Spaces:
Configuration error
Configuration error
File size: 9,057 Bytes
1ba539f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 |
import torch.nn as nn
import spconv
import torch.nn.functional as F
import torch
from lib.config import cfg
from . import embedder
class Network(nn.Module):
def __init__(self):
super(Network, self).__init__()
self.c = nn.Embedding(6890, 16)
self.xyzc_net = SparseConvNet()
self.latent = nn.Embedding(cfg.num_train_frame, 128)
self.actvn = nn.ReLU()
self.fc_0 = nn.Conv1d(352, 256, 1)
self.fc_1 = nn.Conv1d(256, 256, 1)
self.fc_2 = nn.Conv1d(256, 256, 1)
self.alpha_fc = nn.Conv1d(256, 1, 1)
self.feature_fc = nn.Conv1d(256, 256, 1)
self.latent_fc = nn.Conv1d(384, 256, 1)
self.view_fc = nn.Conv1d(346, 128, 1)
self.rgb_fc = nn.Conv1d(128, 3, 1)
def encode_sparse_voxels(self, sp_input):
coord = sp_input['coord']
out_sh = sp_input['out_sh']
batch_size = sp_input['batch_size']
code = self.c(torch.arange(0, 6890).to(coord.device))
xyzc = spconv.SparseConvTensor(code, coord, out_sh, batch_size)
feature_volume = self.xyzc_net(xyzc)
return feature_volume
def pts_to_can_pts(self, pts, sp_input):
"""transform pts from the world coordinate to the smpl coordinate"""
Th = sp_input['Th']
pts = pts - Th
R = sp_input['R']
pts = torch.matmul(pts, R)
return pts
def get_grid_coords(self, pts, sp_input):
# convert xyz to the voxel coordinate dhw
dhw = pts[..., [2, 1, 0]]
min_dhw = sp_input['bounds'][:, 0, [2, 1, 0]]
dhw = dhw - min_dhw[:, None]
dhw = dhw / torch.tensor(cfg.voxel_size).to(dhw)
# convert the voxel coordinate to [-1, 1]
out_sh = torch.tensor(sp_input['out_sh']).to(dhw)
dhw = dhw / out_sh * 2 - 1
# convert dhw to whd, since the occupancy is indexed by dhw
grid_coords = dhw[..., [2, 1, 0]]
return grid_coords
def interpolate_features(self, grid_coords, feature_volume):
features = []
for volume in feature_volume:
feature = F.grid_sample(volume,
grid_coords,
padding_mode='zeros',
align_corners=True)
features.append(feature)
features = torch.cat(features, dim=1)
features = features.view(features.size(0), -1, features.size(4))
return features
def calculate_density(self, wpts, feature_volume, sp_input):
# interpolate features
ppts = self.pts_to_can_pts(wpts, sp_input)
grid_coords = self.get_grid_coords(ppts, sp_input)
grid_coords = grid_coords[:, None, None]
xyzc_features = self.interpolate_features(grid_coords, feature_volume)
# calculate density
net = self.actvn(self.fc_0(xyzc_features))
net = self.actvn(self.fc_1(net))
net = self.actvn(self.fc_2(net))
alpha = self.alpha_fc(net)
alpha = alpha.transpose(1, 2)
return alpha
def calculate_density_color(self, wpts, viewdir, feature_volume, sp_input):
# interpolate features
ppts = self.pts_to_can_pts(wpts, sp_input)
grid_coords = self.get_grid_coords(ppts, sp_input)
grid_coords = grid_coords[:, None, None]
xyzc_features = self.interpolate_features(grid_coords, feature_volume)
# calculate density
net = self.actvn(self.fc_0(xyzc_features))
net = self.actvn(self.fc_1(net))
net = self.actvn(self.fc_2(net))
alpha = self.alpha_fc(net)
# calculate color
features = self.feature_fc(net)
latent = self.latent(sp_input['latent_index'])
latent = latent[..., None].expand(*latent.shape, net.size(2))
features = torch.cat((features, latent), dim=1)
features = self.latent_fc(features)
viewdir = embedder.view_embedder(viewdir)
viewdir = viewdir.transpose(1, 2)
light_pts = embedder.xyz_embedder(wpts)
light_pts = light_pts.transpose(1, 2)
features = torch.cat((features, viewdir, light_pts), dim=1)
