File size: 9,057 Bytes
1ba539f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
import torch.nn as nn
import spconv
import torch.nn.functional as F
import torch
from lib.config import cfg
from . import embedder


class Network(nn.Module):
    def __init__(self):
        super(Network, self).__init__()

        self.c = nn.Embedding(6890, 16)
        self.xyzc_net = SparseConvNet()

        self.latent = nn.Embedding(cfg.num_train_frame, 128)

        self.actvn = nn.ReLU()

        self.fc_0 = nn.Conv1d(352, 256, 1)
        self.fc_1 = nn.Conv1d(256, 256, 1)
        self.fc_2 = nn.Conv1d(256, 256, 1)
        self.alpha_fc = nn.Conv1d(256, 1, 1)

        self.feature_fc = nn.Conv1d(256, 256, 1)
        self.latent_fc = nn.Conv1d(384, 256, 1)
        self.view_fc = nn.Conv1d(346, 128, 1)
        self.rgb_fc = nn.Conv1d(128, 3, 1)

    def encode_sparse_voxels(self, sp_input):
        coord = sp_input['coord']
        out_sh = sp_input['out_sh']
        batch_size = sp_input['batch_size']

        code = self.c(torch.arange(0, 6890).to(coord.device))
        xyzc = spconv.SparseConvTensor(code, coord, out_sh, batch_size)
        feature_volume = self.xyzc_net(xyzc)

        return feature_volume

    def pts_to_can_pts(self, pts, sp_input):
        """transform pts from the world coordinate to the smpl coordinate"""
        Th = sp_input['Th']
        pts = pts - Th
        R = sp_input['R']
        pts = torch.matmul(pts, R)
        return pts

    def get_grid_coords(self, pts, sp_input):
        # convert xyz to the voxel coordinate dhw
        dhw = pts[..., [2, 1, 0]]
        min_dhw = sp_input['bounds'][:, 0, [2, 1, 0]]
        dhw = dhw - min_dhw[:, None]
        dhw = dhw / torch.tensor(cfg.voxel_size).to(dhw)
        # convert the voxel coordinate to [-1, 1]
        out_sh = torch.tensor(sp_input['out_sh']).to(dhw)
        dhw = dhw / out_sh * 2 - 1
        # convert dhw to whd, since the occupancy is indexed by dhw
        grid_coords = dhw[..., [2, 1, 0]]
        return grid_coords

    def interpolate_features(self, grid_coords, feature_volume):
        features = []
        for volume in feature_volume:
            feature = F.grid_sample(volume,
                                    grid_coords,
                                    padding_mode='zeros',
                                    align_corners=True)
            features.append(feature)
        features = torch.cat(features, dim=1)
        features = features.view(features.size(0), -1, features.size(4))
        return features

    def calculate_density(self, wpts, feature_volume, sp_input):
        # interpolate features
        ppts = self.pts_to_can_pts(wpts, sp_input)
        grid_coords = self.get_grid_coords(ppts, sp_input)
        grid_coords = grid_coords[:, None, None]
        xyzc_features = self.interpolate_features(grid_coords, feature_volume)

        # calculate density
        net = self.actvn(self.fc_0(xyzc_features))
        net = self.actvn(self.fc_1(net))
        net = self.actvn(self.fc_2(net))

        alpha = self.alpha_fc(net)
        alpha = alpha.transpose(1, 2)

        return alpha

    def calculate_density_color(self, wpts, viewdir, feature_volume, sp_input):
        # interpolate features
        ppts = self.pts_to_can_pts(wpts, sp_input)
        grid_coords = self.get_grid_coords(ppts, sp_input)
        grid_coords = grid_coords[:, None, None]
        xyzc_features = self.interpolate_features(grid_coords, feature_volume)

        # calculate density
        net = self.actvn(self.fc_0(xyzc_features))
        net = self.actvn(self.fc_1(net))
        net = self.actvn(self.fc_2(net))

        alpha = self.alpha_fc(net)

        # calculate color
        features = self.feature_fc(net)

        latent = self.latent(sp_input['latent_index'])
        latent = latent[..., None].expand(*latent.shape, net.size(2))
        features = torch.cat((features, latent), dim=1)
        features = self.latent_fc(features)

        viewdir = embedder.view_embedder(viewdir)
        viewdir = viewdir.transpose(1, 2)
        light_pts = embedder.xyz_embedder(wpts)
        light_pts = light_pts.transpose(1, 2)

        features = torch.cat((features, viewdir, light_pts), dim=1)

        net = self.actvn(self.view_fc(features))
        rgb = self.rgb_fc(net)

        raw = torch.cat((rgb, alpha), dim=1)
        raw = raw.transpose(1, 2)

