Spaces:
Configuration error
Configuration error
File size: 6,788 Bytes
1ba539f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 |
"""
Prepare blend weights of grid points
"""
import os
import json
import numpy as np
import cv2
import sys
sys.path.append('/mnt/data/home/pengsida/Codes/SMPL_CPP/build/python')
import pysmplceres
import open3d as o3d
import pyskeleton
from psbody.mesh import Mesh
import pickle
# initialize a smpl model
pysmplceres.loadSMPL('/mnt/data/home/pengsida/Codes/SMPL_CPP/model/smpl/',
'smpl')
def read_pickle(pkl_path):
with open(pkl_path, 'rb') as f:
u = pickle._Unpickler(f)
u.encoding = 'latin1'
return u.load()
def get_o3d_mesh(vertices, faces):
mesh = o3d.geometry.TriangleMesh()
mesh.vertices = o3d.utility.Vector3dVector(vertices)
mesh.triangles = o3d.utility.Vector3iVector(faces)
mesh.compute_vertex_normals()
return mesh
def barycentric_interpolation(val, coords):
"""
:param val: verts x 3 x d input matrix
:param coords: verts x 3 barycentric weights array
:return: verts x d weighted matrix
"""
t = val * coords[..., np.newaxis]
ret = t.sum(axis=1)
return ret
def process_shapedirs(shapedirs, vert_ids, bary_coords):
arr = []
for i in range(3):
t = barycentric_interpolation(shapedirs[:, i, :][vert_ids],
bary_coords)
arr.append(t[:, np.newaxis, :])
arr = np.concatenate(arr, axis=1)
return arr
def batch_rodrigues(poses):
""" poses: N x 3
"""
batch_size = poses.shape[0]
angle = np.linalg.norm(poses + 1e-8, axis=1, keepdims=True)
rot_dir = poses / angle
cos = np.cos(angle)[:, None]
sin = np.sin(angle)[:, None]
rx, ry, rz = np.split(rot_dir, 3, axis=1)
zeros = np.zeros([batch_size, 1])
K = np.concatenate([zeros, -rz, ry, rz, zeros, -rx, -ry, rx, zeros],
axis=1)
K = K.reshape([batch_size, 3, 3])
ident = np.eye(3)[None]
rot_mat = ident + sin * K + (1 - cos) * np.matmul(K, K)
return rot_mat
def get_rigid_transformation(rot_mats, joints, parents):
"""
rot_mats: 24 x 3 x 3
joints: 24 x 3
parents: 24
"""
# obtain the relative joints
rel_joints = joints.copy()
rel_joints[1:] -= joints[parents[1:]]
# create the transformation matrix
transforms_mat = np.concatenate([rot_mats, rel_joints[..., None]], axis=2)
padding = np.zeros([24, 1, 4])
padding[..., 3] = 1
transforms_mat = np.concatenate([transforms_mat, padding], axis=1)
# rotate each part
transform_chain = [transforms_mat[0]]
for i in range(1, parents.shape[0]):
curr_res = np.dot(transform_chain[parents[i]], transforms_mat[i])
transform_chain.append(curr_res)
transforms = np.stack(transform_chain, axis=0)
# obtain the rigid transformation
padding = np.zeros([24, 1])
joints_homogen = np.concatenate([joints, padding], axis=1)
transformed_joints = np.sum(transforms * joints_homogen[:, None], axis=2)
transforms[..., 3] = transforms[..., 3] - transformed_joints
return transforms
def get_transform_params(smpl, params):
""" obtain the transformation parameters for linear blend skinning
"""
v_template = np.array(smpl['v_template'])
# add shape blend shapes
shapedirs = np.array(smpl['shapedirs'])
betas = params['shapes']
