[coord[:, 0], coord[:, 1]] near_, far_, mask_at_box = get_near_far(bounds, ray_o_, ray_d_) ray_o_list.append(ray_o_[mask_at_box]) ray_d_list.append(ray_d_[mask_at_box]) rgb_list.append(rgb_[mask_at_box]) near_list.append(near_) far_list.append(far_) coord_list.append(coord[mask_at_box]) mask_at_box_list.append(mask_at_box[mask_at_box]) nsampled_rays += len(near_) ray_o = np.concatenate(ray_o_list).astype(np.float32) ray_d = np.concatenate(ray_d_list).astype(np.float32) rgb = np.concatenate(rgb_list).astype(np.float32) near = np.concatenate(near_list).astype(np.float32) far = np.concatenate(far_list).astype(np.float32) coord = np.concatenate(coord_list) mask_at_box = np.concatenate(mask_at_box_list) else: rgb = img.reshape(-1, 3).astype(np.float32) ray_o = ray_o.reshape(-1, 3).astype(np.float32) ray_d = ray_d.reshape(-1, 3).astype(np.float32) near, far, mask_at_box = get_near_far(bounds, ray_o, ray_d) near = near.astype(np.float32) far = far.astype(np.float32) rgb = rgb[mask_at_box] ray_o = ray_o[mask_at_box] ray_d = ray_d[mask_at_box] coord = np.zeros([len(rgb), 2]).astype(np.int64) return rgb, ray_o, ray_d, near, far, coord, mask_at_box def get_smpl_data(ply_path): ply = trimesh.load(ply_path) xyz = np.array(ply.vertices) nxyz = np.array(ply.vertex_normals) if cfg.add_pointcloud: # add random points xyz_, ind_ = trimesh.sample.sample_surface_even(ply, 5000) nxyz_ = ply.face_normals[ind_] xyz = np.concatenate([xyz, xyz_], axis=0) nxyz = np.concatenate([nxyz, nxyz_], axis=0) xyz = xyz.astype(np.float32) nxyz = nxyz.astype(np.float32) return xyz, nxyz def get_acc(coord, msk): border = 25 kernel = np.ones((border, border), np.uint8) msk = cv2.dilate(msk.copy(), kernel) acc = msk[coord[:, 0], coord[:, 1]] acc = (acc != 0).astype(np.uint8) return acc def rotate_smpl(xyz, nxyz, t): """ t: rotation angle """ xyz = xyz.copy() nxyz = nxyz.copy() center = (np.min(xyz, axis=0) + np.max(xyz, axis=0)) / 2 xyz = xyz - center R = np.array([[np.cos(t), -np.sin(t)], [np.sin(t), np.cos(t)]]) R = R.astype(np.float32) xyz[:, :2] = np.dot(xyz[:, :2], R.T) xyz = xyz + center # nxyz[:, :2] = np.dot(nxyz[:, :2], R.T) return xyz, nxyz, center def transform_can_smpl(xyz): center = np.array([0, 0, 0]).astype(np.float32) rot = np.array([[np.cos(0), -np.sin(0)], [np.sin(0), np.cos(0)]]) rot = rot.astype(np.float32) trans = np.array([0, 0, 0]).astype(np.float32) if np.random.uniform() > cfg.rot_ratio: return xyz, center, rot, trans xyz = xyz.copy() # rotate the smpl rot_range = np.pi / 32 t = np.random.uniform(-rot_range, rot_range) rot = np.array([[np.cos(t), -np.sin(t)], [np.sin(t), np.cos(t)]]) rot = rot.astype(np.float32) center = np.mean(xyz, axis=0) xyz = xyz - center xyz[:, [0, 2]] = np.dot(xyz[:, [0, 2]], rot.T) xyz = xyz + center # translate the smpl x_range = 0.05 z_range = 0.025 x_trans = np.random.uniform(-x_range, x_range) z_trans = np.random.uniform(-z_range, z_range) trans = np.array([x_trans, 0, z_trans]).astype(np.float32) xyz = xyz + trans return xyz, center, rot, trans def unproject(depth, K, R, T): H, W = depth.shape i, j = np.meshgrid(np.arange(W, dtype=np.float32), np.arange(H, dtype=np.float32), indexing='xy') xy1 = np.stack([i, j, np.ones_like(i)], axis=2) xyz = xy1 * depth[..., None] pts3d = np.dot(xyz, np.linalg.inv(K).T) pts3d = np.dot(pts3d - T.ravel(), R) return pts3d def sample_world_points(ray_o, ray_d, near, far, split): # calculate the steps for each ray t_vals = np.linspace(0., 1., num=cfg.N_samples) z_vals = near[..., None] * (1. - t_vals) + far[..., None] * t_vals if cfg.perturb > 0. and split == 'train': # get intervals between samples mids = .5 * (z_vals[..., 1:] + z_vals[..., :-1]) upper = np.concatenate([mids, z_vals[..., -1:]], -1) lower = np.concatenate([z_vals[..., :1], mids], -1) # stratified samples in those intervals t_rand = np.random.rand(*z_vals.shape) z_vals = lower + (upper - lower) * t_rand pts = ray_o[:, None] + ray_d[:, None] * z_vals[..., None] pts = pts.astype(np.float32) z_vals = z_vals.astype(np.float32) return pts, z_vals def barycentric_interpolation(val, coords): """ :param val: verts x 3 x d input matrix :param coords: verts x 3 barycentric weights array :return: verts x d weighted matrix """ t = val * coords[..., np.newaxis] ret = t.sum(axis=1) return ret def batch_rodrigues(poses): """ poses: N x 3 """ batch_size = poses.shape[0] angle = np.linalg.norm(poses + 1e-8, axis=1, keepdims=True) rot_dir = poses / angle cos = np.cos(angle)[:, None] sin = np.sin(angle)[:, None] rx, ry, rz = np.split(rot_dir, 3, axis=1) zeros = np.zeros([batch_size, 1]) K = np.concatenate([zeros, -rz, ry, rz, zeros, -rx, -ry, rx, zeros], axis=1) K = K.reshape([batch_size, 3, 3]) ident = np.eye(3)[None] rot_mat = ident + sin * K + (1 - cos) * np.matmul(K, K) return rot_mat def get_rigid_transformation(poses, joints, parents): """ poses: 24 x 3 joints: 24 x 3 parents: 24 """ rot_mats = batch_rodrigues(poses) # obtain the relative joints rel_joints = joints.copy() rel_joints[1:] -= joints[parents[1:]] # create the transformation matrix transforms_mat = np.concatenate([rot_mats, rel_joints[..., None]], axis=2) padding = np.zeros([24, 1, 4]) padding[..., 3] = 1 transforms_mat = np.concatenate([transforms_mat, padding], axis=1) # rotate each part transform_chain = [transforms_mat[0]] for i in range(1, parents.shape[0]): curr_res = np.dot(transform_chain[parents[i]], transforms_mat[i]) transform_chain.append(curr_res) transforms = np.stack(transform_chain, axis=0) # obtain the rigid transformation padding = np.zeros([24, 1]) joints_homogen = np.concatenate([joints, padding], axis=1) transformed_joints = np.sum(transforms * joints_homogen[:, None], axis=2) transforms[..., 3] = transforms[..., 3] - transformed_joints transforms = transforms.astype(np.float32) return transforms