Spaces:
Configuration error
Configuration error
File size: 4,217 Bytes
1ba539f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 |
import torch
from matplotlib import cm
import matplotlib.pyplot as plt
import matplotlib.patches as patches
import numpy as np
import cv2
def unnormalize_img(img, mean, std):
"""
img: [3, h, w]
"""
img = img.detach().cpu().clone()
# img = img / 255.
img *= torch.tensor(std).view(3, 1, 1)
img += torch.tensor(mean).view(3, 1, 1)
min_v = torch.min(img)
img = (img - min_v) / (torch.max(img) - min_v)
return img
def bgr_to_rgb(img):
return img[:, :, [2, 1, 0]]
def horizon_concate(inp0, inp1):
h0, w0 = inp0.shape[:2]
h1, w1 = inp1.shape[:2]
if inp0.ndim == 3:
inp = np.zeros((max(h0, h1), w0 + w1, 3), dtype=inp0.dtype)
inp[:h0, :w0, :] = inp0
inp[:h1, w0:(w0 + w1), :] = inp1
else:
inp = np.zeros((max(h0, h1), w0 + w1), dtype=inp0.dtype)
inp[:h0, :w0] = inp0
inp[:h1, w0:(w0 + w1)] = inp1
return inp
def vertical_concate(inp0, inp1):
h0, w0 = inp0.shape[:2]
h1, w1 = inp1.shape[:2]
if inp0.ndim == 3:
inp = np.zeros((h0 + h1, max(w0, w1), 3), dtype=inp0.dtype)
inp[:h0, :w0, :] = inp0
inp[h0:(h0 + h1), :w1, :] = inp1
else:
inp = np.zeros((h0 + h1, max(w0, w1)), dtype=inp0.dtype)
inp[:h0, :w0] = inp0
inp[h0:(h0 + h1), :w1] = inp1
return inp
def transparent_cmap(cmap):
"""Copy colormap and set alpha values"""
mycmap = cmap
mycmap._init()
mycmap._lut[:,-1] = 0.3
return mycmap
cmap = transparent_cmap(plt.get_cmap('jet'))
def set_grid(ax, h, w, interval=8):
ax.set_xticks(np.arange(0, w, interval))
ax.set_yticks(np.arange(0, h, interval))
ax.grid()
ax.set_yticklabels([])
ax.set_xticklabels([])
color_list = np.array(
[
0.000, 0.447, 0.741,
0.850, 0.325, 0.098,
0.929, 0.694, 0.125,
0.494, 0.184, 0.556,
0.466, 0.674, 0.188,
0.301, 0.745, 0.933,
0.635, 0.078, 0.184,
0.300, 0.300, 0.300,
0.600, 0.600, 0.600,
1.000, 0.000, 0.000,
1.000, 0.500, 0.000,
0.749, 0.749, 0.000,
0.000, 1.000, 0.000,
0.000, 0.000, 1.000,
0.667, 0.000, 1.000,
0.333, 0.333, 0.000,
0.333, 0.667, 0.000,
0.333, 1.000, 0.000,
0.667, 0.333, 0.000,
0.667, 0.667, 0.000,
0.667, 1.000, 0.000,
1.000, 0.333, 0.000,
1.000, 0.667, 0.000,
1.000, 1.000, 0.000,
0.000, 0.333, 0.500,
0.000, 0.667, 0.500,
0.000, 1.000, 0.500,
0.333, 0.000, 0.500,
0.333, 0.333, 0.500,
0.333, 0.667, 0.500,
0.333, 1.000, 0.500,
0.667, 0.000, 0.500,
0.667, 0.333, 0.500,
0.667, 0.667, 0.500,
0.667, 1.000, 0.500,
1.000, 0.000, 0.500,
1.000, 0.333, 0.500,
1.000, 0.667, 0.500,
1.000, 1.000, 0.500,
0.000, 0.333, 1.000,
0.000, 0.667, 1.000,
0.000, 1.000, 1.000,
0.333, 0.000, 1.000,
0.333, 0.333, 1.000,
0.333, 0.667, 1.000,
0.333, 1.000, 1.000,
0.667, 0.000, 1.000,
0.667, 0.333, 1.000,
0.667, 0.667, 1.000,
0.667, 1.000, 1.000,
1.000, 0.000, 1.000,
1.000, 0.333, 1.000,
1.000, 0.667, 1.000,
0.167, 0.000, 0.000,
0.333, 0.000, 0.000,
0.500, 0.000, 0.000,
0.667, 0.000, 0.000,
0.833, 0.000, 0.000,
1.000, 0.000, 0.000,
0.000, 0.167, 0.000,
0.000, 0.333, 0.000,
0.000, 0.500, 0.000,
0.000, 0.667, 0.000,
0.000, 0.833, 0.000,
0.000, 1.000, 0.000,
0.000, 0.000, 0.167,
0.000, 0.000, 0.333,
0.000, 0.000, 0.500,
0.000, 0.000, 0.667,
0.000, 0.000, 0.833,
0.000, 0.000, 1.000,
0.000, 0.000, 0.000,
0.143, 0.143, 0.143,
0.286, 0.286, 0.286,
0.429, 0.429, 0.429,
0.571, 0.571, 0.571,
0.714, 0.714, 0.714,
0.857, 0.857, 0.857,
1.000, 1.000, 1.000,
0.50, 0.5, 0
]
).astype(np.float32)
colors = color_list.reshape((-1, 3)) * 255
colors = np.array(colors, dtype=np.uint8).reshape(len(colors), 1, 1, 3)
|