NeuralBody / lib /utils /net_utils.py
pengsida
initial commit
1ba539f
import torch
import os
from torch import nn
import numpy as np
import torch.nn.functional
from collections import OrderedDict
from termcolor import colored
def sigmoid(x):
y = torch.clamp(x.sigmoid(), min=1e-4, max=1 - 1e-4)
return y
def _neg_loss(pred, gt):
''' Modified focal loss. Exactly the same as CornerNet.
Runs faster and costs a little bit more memory
Arguments:
pred (batch x c x h x w)
gt_regr (batch x c x h x w)
'''
pos_inds = gt.eq(1).float()
neg_inds = gt.lt(1).float()
neg_weights = torch.pow(1 - gt, 4)
loss = 0
pos_loss = torch.log(pred) * torch.pow(1 - pred, 2) * pos_inds
neg_loss = torch.log(1 - pred) * torch.pow(pred,
2) * neg_weights * neg_inds
num_pos = pos_inds.float().sum()
pos_loss = pos_loss.sum()
neg_loss = neg_loss.sum()
if num_pos == 0:
loss = loss - neg_loss
else:
loss = loss - (pos_loss + neg_loss) / num_pos
return loss
class FocalLoss(nn.Module):
'''nn.Module warpper for focal loss'''
def __init__(self):
super(FocalLoss, self).__init__()
self.neg_loss = _neg_loss
def forward(self, out, target):
return self.neg_loss(out, target)
def smooth_l1_loss(vertex_pred,
vertex_targets,
vertex_weights,
sigma=1.0,
normalize=True,
reduce=True):
"""
:param vertex_pred: [b, vn*2, h, w]
:param vertex_targets: [b, vn*2, h, w]
:param vertex_weights: [b, 1, h, w]
:param sigma:
:param normalize:
:param reduce:
:return:
"""
b, ver_dim, _, _ = vertex_pred.shape
sigma_2 = sigma**2
vertex_diff = vertex_pred - vertex_targets
diff = vertex_weights * vertex_diff
abs_diff = torch.abs(diff)
smoothL1_sign = (abs_diff < 1. / sigma_2).detach().float()
in_loss = torch.pow(diff, 2) * (sigma_2 / 2.) * smoothL1_sign \
+ (abs_diff - (0.5 / sigma_2)) * (1. - smoothL1_sign)
if normalize:
in_loss = torch.sum(in_loss.view(b, -1), 1) / (
ver_dim * torch.sum(vertex_weights.view(b, -1), 1) + 1e-3)
if reduce:
in_loss = torch.mean(in_loss)
return in_loss
class SmoothL1Loss(nn.Module):
def __init__(self):
super(SmoothL1Loss, self).__init__()
self.smooth_l1_loss = smooth_l1_loss
def forward(self,
preds,
targets,
weights,
sigma=1.0,
normalize=True,
reduce=True):
return self.smooth_l1_loss(preds, targets, weights, sigma, normalize,
reduce)
class AELoss(nn.Module):
def __init__(self):
super(AELoss, self).__init__()
def forward(self, ae, ind, ind_mask):
"""
ae: [b, 1, h, w]
ind: [b, max_objs, max_parts]
ind_mask: [b, max_objs, max_parts]
obj_mask: [b, max_objs]
"""
# first index
b, _, h, w = ae.shape
b, max_objs, max_parts = ind.shape
obj_mask = torch.sum(ind_mask, dim=2) != 0
ae = ae.view(b, h * w, 1)
seed_ind = ind.view(b, max_objs * max_parts, 1)
tag = ae.gather(1, seed_ind).view(b, max_objs, max_parts)
# compute the mean
tag_mean = tag * ind_mask
tag_mean = tag_mean.sum(2) / (ind_mask.sum(2) + 1e-4)
# pull ae of the same object to their mean
pull_dist = (tag - tag_mean.unsqueeze(2)).pow(2) * ind_mask
obj_num = obj_mask.sum(dim=1).float()
pull = (pull_dist.sum(dim=(1, 2)) / (obj_num + 1e-4)).sum()
pull /= b
# push away the mean of different objects
push_dist = torch.abs(tag_mean.unsqueeze(1) - tag_mean.unsqueeze(2))
push_dist = 1 - push_dist
push_dist = nn.functional.relu(push_dist, inplace=True)
obj_mask = (obj_mask.unsqueeze(1) + obj_mask.unsqueeze(2)) == 2
push_dist = push_dist * obj_mask.float()
push = ((push_dist.sum(dim=(1, 2)) - obj_num) /
(obj_num * (obj_num - 1) + 1e-4)).sum()
push /= b
return pull, push
class PolyMatchingLoss(nn.Module):
def __init__(self, pnum):