net = self.actvn(self.view_fc(features))
rgb = self.rgb_fc(net)
raw = torch.cat((rgb, alpha), dim=1)
raw = raw.transpose(1, 2)
return raw
def forward(self, sp_input, grid_coords, viewdir, light_pts):
coord = sp_input['coord']
out_sh = sp_input['out_sh']
batch_size = sp_input['batch_size']
p_features = grid_coords.transpose(1, 2)
grid_coords = grid_coords[:, None, None]
code = self.c(torch.arange(0, 6890).to(p_features.device))
xyzc = spconv.SparseConvTensor(code, coord, out_sh, batch_size)
xyzc_features = self.xyzc_net(xyzc, grid_coords)
net = self.actvn(self.fc_0(xyzc_features))
net = self.actvn(self.fc_1(net))
net = self.actvn(self.fc_2(net))
alpha = self.alpha_fc(net)
features = self.feature_fc(net)
latent = self.latent(sp_input['latent_index'])
latent = latent[..., None].expand(*latent.shape, net.size(2))
features = torch.cat((features, latent), dim=1)
features = self.latent_fc(features)
viewdir = viewdir.transpose(1, 2)
light_pts = light_pts.transpose(1, 2)
features = torch.cat((features, viewdir, light_pts), dim=1)
net = self.actvn(self.view_fc(features))
rgb = self.rgb_fc(net)
raw = torch.cat((rgb, alpha), dim=1)
raw = raw.transpose(1, 2)
return raw
class SparseConvNet(nn.Module):
def __init__(self):
super(SparseConvNet, self).__init__()
self.conv0 = double_conv(16, 16, 'subm0')
self.down0 = stride_conv(16, 32, 'down0')
self.conv1 = double_conv(32, 32, 'subm1')
self.down1 = stride_conv(32, 64, 'down1')
self.conv2 = triple_conv(64, 64, 'subm2')
self.down2 = stride_conv(64, 128, 'down2')
self.conv3 = triple_conv(128, 128, 'subm3')
self.down3 = stride_conv(128, 128, 'down3')
self.conv4 = triple_conv(128, 128, 'subm4')
def forward(self, x):
net = self.conv0(x)
net = self.down0(net)
net = self.conv1(net)
net1 = net.dense()
net = self.down1(net)
net = self.conv2(net)
net2 = net.dense()
net = self.down2(net)
net = self.conv3(net)
net3 = net.dense()
net = self.down3(net)
net = self.conv4(net)
net4 = net.dense()
volumes = [net1, net2, net3, net4]
return volumes
def single_conv(in_channels, out_channels, indice_key=None):
return spconv.SparseSequential(
spconv.SubMConv3d(in_channels,
out_channels,
1,
bias=False,
indice_key=indice_key),
nn.BatchNorm1d(out_channels, eps=1e-3, momentum=0.01),
nn.ReLU(),
)
def double_conv(in_channels, out_channels, indice_key=None):
return spconv.SparseSequential(
spconv.SubMConv3d(in_channels,
out_channels,
3,
bias=False,
indice_key=indice_key),
nn.BatchNorm1d(out_channels, eps=1e-3, momentum=0.01),
nn.ReLU(),
spconv.SubMConv3d(out_channels,
out_channels,
3,
bias=False,
indice_key=indice_key),
nn.BatchNorm1d(out_channels, eps=1e-3, momentum=0.01),
nn.ReLU(),
)
def triple_conv(in_channels, out_channels, indice_key=None):
return spconv.SparseSequential(
spconv.SubMConv3d(in_channels,
out_channels,
3,
bias=False,
indice_key=indice_key),
nn.BatchNorm1d(out_channels, eps=1e-3, momentum=0.01),
nn.ReLU(),
spconv.SubMConv3d(out_channels,
out_channels,
3,
bias=False,
indice_key=indice_key),
nn.BatchNorm1d(out_channels, eps=1e-3, momentum=0.01),
nn.ReLU(),
spconv.SubMConv3d(out_channels,
out_channels,
3,
bias=False,
indice_key=indice_key),
nn.BatchNorm1d(out_channels, eps=1e-3, momentum=0.01),
nn.ReLU(),
)
def stride_conv(in_channels, out_channels, indice_key=None):
return spconv.SparseSequential(
spconv.SparseConv3d(in_channels,
out_channels,
3,
2,
padding=1,
bias=False,
indice_key=indice_key),
nn.BatchNorm1d(out_channels, eps=1e-3, momentum=0.01), nn.ReLU())
|