File size: 6,788 Bytes
1ba539f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
"""
Prepare blend weights of grid points
"""

import os
import json
import numpy as np
import cv2
import sys
sys.path.append('/mnt/data/home/pengsida/Codes/SMPL_CPP/build/python')
import pysmplceres
import open3d as o3d
import pyskeleton
from psbody.mesh import Mesh
import pickle

# initialize a smpl model
pysmplceres.loadSMPL('/mnt/data/home/pengsida/Codes/SMPL_CPP/model/smpl/',
                     'smpl')


def read_pickle(pkl_path):
    with open(pkl_path, 'rb') as f:
        u = pickle._Unpickler(f)
        u.encoding = 'latin1'
        return u.load()


def get_o3d_mesh(vertices, faces):
    mesh = o3d.geometry.TriangleMesh()
    mesh.vertices = o3d.utility.Vector3dVector(vertices)
    mesh.triangles = o3d.utility.Vector3iVector(faces)
    mesh.compute_vertex_normals()
    return mesh


def barycentric_interpolation(val, coords):
    """
    :param val: verts x 3 x d input matrix
    :param coords: verts x 3 barycentric weights array
    :return: verts x d weighted matrix
    """
    t = val * coords[..., np.newaxis]
    ret = t.sum(axis=1)
    return ret


def process_shapedirs(shapedirs, vert_ids, bary_coords):
    arr = []
    for i in range(3):
        t = barycentric_interpolation(shapedirs[:, i, :][vert_ids],
                                      bary_coords)
        arr.append(t[:, np.newaxis, :])
    arr = np.concatenate(arr, axis=1)
    return arr


def batch_rodrigues(poses):
    """ poses: N x 3
    """
    batch_size = poses.shape[0]
    angle = np.linalg.norm(poses + 1e-8, axis=1, keepdims=True)
    rot_dir = poses / angle

    cos = np.cos(angle)[:, None]
    sin = np.sin(angle)[:, None]

    rx, ry, rz = np.split(rot_dir, 3, axis=1)
    zeros = np.zeros([batch_size, 1])
    K = np.concatenate([zeros, -rz, ry, rz, zeros, -rx, -ry, rx, zeros],
                       axis=1)
    K = K.reshape([batch_size, 3, 3])

    ident = np.eye(3)[None]
    rot_mat = ident + sin * K + (1 - cos) * np.matmul(K, K)

    return rot_mat


def get_rigid_transformation(rot_mats, joints, parents):
    """
    rot_mats: 24 x 3 x 3
    joints: 24 x 3
    parents: 24
    """
    # obtain the relative joints
    rel_joints = joints.copy()
    rel_joints[1:] -= joints[parents[1:]]

    # create the transformation matrix
    transforms_mat = np.concatenate([rot_mats, rel_joints[..., None]], axis=2)
    padding = np.zeros([24, 1, 4])
    padding[..., 3] = 1
    transforms_mat = np.concatenate([transforms_mat, padding], axis=1)

    # rotate each part
    transform_chain = [transforms_mat[0]]
    for i in range(1, parents.shape[0]):
        curr_res = np.dot(transform_chain[parents[i]], transforms_mat[i])
        transform_chain.append(curr_res)
    transforms = np.stack(transform_chain, axis=0)

    # obtain the rigid transformation
    padding = np.zeros([24, 1])
    joints_homogen = np.concatenate([joints, padding], axis=1)
    transformed_joints = np.sum(transforms * joints_homogen[:, None], axis=2)
    transforms[..., 3] = transforms[..., 3] - transformed_joints

    return transforms


def get_transform_params(smpl, params):
    """ obtain the transformation parameters for linear blend skinning
    """
    v_template = np.array(smpl['v_template'])

    # add shape blend shapes
    shapedirs = np.array(smpl['shapedirs'])
    betas = params['shapes']
    v_shaped = v_template + np.sum(shapedirs * betas[None], axis=2)