super(PolyMatchingLoss, self).__init__()
self.pnum = pnum
batch_size = 1
pidxall = np.zeros(shape=(batch_size, pnum, pnum), dtype=np.int32)
for b in range(batch_size):
for i in range(pnum):
pidx = (np.arange(pnum) + i) % pnum
pidxall[b, i] = pidx
device = torch.device('cuda')
pidxall = torch.from_numpy(
np.reshape(pidxall, newshape=(batch_size, -1))).to(device)
self.feature_id = pidxall.unsqueeze_(2).long().expand(
pidxall.size(0), pidxall.size(1), 2).detach()
def forward(self, pred, gt, loss_type="L2"):
pnum = self.pnum
batch_size = pred.size()[0]
feature_id = self.feature_id.expand(batch_size,
self.feature_id.size(1), 2)
device = torch.device('cuda')
gt_expand = torch.gather(gt, 1,
feature_id).view(batch_size, pnum, pnum, 2)
pred_expand = pred.unsqueeze(1)
dis = pred_expand - gt_expand
if loss_type == "L2":
dis = (dis**2).sum(3).sqrt().sum(2)
elif loss_type == "L1":
dis = torch.abs(dis).sum(3).sum(2)
min_dis, min_id = torch.min(dis, dim=1, keepdim=True)
# print(min_id)
# min_id = torch.from_numpy(min_id.data.cpu().numpy()).to(device)
# min_gt_id_to_gather = min_id.unsqueeze_(2).unsqueeze_(3).long().\
# expand(min_id.size(0), min_id.size(1), gt_expand.size(2), gt_expand.size(3))
# gt_right_order = torch.gather(gt_expand, 1, min_gt_id_to_gather).view(batch_size, pnum, 2)
return torch.mean(min_dis)
class AttentionLoss(nn.Module):
def __init__(self, beta=4, gamma=0.5):
super(AttentionLoss, self).__init__()
self.beta = beta
self.gamma = gamma
def forward(self, pred, gt):
num_pos = torch.sum(gt)
num_neg = torch.sum(1 - gt)
alpha = num_neg / (num_pos + num_neg)
edge_beta = torch.pow(self.beta, torch.pow(1 - pred, self.gamma))
bg_beta = torch.pow(self.beta, torch.pow(pred, self.gamma))
loss = 0
loss = loss - alpha * edge_beta * torch.log(pred) * gt
loss = loss - (1 - alpha) * bg_beta * torch.log(1 - pred) * (1 - gt)
return torch.mean(loss)
def _gather_feat(feat, ind, mask=None):
dim = feat.size(2)
ind = ind.unsqueeze(2).expand(ind.size(0), ind.size(1), dim)
feat = feat.gather(1, ind)
if mask is not None:
mask = mask.unsqueeze(2).expand_as(feat)
feat = feat[mask]
feat = feat.view(-1, dim)
return feat
def _tranpose_and_gather_feat(feat, ind):
feat = feat.permute(0, 2, 3, 1).contiguous()
feat = feat.view(feat.size(0), -1, feat.size(3))
feat = _gather_feat(feat, ind)
return feat
class Ind2dRegL1Loss(nn.Module):
def __init__(self, type='l1'):
super(Ind2dRegL1Loss, self).__init__()
if type == 'l1':
self.loss = torch.nn.functional.l1_loss
elif type == 'smooth_l1':
self.loss = torch.nn.functional.smooth_l1_loss
def forward(self, output, target, ind, ind_mask):
"""ind: [b, max_objs, max_parts]"""
b, max_objs, max_parts = ind.shape
ind = ind.view(b, max_objs * max_parts)
pred = _tranpose_and_gather_feat(output,
ind).view(b, max_objs, max_parts,
output.size(1))
mask = ind_mask.unsqueeze(3).expand_as(pred)
loss = self.loss(pred * mask, target * mask, reduction='sum')
loss = loss / (mask.sum() + 1e-4)
return loss
class IndL1Loss1d(nn.Module):
def __init__(self, type='l1'):
super(IndL1Loss1d, self).__init__()
if type == 'l1':
self.loss = torch.nn.functional.l1_loss
elif type == 'smooth_l1':
self.loss = torch.nn.functional.smooth_l1_loss
def forward(self, output, target, ind, weight):
"""ind: [b, n]"""
output = _tranpose_and_gather_feat(output, ind)
weight = weight.unsqueeze(2)
loss = self.loss(output * weight, target * weight, reduction='sum')
loss = loss / (weight.sum() * output.size(2) + 1e-4)
return loss
class GeoCrossEntropyLoss(nn.Module):
def __init__(self):
