Spaces:
Configuration error
Configuration error
File size: 5,134 Bytes
1ba539f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 |
import numpy as np
import json
import os
import cv2
from lib.config import cfg
from lib.utils.if_nerf import if_nerf_data_utils as if_nerf_dutils
def normalize(x):
return x / np.linalg.norm(x)
def viewmatrix(z, up, pos):
vec2 = normalize(z)
vec0_avg = up
vec1 = normalize(np.cross(vec2, vec0_avg))
vec0 = normalize(np.cross(vec1, vec2))
m = np.stack([vec0, vec1, vec2, pos], 1)
return m
def ptstocam(pts, c2w):
tt = np.matmul(c2w[:3, :3].T, (pts-c2w[:3, 3])[..., np.newaxis])[..., 0]
return tt
def load_cam(ann_file):
if ann_file.endswith('.json'):
annots = json.load(open(ann_file, 'r'))
cams = annots['cams']['20190823']
else:
annots = np.load(ann_file, allow_pickle=True).item()
cams = annots['cams']
K = []
RT = []
lower_row = np.array([[0., 0., 0., 1.]])
for i in range(len(cams['K'])):
K.append(np.array(cams['K'][i]))
K[i][:2] = K[i][:2] * cfg.ratio
r = np.array(cams['R'][i])
t = np.array(cams['T'][i]) / 1000.
r_t = np.concatenate([r, t], 1)
RT.append(np.concatenate([r_t, lower_row], 0))
return K, RT
def get_center_rayd(K, RT):
H, W = int(cfg.H * cfg.ratio), int(cfg.W * cfg.ratio)
RT = np.array(RT)
ray_o, ray_d = if_nerf_dutils.get_rays(H, W, K,
RT[:3, :3], RT[:3, 3])
return ray_d[H // 2, W // 2]
def gen_path(RT, center=None):
lower_row = np.array([[0., 0., 0., 1.]])
# transfer RT to camera_to_world matrix
RT = np.array(RT)
RT[:] = np.linalg.inv(RT[:])
RT = np.concatenate([RT[:, :, 1:2], RT[:, :, 0:1],
-RT[:, :, 2:3], RT[:, :, 3:4]], 2)
up = normalize(RT[:, :3, 0].sum(0)) # average up vector
z = normalize(RT[0, :3, 2])
vec1 = normalize(np.cross(z, up))
vec2 = normalize(np.cross(up, vec1))
z_off = 0
if center is None:
center = RT[:, :3, 3].mean(0)
z_off = 1.3
c2w = np.stack([up, vec1, vec2, center], 1)
# get radii for spiral path
tt = ptstocam(RT[:, :3, 3], c2w).T
rads = np.percentile(np.abs(tt), 80, -1)
rads = rads * 1.3
rads = np.array(list(rads) + [1.])
render_w2c = []
for theta in np.linspace(0., 2 * np.pi, cfg.num_render_views + 1)[:-1]:
# camera position
cam_pos = np.array([0, np.sin(theta), np.cos(theta), 1] * rads)
cam_pos_world = np.dot(c2w[:3, :4], cam_pos)
# z axis
z = normalize(cam_pos_world -
np.dot(c2w[:3, :4], np.array([z_off, 0, 0, 1.])))
# vector -> 3x4 matrix (camera_to_world)
mat = viewmatrix(z, up, cam_pos_world)
mat = np.concatenate([mat[:, 1:2], mat[:, 0:1],
-mat[:, 2:3], mat[:, 3:4]], 1)
mat = np.concatenate([mat, lower_row], 0)
mat = np.linalg.inv(mat)
render_w2c.append(mat)
return render_w2c
def read_voxel(frame, args):
voxel_path = os.path.join(args['data_root'], 'voxel', args['human'],
'{}.npz'.format(frame))
voxel_data = np.load(voxel_path)
occupancy = np.unpackbits(voxel_data['compressed_occupancies'])
occupancy = occupancy.reshape(cfg.res, cfg.res,
cfg.res).astype(np.float32)
bounds = voxel_data['bounds'].astype(np.float32)
return occupancy, bounds
def image_rays(RT, K, bounds):
H = cfg.H * cfg.ratio
W = cfg.W * cfg.ratio
ray_o, ray_d = if_nerf_dutils.get_rays(H, W, K,
RT[:3, :3], RT[:3, 3])
ray_o = ray_o.reshape(-1, 3).astype(np.float32)
ray_d = ray_d.reshape(-1, 3).astype(np.float32)
near, far, mask_at_box = if_nerf_dutils.get_near_far(bounds, ray_o, ray_d)
near = near.astype(np.float32)
far = far.astype(np.float32)
ray_o = ray_o[mask_at_box]
ray_d = ray_d[mask_at_box]
center = (bounds[0] + bounds[1]) / 2
scale = np.max(bounds[1] - bounds[0])
return ray_o, ray_d, near, far, center, scale, mask_at_box
def get_image_rays0(RT0, RT, K, bounds):
"""
Use RT to get the mask_at_box and fill this region with rays emitted from view RT0
"""
H = cfg.H * cfg.ratio
ray_o, ray_d = if_nerf_dutils.get_rays(H, H, K,
RT[:3, :3], RT[:3, 3])
ray_o = ray_o.reshape(-1, 3).astype(np.float32)
ray_d = ray_d.reshape(-1, 3).astype(np.float32)
near, far, mask_at_box = if_nerf_dutils.get_near_far(bounds, ray_o, ray_d)
ray_o, ray_d = if_nerf_dutils.get_rays(H, H, K,
RT0[:3, :3], RT0[:3, 3])
ray_d = ray_d.reshape(-1, 3).astype(np.float32)
ray_d = ray_d[mask_at_box]
return ray_d
def save_img(img, frame_root, index, mask_at_box):
H = int(cfg.H * cfg.ratio)
rgb_pred = img['rgb_map'][0].detach().cpu().numpy()
mask_at_box = mask_at_box.reshape(H, H)
img_pred = np.zeros((H, H, 3))
img_pred[mask_at_box] = rgb_pred
img_pred[:, :, [0, 1, 2]] = img_pred[:, :, [2, 1, 0]]
print("saved frame %d" % index)
cv2.imwrite(os.path.join(frame_root, '%d.jpg' % index), img_pred * 255)
|