Spaces:
Configuration error
Configuration error
import numpy as np | |
import trimesh | |
class VoxelGrid: | |
def __init__(self, data, loc=(0., 0., 0.), scale=1): | |
assert(data.shape[0] == data.shape[1] == data.shape[2]) | |
data = np.asarray(data, dtype=np.bool) | |
loc = np.asarray(loc) | |
self.data = data | |
self.loc = loc | |
self.scale = scale | |
def from_mesh(cls, mesh, resolution, loc=None, scale=None, method='ray'): | |
bounds = mesh.bounds | |
# Default location is center | |
if loc is None: | |
loc = (bounds[0] + bounds[1]) / 2 | |
# Default scale, scales the mesh to [-0.45, 0.45]^3 | |
if scale is None: | |
scale = (bounds[1] - bounds[0]).max()/0.9 | |
loc = np.asarray(loc) | |
scale = float(scale) | |
# Transform mesh | |
mesh = mesh.copy() | |
mesh.apply_translation(-loc) | |
mesh.apply_scale(1/scale) | |
# Apply method | |
if method == 'ray': | |
voxel_data = voxelize_ray(mesh, resolution) | |
elif method == 'fill': | |
voxel_data = voxelize_fill(mesh, resolution) | |
voxels = cls(voxel_data, loc, scale) | |
return voxels | |
def down_sample(self, factor=2): | |
if not (self.resolution % factor) == 0: | |
raise ValueError('Resolution must be divisible by factor.') | |
new_data = block_reduce(self.data, (factor,) * 3, np.max) | |
return VoxelGrid(new_data, self.loc, self.scale) | |
def to_mesh(self): | |
# Shorthand | |
occ = self.data | |
# Shape of voxel grid | |
nx, ny, nz = occ.shape | |
# Shape of corresponding occupancy grid | |
grid_shape = (nx + 1, ny + 1, nz + 1) | |
# Convert values to occupancies | |
occ = np.pad(occ, 1, 'constant') | |
# Determine if face present | |
f1_r = (occ[:-1, 1:-1, 1:-1] & ~occ[1:, 1:-1, 1:-1]) | |
f2_r = (occ[1:-1, :-1, 1:-1] & ~occ[1:-1, 1:, 1:-1]) | |
f3_r = (occ[1:-1, 1:-1, :-1] & ~occ[1:-1, 1:-1, 1:]) | |
f1_l = (~occ[:-1, 1:-1, 1:-1] & occ[1:, 1:-1, 1:-1]) | |
f2_l = (~occ[1:-1, :-1, 1:-1] & occ[1:-1, 1:, 1:-1]) | |
f3_l = (~occ[1:-1, 1:-1, :-1] & occ[1:-1, 1:-1, 1:]) | |
f1 = f1_r | f1_l | |
f2 = f2_r | f2_l | |
f3 = f3_r | f3_l | |
assert(f1.shape == (nx + 1, ny, nz)) | |
assert(f2.shape == (nx, ny + 1, nz)) | |
assert(f3.shape == (nx, ny, nz + 1)) | |
# Determine if vertex present | |
v = np.full(grid_shape, False) | |
v[:, :-1, :-1] |= f1 | |
v[:, :-1, 1:] |= f1 | |
v[:, 1:, :-1] |= f1 | |
v[:, 1:, 1:] |= f1 | |
v[:-1, :, :-1] |= f2 | |
v[:-1, :, 1:] |= f2 | |
v[1:, :, :-1] |= f2 | |
v[1:, :, 1:] |= f2 | |
v[:-1, :-1, :] |= f3 | |
v[:-1, 1:, :] |= f3 | |
v[1:, :-1, :] |= f3 | |
v[1:, 1:, :] |= f3 | |
# Calculate indices for vertices | |
n_vertices = v.sum() | |
v_idx = np.full(grid_shape, -1) | |
v_idx[v] = np.arange(n_vertices) | |
# Vertices | |
v_x, v_y, v_z = np.where(v) | |