super(GeoCrossEntropyLoss, self).__init__()
def forward(self, output, target, poly):
output = torch.nn.functional.softmax(output, dim=1)
output = torch.log(torch.clamp(output, min=1e-4))
poly = poly.view(poly.size(0), 4, poly.size(1) // 4, 2)
target = target[..., None, None].expand(poly.size(0), poly.size(1), 1,
poly.size(3))
target_poly = torch.gather(poly, 2, target)
sigma = (poly[:, :, 0] - poly[:, :, 1]).pow(2).sum(2, keepdim=True)
kernel = torch.exp(-(poly - target_poly).pow(2).sum(3) / (sigma / 3))
loss = -(output * kernel.transpose(2, 1)).sum(1).mean()
return loss
def load_model(net,
optim,
scheduler,
recorder,
model_dir,
resume=True,
epoch=-1):
if not resume:
os.system('rm -rf {}'.format(model_dir))
if not os.path.exists(model_dir):
return 0
pths = [
int(pth.split('.')[0]) for pth in os.listdir(model_dir)
if pth != 'latest.pth'
]
if len(pths) == 0 and 'latest.pth' not in os.listdir(model_dir):
return 0
if epoch == -1:
if 'latest.pth' in os.listdir(model_dir):
pth = 'latest'
else:
pth = max(pths)
else:
pth = epoch
print('load model: {}'.format(os.path.join(model_dir,
'{}.pth'.format(pth))))
pretrained_model = torch.load(
os.path.join(model_dir, '{}.pth'.format(pth)), 'cpu')
net.load_state_dict(pretrained_model['net'])
optim.load_state_dict(pretrained_model['optim'])
scheduler.load_state_dict(pretrained_model['scheduler'])
recorder.load_state_dict(pretrained_model['recorder'])
return pretrained_model['epoch'] + 1
def save_model(net, optim, scheduler, recorder, model_dir, epoch, last=False):
os.system('mkdir -p {}'.format(model_dir))
model = {
'net': net.state_dict(),
'optim': optim.state_dict(),
'scheduler': scheduler.state_dict(),
'recorder': recorder.state_dict(),
'epoch': epoch
}
if last:
torch.save(model, os.path.join(model_dir, 'latest.pth'))
else:
torch.save(model, os.path.join(model_dir, '{}.pth'.format(epoch)))
# remove previous pretrained model if the number of models is too big
pths = [
int(pth.split('.')[0]) for pth in os.listdir(model_dir)
if pth != 'latest.pth'
]
if len(pths) <= 20:
return
os.system('rm {}'.format(
os.path.join(model_dir, '{}.pth'.format(min(pths)))))
def load_network(net, model_dir, resume=True, epoch=-1, strict=True):
if not resume:
return 0
if not os.path.exists(model_dir):
print(colored('pretrained model does not exist', 'red'))
return 0
if os.path.isdir(model_dir):
pths = [
int(pth.split('.')[0]) for pth in os.listdir(model_dir)
if pth != 'latest.pth'
]
if len(pths) == 0 and 'latest.pth' not in os.listdir(model_dir):
return 0
if epoch == -1:
if 'latest.pth' in os.listdir(model_dir):
pth = 'latest'
else:
pth = max(pths)
else:
pth = epoch
model_path = os.path.join(model_dir, '{}.pth'.format(pth))
else:
model_path = model_dir
print('load model: {}'.format(model_path))
pretrained_model = torch.load(model_path)
net.load_state_dict(pretrained_model['net'], strict=strict)
return pretrained_model['epoch'] + 1
def remove_net_prefix(net, prefix):
net_ = OrderedDict()
for k in net.keys():
if k.startswith(prefix):
net_[k[len(prefix):]] = net[k]
else:
net_[k] = net[k]
return net_
def add_net_prefix(net, prefix):
net_ = OrderedDict()
for k in net.keys():
net_[prefix + k] = net[k]
return net_
def replace_net_prefix(net, orig_prefix, prefix):
net_ = OrderedDict()
for k in net.keys():
if k.startswith(orig_prefix):
net_[prefix + k[len(orig_prefix):]] = net[k]
else:
net_[k] = net[k]
return net_
def remove_net_layer(net, layers):
keys = list(net.keys())
for k in keys:
for layer in layers:
if k.startswith(layer):
del net[k]
return net