        return raw

    def forward(self, sp_input, grid_coords, viewdir, light_pts):
        coord = sp_input['coord']
        out_sh = sp_input['out_sh']
        batch_size = sp_input['batch_size']

        p_features = grid_coords.transpose(1, 2)
        grid_coords = grid_coords[:, None, None]

        code = self.c(torch.arange(0, 6890).to(p_features.device))
        xyzc = spconv.SparseConvTensor(code, coord, out_sh, batch_size)

        xyzc_features = self.xyzc_net(xyzc, grid_coords)

        net = self.actvn(self.fc_0(xyzc_features))
        net = self.actvn(self.fc_1(net))
        net = self.actvn(self.fc_2(net))

        alpha = self.alpha_fc(net)

        features = self.feature_fc(net)

        latent = self.latent(sp_input['latent_index'])
        latent = latent[..., None].expand(*latent.shape, net.size(2))
        features = torch.cat((features, latent), dim=1)
        features = self.latent_fc(features)

        viewdir = viewdir.transpose(1, 2)
        light_pts = light_pts.transpose(1, 2)
        features = torch.cat((features, viewdir, light_pts), dim=1)
        net = self.actvn(self.view_fc(features))
        rgb = self.rgb_fc(net)

        raw = torch.cat((rgb, alpha), dim=1)
        raw = raw.transpose(1, 2)

        return raw


class SparseConvNet(nn.Module):
    def __init__(self):
        super(SparseConvNet, self).__init__()

        self.conv0 = double_conv(16, 16, 'subm0')
        self.down0 = stride_conv(16, 32, 'down0')

        self.conv1 = double_conv(32, 32, 'subm1')
        self.down1 = stride_conv(32, 64, 'down1')

        self.conv2 = triple_conv(64, 64, 'subm2')
        self.down2 = stride_conv(64, 128, 'down2')

        self.conv3 = triple_conv(128, 128, 'subm3')
        self.down3 = stride_conv(128, 128, 'down3')

        self.conv4 = triple_conv(128, 128, 'subm4')

    def forward(self, x):
        net = self.conv0(x)
        net = self.down0(net)

        net = self.conv1(net)
        net1 = net.dense()
        net = self.down1(net)

        net = self.conv2(net)
        net2 = net.dense()
        net = self.down2(net)

        net = self.conv3(net)
        net3 = net.dense()
        net = self.down3(net)

        net = self.conv4(net)
        net4 = net.dense()

        volumes = [net1, net2, net3, net4]

        return volumes


def single_conv(in_channels, out_channels, indice_key=None):
    return spconv.SparseSequential(
        spconv.SubMConv3d(in_channels,
                          out_channels,
                          1,
                          bias=False,
                          indice_key=indice_key),
        nn.BatchNorm1d(out_channels, eps=1e-3, momentum=0.01),
        nn.ReLU(),
    )


def double_conv(in_channels, out_channels, indice_key=None):
    return spconv.SparseSequential(
        spconv.SubMConv3d(in_channels,
                          out_channels,
                          3,
                          bias=False,
                          indice_key=indice_key),
        nn.BatchNorm1d(out_channels, eps=1e-3, momentum=0.01),
        nn.ReLU(),
        spconv.SubMConv3d(out_channels,
                          out_channels,
                          3,
                          bias=False,
                          indice_key=indice_key),
        nn.BatchNorm1d(out_channels, eps=1e-3, momentum=0.01),
        nn.ReLU(),
    )


def triple_conv(in_channels, out_channels, indice_key=None):
    return spconv.SparseSequential(
        spconv.SubMConv3d(in_channels,
                          out_channels,
                          3,
                          bias=False,
                          indice_key=indice_key),
        nn.BatchNorm1d(out_channels, eps=1e-3, momentum=0.01),
        nn.ReLU(),
        spconv.SubMConv3d(out_channels,
                          out_channels,
                          3,
                          bias=False,
                          indice_key=indice_key),
        nn.BatchNorm1d(out_channels, eps=1e-3, momentum=0.01),
        nn.ReLU(),
        spconv.SubMConv3d(out_channels,
                          out_channels,
                          3,
                          bias=False,
                          indice_key=indice_key),
        nn.BatchNorm1d(out_channels, eps=1e-3, momentum=0.01),
        nn.ReLU(),
    )


def stride_conv(in_channels, out_channels, indice_key=None):
    return spconv.SparseSequential(
        spconv.SparseConv3d(in_channels,
                            out_channels,
                            3,
                            2,
                            padding=1,
                            bias=False,
                            indice_key=indice_key),
        nn.BatchNorm1d(out_channels, eps=1e-3, momentum=0.01), nn.ReLU())