v_x = v_x / nx - 0.5 | |
v_y = v_y / ny - 0.5 | |
v_z = v_z / nz - 0.5 | |
vertices = np.stack([v_x, v_y, v_z], axis=1) | |
# Face indices | |
f1_l_x, f1_l_y, f1_l_z = np.where(f1_l) | |
f2_l_x, f2_l_y, f2_l_z = np.where(f2_l) | |
f3_l_x, f3_l_y, f3_l_z = np.where(f3_l) | |
f1_r_x, f1_r_y, f1_r_z = np.where(f1_r) | |
f2_r_x, f2_r_y, f2_r_z = np.where(f2_r) | |
f3_r_x, f3_r_y, f3_r_z = np.where(f3_r) | |
faces_1_l = np.stack([ | |
v_idx[f1_l_x, f1_l_y, f1_l_z], | |
v_idx[f1_l_x, f1_l_y, f1_l_z + 1], | |
v_idx[f1_l_x, f1_l_y + 1, f1_l_z + 1], | |
v_idx[f1_l_x, f1_l_y + 1, f1_l_z], | |
], axis=1) | |
faces_1_r = np.stack([ | |
v_idx[f1_r_x, f1_r_y, f1_r_z], | |
v_idx[f1_r_x, f1_r_y + 1, f1_r_z], | |
v_idx[f1_r_x, f1_r_y + 1, f1_r_z + 1], | |
v_idx[f1_r_x, f1_r_y, f1_r_z + 1], | |
], axis=1) | |
faces_2_l = np.stack([ | |
v_idx[f2_l_x, f2_l_y, f2_l_z], | |
v_idx[f2_l_x + 1, f2_l_y, f2_l_z], | |
v_idx[f2_l_x + 1, f2_l_y, f2_l_z + 1], | |
v_idx[f2_l_x, f2_l_y, f2_l_z + 1], | |
], axis=1) | |
faces_2_r = np.stack([ | |
v_idx[f2_r_x, f2_r_y, f2_r_z], | |
v_idx[f2_r_x, f2_r_y, f2_r_z + 1], | |
v_idx[f2_r_x + 1, f2_r_y, f2_r_z + 1], | |
v_idx[f2_r_x + 1, f2_r_y, f2_r_z], | |
], axis=1) | |
faces_3_l = np.stack([ | |
v_idx[f3_l_x, f3_l_y, f3_l_z], | |
v_idx[f3_l_x, f3_l_y + 1, f3_l_z], | |
v_idx[f3_l_x + 1, f3_l_y + 1, f3_l_z], | |
v_idx[f3_l_x + 1, f3_l_y, f3_l_z], | |
], axis=1) | |
faces_3_r = np.stack([ | |
v_idx[f3_r_x, f3_r_y, f3_r_z], | |
v_idx[f3_r_x + 1, f3_r_y, f3_r_z], | |
v_idx[f3_r_x + 1, f3_r_y + 1, f3_r_z], | |
v_idx[f3_r_x, f3_r_y + 1, f3_r_z], | |
], axis=1) | |
faces = np.concatenate([ | |
faces_1_l, faces_1_r, | |
faces_2_l, faces_2_r, | |
faces_3_l, faces_3_r, | |
], axis=0) | |
vertices = self.loc + self.scale * vertices | |
mesh = trimesh.Trimesh(vertices, faces, process=False) | |
return mesh | |
def resolution(self): | |
assert(self.data.shape[0] == self.data.shape[1] == self.data.shape[2]) | |
return self.data.shape[0] | |
def contains(self, points): | |
nx = self.resolution | |
# Rescale bounding box to [-0.5, 0.5]^3 | |
points = (points - self.loc) / self.scale | |
# Discretize points to [0, nx-1]^3 | |
points_i = ((points + 0.5) * nx).astype(np.int32) | |
# i1, i2, i3 have sizes (batch_size, T) | |
i1, i2, i3 = points_i[..., 0], points_i[..., 1], points_i[..., 2] | |
# Only use indices inside bounding box | |
mask = ( | |
(i1 >= 0) & (i2 >= 0) & (i3 >= 0) | |
& (nx > i1) & (nx > i2) & (nx > i3) | |
) | |
# Prevent out of bounds error | |
i1 = i1[mask] | |
i2 = i2[mask] | |
i3 = i3[mask] | |
# Compute values, default value outside box is 0 | |
occ = np.zeros(points.shape[:-1], dtype=np.bool) | |
occ[mask] = self.data[i1, i2, i3] | |
return occ | |