File size: 5,134 Bytes
1ba539f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import numpy as np
import json
import os
import cv2

from lib.config import cfg

from lib.utils.if_nerf import if_nerf_data_utils as if_nerf_dutils


def normalize(x):
    return x / np.linalg.norm(x)


def viewmatrix(z, up, pos):
    vec2 = normalize(z)
    vec0_avg = up
    vec1 = normalize(np.cross(vec2, vec0_avg))
    vec0 = normalize(np.cross(vec1, vec2))
    m = np.stack([vec0, vec1, vec2, pos], 1)
    return m


def ptstocam(pts, c2w):
    tt = np.matmul(c2w[:3, :3].T, (pts-c2w[:3, 3])[..., np.newaxis])[..., 0]
    return tt


def load_cam(ann_file):
    if ann_file.endswith('.json'):
        annots = json.load(open(ann_file, 'r'))
        cams = annots['cams']['20190823']
    else:
        annots = np.load(ann_file, allow_pickle=True).item()
        cams = annots['cams']

    K = []
    RT = []
    lower_row = np.array([[0., 0., 0., 1.]])

    for i in range(len(cams['K'])):
        K.append(np.array(cams['K'][i]))
        K[i][:2] = K[i][:2] * cfg.ratio

        r = np.array(cams['R'][i])
        t = np.array(cams['T'][i]) / 1000.
        r_t = np.concatenate([r, t], 1)
        RT.append(np.concatenate([r_t, lower_row], 0))

    return K, RT


def get_center_rayd(K, RT):
    H, W = int(cfg.H * cfg.ratio), int(cfg.W * cfg.ratio)
    RT = np.array(RT)
    ray_o, ray_d = if_nerf_dutils.get_rays(H, W, K,
                            RT[:3, :3], RT[:3, 3])
    return ray_d[H // 2, W // 2]


def gen_path(RT, center=None):
    lower_row = np.array([[0., 0., 0., 1.]])

    # transfer RT to camera_to_world matrix
    RT = np.array(RT)
    RT[:] = np.linalg.inv(RT[:])

    RT = np.concatenate([RT[:, :, 1:2], RT[:, :, 0:1],
                         -RT[:, :, 2:3], RT[:, :, 3:4]], 2)

    up = normalize(RT[:, :3, 0].sum(0))  # average up vector
    z = normalize(RT[0, :3, 2])
    vec1 = normalize(np.cross(z, up))
    vec2 = normalize(np.cross(up, vec1))
    z_off = 0

    if center is None:
        center = RT[:, :3, 3].mean(0)
        z_off = 1.3

    c2w = np.stack([up, vec1, vec2, center], 1)

    # get radii for spiral path
    tt = ptstocam(RT[:, :3, 3], c2w).T
    rads = np.percentile(np.abs(tt), 80, -1)
    rads = rads * 1.3
    rads = np.array(list(rads) + [1.])

    render_w2c = []
    for theta in np.linspace(0., 2 * np.pi, cfg.num_render_views + 1)[:-1]:
        # camera position
        cam_pos = np.array([0, np.sin(theta), np.cos(theta), 1] * rads)
        cam_pos_world = np.dot(c2w[:3, :4], cam_pos)
        # z axis
        z = normalize(cam_pos_world -
                      np.dot(c2w[:3, :4], np.array([z_off, 0, 0, 1.])))
        # vector -> 3x4 matrix (camera_to_world)
        mat = viewmatrix(z, up, cam_pos_world)

        mat = np.concatenate([mat[:, 1:2], mat[:, 0:1],
                              -mat[:, 2:3], mat[:, 3:4]], 1)
        mat = np.concatenate([mat, lower_row], 0)
        mat = np.linalg.inv(mat)
        render_w2c.append(mat)

    return render_w2c


def read_voxel(frame, args):
    voxel_path = os.path.join(args['data_root'], 'voxel', args['human'],
                              '{}.npz'.format(frame))
    voxel_data = np.load(voxel_path)
    occupancy = np.unpackbits(voxel_data['compressed_occupancies'])
    occupancy = occupancy.reshape(cfg.res, cfg.res,
                                  cfg.res).astype(np.float32)
    bounds = voxel_data['bounds'].astype(np.float32)
    return occupancy, bounds


def image_rays(RT, K, bounds):
    H = cfg.H * cfg.ratio
    W = cfg.W * cfg.ratio
    ray_o, ray_d = if_nerf_dutils.get_rays(H, W, K,
                            RT[:3, :3], RT[:3, 3])

    ray_o = ray_o.reshape(-1, 3).astype(np.float32)
    ray_d = ray_d.reshape(-1, 3).astype(np.float32)
    near, far, mask_at_box = if_nerf_dutils.get_near_far(bounds, ray_o, ray_d)
    near = near.astype(np.float32)
    far = far.astype(np.float32)
    ray_o = ray_o[mask_at_box]
    ray_d = ray_d[mask_at_box]

    center = (bounds[0] + bounds[1]) / 2
    scale = np.max(bounds[1] - bounds[0])

    return ray_o, ray_d, near, far, center, scale, mask_at_box


def get_image_rays0(RT0, RT, K, bounds):
    """
    Use RT to get the mask_at_box and fill this region with rays emitted from view RT0
    """
    H = cfg.H * cfg.ratio
    ray_o, ray_d = if_nerf_dutils.get_rays(H, H, K,
                            RT[:3, :3], RT[:3, 3])

    ray_o = ray_o.reshape(-1, 3).astype(np.float32)
    ray_d = ray_d.reshape(-1, 3).astype(np.float32)
    near, far, mask_at_box = if_nerf_dutils.get_near_far(bounds, ray_o, ray_d)

    ray_o, ray_d = if_nerf_dutils.get_rays(H, H, K,
                            RT0[:3, :3], RT0[:3, 3])
    ray_d = ray_d.reshape(-1, 3).astype(np.float32)
    ray_d = ray_d[mask_at_box]

    return ray_d


def save_img(img, frame_root, index, mask_at_box):
    H = int(cfg.H * cfg.ratio)
    rgb_pred = img['rgb_map'][0].detach().cpu().numpy()
    mask_at_box = mask_at_box.reshape(H, H)

    img_pred = np.zeros((H, H, 3))
    img_pred[mask_at_box] = rgb_pred
    img_pred[:, :, [0, 1, 2]] = img_pred[:, :, [2, 1, 0]]

    print("saved frame %d" % index)
    cv2.imwrite(os.path.join(frame_root, '%d.jpg' % index), img_pred * 255)