File size: 4,217 Bytes
1ba539f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import torch
from matplotlib import cm
import matplotlib.pyplot as plt
import matplotlib.patches as patches
import numpy as np
import cv2


def unnormalize_img(img, mean, std):
    """
    img: [3, h, w]
    """
    img = img.detach().cpu().clone()
    # img = img / 255.
    img *= torch.tensor(std).view(3, 1, 1)
    img += torch.tensor(mean).view(3, 1, 1)
    min_v = torch.min(img)
    img = (img - min_v) / (torch.max(img) - min_v)
    return img


def bgr_to_rgb(img):
    return img[:, :, [2, 1, 0]]


def horizon_concate(inp0, inp1):
    h0, w0 = inp0.shape[:2]
    h1, w1 = inp1.shape[:2]
    if inp0.ndim == 3:
        inp = np.zeros((max(h0, h1), w0 + w1, 3), dtype=inp0.dtype)
        inp[:h0, :w0, :] = inp0
        inp[:h1, w0:(w0 + w1), :] = inp1
    else:
        inp = np.zeros((max(h0, h1), w0 + w1), dtype=inp0.dtype)
        inp[:h0, :w0] = inp0
        inp[:h1, w0:(w0 + w1)] = inp1
    return inp


def vertical_concate(inp0, inp1):
    h0, w0 = inp0.shape[:2]
    h1, w1 = inp1.shape[:2]
    if inp0.ndim == 3:
        inp = np.zeros((h0 + h1, max(w0, w1), 3), dtype=inp0.dtype)
        inp[:h0, :w0, :] = inp0
        inp[h0:(h0 + h1), :w1, :] = inp1
    else:
        inp = np.zeros((h0 + h1, max(w0, w1)), dtype=inp0.dtype)
        inp[:h0, :w0] = inp0
        inp[h0:(h0 + h1), :w1] = inp1
    return inp


def transparent_cmap(cmap):
    """Copy colormap and set alpha values"""
    mycmap = cmap
    mycmap._init()
    mycmap._lut[:,-1] = 0.3
    return mycmap

cmap = transparent_cmap(plt.get_cmap('jet'))


def set_grid(ax, h, w, interval=8):
    ax.set_xticks(np.arange(0, w, interval))
    ax.set_yticks(np.arange(0, h, interval))
    ax.grid()
    ax.set_yticklabels([])
    ax.set_xticklabels([])


color_list = np.array(
    [
        0.000, 0.447, 0.741,
        0.850, 0.325, 0.098,
        0.929, 0.694, 0.125,
        0.494, 0.184, 0.556,
        0.466, 0.674, 0.188,
        0.301, 0.745, 0.933,
        0.635, 0.078, 0.184,
        0.300, 0.300, 0.300,
        0.600, 0.600, 0.600,
        1.000, 0.000, 0.000,
        1.000, 0.500, 0.000,
        0.749, 0.749, 0.000,
        0.000, 1.000, 0.000,
        0.000, 0.000, 1.000,
        0.667, 0.000, 1.000,
        0.333, 0.333, 0.000,
        0.333, 0.667, 0.000,
        0.333, 1.000, 0.000,
        0.667, 0.333, 0.000,
        0.667, 0.667, 0.000,
        0.667, 1.000, 0.000,
        1.000, 0.333, 0.000,
        1.000, 0.667, 0.000,
        1.000, 1.000, 0.000,
        0.000, 0.333, 0.500,
        0.000, 0.667, 0.500,
        0.000, 1.000, 0.500,
        0.333, 0.000, 0.500,
        0.333, 0.333, 0.500,
        0.333, 0.667, 0.500,
        0.333, 1.000, 0.500,
        0.667, 0.000, 0.500,
        0.667, 0.333, 0.500,
        0.667, 0.667, 0.500,
        0.667, 1.000, 0.500,
        1.000, 0.000, 0.500,
        1.000, 0.333, 0.500,
        1.000, 0.667, 0.500,
        1.000, 1.000, 0.500,
        0.000, 0.333, 1.000,
        0.000, 0.667, 1.000,
        0.000, 1.000, 1.000,
        0.333, 0.000, 1.000,
        0.333, 0.333, 1.000,
        0.333, 0.667, 1.000,
        0.333, 1.000, 1.000,
        0.667, 0.000, 1.000,
        0.667, 0.333, 1.000,
        0.667, 0.667, 1.000,
        0.667, 1.000, 1.000,
        1.000, 0.000, 1.000,
        1.000, 0.333, 1.000,
        1.000, 0.667, 1.000,
        0.167, 0.000, 0.000,
        0.333, 0.000, 0.000,
        0.500, 0.000, 0.000,
        0.667, 0.000, 0.000,
        0.833, 0.000, 0.000,
        1.000, 0.000, 0.000,
        0.000, 0.167, 0.000,
        0.000, 0.333, 0.000,
        0.000, 0.500, 0.000,
        0.000, 0.667, 0.000,
        0.000, 0.833, 0.000,
        0.000, 1.000, 0.000,
        0.000, 0.000, 0.167,
        0.000, 0.000, 0.333,
        0.000, 0.000, 0.500,
        0.000, 0.000, 0.667,
        0.000, 0.000, 0.833,
        0.000, 0.000, 1.000,
        0.000, 0.000, 0.000,
        0.143, 0.143, 0.143,
        0.286, 0.286, 0.286,
        0.429, 0.429, 0.429,
        0.571, 0.571, 0.571,
        0.714, 0.714, 0.714,
        0.857, 0.857, 0.857,
        1.000, 1.000, 1.000,
        0.50, 0.5, 0
    ]
).astype(np.float32)
colors = color_list.reshape((-1, 3)) * 255
colors = np.array(colors, dtype=np.uint8).reshape(len(colors), 1, 1, 3)