v_shaped = v_template + np.sum(shapedirs * betas[None], axis=2)
# add pose blend shapes
poses = params['poses'].reshape(-1, 3)
# 24 x 3 x 3
rot_mats = batch_rodrigues(poses)
# 23 x 3 x 3
pose_feature = rot_mats[1:].reshape(23, 3, 3) - np.eye(3)[None]
pose_feature = pose_feature.reshape(1, 1, 207)
posedirs = np.array(smpl['posedirs'])
# v_posed = v_shaped + np.sum(posedirs * pose_feature, axis=2)
v_posed = v_shaped
# obtain the joints
joints = smpl['J_regressor'].dot(v_shaped)
# obtain the rigid transformation
parents = smpl['kintree_table'][0]
A = get_rigid_transformation(rot_mats, joints, parents)
# apply global transformation
R = cv2.Rodrigues(params['Rh'][0])[0]
Th = params['Th']
return A, R, Th
def get_colored_pc(pts, rgb):
pc = o3d.geometry.PointCloud()
pc.points = o3d.utility.Vector3dVector(pts)
colors = np.zeros_like(pts)
colors += rgb
pc.colors = o3d.utility.Vector3dVector(colors)
return pc
def get_grid_points(xyz):
min_xyz = np.min(xyz, axis=0)
max_xyz = np.max(xyz, axis=0)
min_xyz -= 0.05
max_xyz += 0.05
bounds = np.stack([min_xyz, max_xyz], axis=0)
vsize = 0.025
voxel_size = [vsize, vsize, vsize]
x = np.arange(bounds[0, 0], bounds[1, 0] + voxel_size[0], voxel_size[0])
y = np.arange(bounds[0, 1], bounds[1, 1] + voxel_size[1], voxel_size[1])
z = np.arange(bounds[0, 2], bounds[1, 2] + voxel_size[2], voxel_size[2])
pts = np.stack(np.meshgrid(x, y, z, indexing='ij'), axis=-1)
return pts
def get_canpts(param_path):
params = np.load(param_path, allow_pickle=True).item()
vertices = pysmplceres.getVertices(params)[0]
faces = pysmplceres.getFaces()
mesh = get_o3d_mesh(vertices, faces)
smpl = read_pickle(
'/mnt/data/home/pengsida/Codes/EasyMocap/data/smplx/smpl/SMPL_NEUTRAL.pkl'
)
# obtain the transformation parameters for linear blend skinning
A, R, Th = get_transform_params(smpl, params)
# transform points from the world space to the pose space
pxyz = np.dot(vertices - Th, R)
smpl_mesh = Mesh(pxyz, faces)
# create grid points in the pose space
pts = get_grid_points(pxyz)
sh = pts.shape
pts = pts.reshape(-1, 3)
# obtain the blending weights for grid points
closest_face, closest_points = smpl_mesh.closest_faces_and_points(pts)
vert_ids, bary_coords = smpl_mesh.barycentric_coordinates_for_points(
closest_points, closest_face.astype('int32'))
bweights = barycentric_interpolation(smpl['weights'][vert_ids],
bary_coords)
A = np.dot(bweights, A.reshape(24, -1)).reshape(-1, 4, 4)
can_pts = pts - A[:, :3, 3]
R_inv = np.linalg.inv(A[:, :3, :3])
can_pts = np.sum(R_inv * can_pts[:, None], axis=2)
can_pts = can_pts.reshape(*sh).astype(np.float32)
return can_pts
def prepare_tpose():
data_root = '/home/pengsida/Datasets/light_stage'
human = 'CoreView_315'
param_dir = os.path.join(data_root, human, 'params')
canpts_dir = os.path.join(data_root, human, 'canpts')
os.system('mkdir -p {}'.format(canpts_dir))
for i in range(len(os.listdir(param_dir))):
i = i + 1
param_path = os.path.join(param_dir, '{}.npy'.format(i))
canpts = get_canpts(param_path)
canpts_path = os.path.join(canpts_dir, '{}.npy'.format(i))
np.save(canpts_path, canpts)
prepare_tpose()
|