    # add pose blend shapes
    poses = params['poses'].reshape(-1, 3)
    # 24 x 3 x 3
    rot_mats = batch_rodrigues(poses)
    # 23 x 3 x 3
    pose_feature = rot_mats[1:].reshape(23, 3, 3) - np.eye(3)[None]
    pose_feature = pose_feature.reshape(1, 1, 207)
    posedirs = np.array(smpl['posedirs'])
    # v_posed = v_shaped + np.sum(posedirs * pose_feature, axis=2)
    v_posed = v_shaped

    # obtain the joints
    joints = smpl['J_regressor'].dot(v_shaped)

    # obtain the rigid transformation
    parents = smpl['kintree_table'][0]
    A = get_rigid_transformation(rot_mats, joints, parents)

    # apply global transformation
    R = cv2.Rodrigues(params['Rh'][0])[0]
    Th = params['Th']

    return A, R, Th


def get_colored_pc(pts, rgb):
    pc = o3d.geometry.PointCloud()
    pc.points = o3d.utility.Vector3dVector(pts)
    colors = np.zeros_like(pts)
    colors += rgb
    pc.colors = o3d.utility.Vector3dVector(colors)
    return pc


def get_grid_points(xyz):
    min_xyz = np.min(xyz, axis=0)
    max_xyz = np.max(xyz, axis=0)
    min_xyz -= 0.05
    max_xyz += 0.05
    bounds = np.stack([min_xyz, max_xyz], axis=0)
    vsize = 0.025
    voxel_size = [vsize, vsize, vsize]
    x = np.arange(bounds[0, 0], bounds[1, 0] + voxel_size[0], voxel_size[0])
    y = np.arange(bounds[0, 1], bounds[1, 1] + voxel_size[1], voxel_size[1])
    z = np.arange(bounds[0, 2], bounds[1, 2] + voxel_size[2], voxel_size[2])
    pts = np.stack(np.meshgrid(x, y, z, indexing='ij'), axis=-1)
    return pts


def get_canpts(param_path):
    params = np.load(param_path, allow_pickle=True).item()
    vertices = pysmplceres.getVertices(params)[0]
    faces = pysmplceres.getFaces()
    mesh = get_o3d_mesh(vertices, faces)

    smpl = read_pickle(
        '/mnt/data/home/pengsida/Codes/EasyMocap/data/smplx/smpl/SMPL_NEUTRAL.pkl'
    )
    # obtain the transformation parameters for linear blend skinning
    A, R, Th = get_transform_params(smpl, params)

    # transform points from the world space to the pose space
    pxyz = np.dot(vertices - Th, R)
    smpl_mesh = Mesh(pxyz, faces)

    # create grid points in the pose space
    pts = get_grid_points(pxyz)
    sh = pts.shape
    pts = pts.reshape(-1, 3)

    # obtain the blending weights for grid points
    closest_face, closest_points = smpl_mesh.closest_faces_and_points(pts)
    vert_ids, bary_coords = smpl_mesh.barycentric_coordinates_for_points(
        closest_points, closest_face.astype('int32'))
    bweights = barycentric_interpolation(smpl['weights'][vert_ids],
                                         bary_coords)

    A = np.dot(bweights, A.reshape(24, -1)).reshape(-1, 4, 4)
    can_pts = pts - A[:, :3, 3]
    R_inv = np.linalg.inv(A[:, :3, :3])
    can_pts = np.sum(R_inv * can_pts[:, None], axis=2)

    can_pts = can_pts.reshape(*sh).astype(np.float32)

    return can_pts


def prepare_tpose():
    data_root = '/home/pengsida/Datasets/light_stage'
    human = 'CoreView_315'
    param_dir = os.path.join(data_root, human, 'params')
    canpts_dir = os.path.join(data_root, human, 'canpts')
    os.system('mkdir -p {}'.format(canpts_dir))

    for i in range(len(os.listdir(param_dir))):
        i = i + 1
        param_path = os.path.join(param_dir, '{}.npy'.format(i))
        canpts = get_canpts(param_path)
        canpts_path = os.path.join(canpts_dir, '{}.npy'.format(i))
        np.save(canpts_path, canpts)


prepare_tpose()