Spaces:
Configuration error
Configuration error
File size: 13,191 Bytes
1ba539f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 |
import torch
import os
from torch import nn
import numpy as np
import torch.nn.functional
from collections import OrderedDict
from termcolor import colored
def sigmoid(x):
y = torch.clamp(x.sigmoid(), min=1e-4, max=1 - 1e-4)
return y
def _neg_loss(pred, gt):
''' Modified focal loss. Exactly the same as CornerNet.
Runs faster and costs a little bit more memory
Arguments:
pred (batch x c x h x w)
gt_regr (batch x c x h x w)
'''
pos_inds = gt.eq(1).float()
neg_inds = gt.lt(1).float()
neg_weights = torch.pow(1 - gt, 4)
loss = 0
pos_loss = torch.log(pred) * torch.pow(1 - pred, 2) * pos_inds
neg_loss = torch.log(1 - pred) * torch.pow(pred,
2) * neg_weights * neg_inds
num_pos = pos_inds.float().sum()
pos_loss = pos_loss.sum()
neg_loss = neg_loss.sum()
if num_pos == 0:
loss = loss - neg_loss
else:
loss = loss - (pos_loss + neg_loss) / num_pos
return loss
class FocalLoss(nn.Module):
'''nn.Module warpper for focal loss'''
def __init__(self):
super(FocalLoss, self).__init__()
self.neg_loss = _neg_loss
def forward(self, out, target):
return self.neg_loss(out, target)
def smooth_l1_loss(vertex_pred,
vertex_targets,
vertex_weights,
sigma=1.0,
normalize=True,
reduce=True):
"""
:param vertex_pred: [b, vn*2, h, w]
:param vertex_targets: [b, vn*2, h, w]
:param vertex_weights: [b, 1, h, w]
:param sigma:
:param normalize:
:param reduce:
:return:
"""
b, ver_dim, _, _ = vertex_pred.shape
sigma_2 = sigma**2
vertex_diff = vertex_pred - vertex_targets
diff = vertex_weights * vertex_diff
abs_diff = torch.abs(diff)
smoothL1_sign = (abs_diff < 1. / sigma_2).detach().float()
in_loss = torch.pow(diff, 2) * (sigma_2 / 2.) * smoothL1_sign \
+ (abs_diff - (0.5 / sigma_2)) * (1. - smoothL1_sign)
if normalize:
in_loss = torch.sum(in_loss.view(b, -1), 1) / (
ver_dim * torch.sum(vertex_weights.view(b, -1), 1) + 1e-3)
if reduce:
in_loss = torch.mean(in_loss)
return in_loss
class SmoothL1Loss(nn.Module):
def __init__(self):
super(SmoothL1Loss, self).__init__()
self.smooth_l1_loss = smooth_l1_loss
def forward(self,
preds,
targets,
weights,
sigma=1.0,
normalize=True,
reduce=True):
return self.smooth_l1_loss(preds, targets, weights, sigma, normalize,
reduce)
class AELoss(nn.Module):
def __init__(self):
super(AELoss, self).__init__()
def forward(self, ae, ind, ind_mask):
"""
ae: [b, 1, h, w]
ind: [b, max_objs, max_parts]
ind_mask: [b, max_objs, max_parts]
obj_mask: [b, max_objs]
"""
# first index
b, _, h, w = ae.shape
b, max_objs, max_parts = ind.shape
obj_mask = torch.sum(ind_mask, dim=2) != 0
ae = ae.view(b, h * w, 1)
seed_ind = ind.view(b, max_objs * max_parts, 1)
tag = ae.gather(1, seed_ind).view(b, max_objs, max_parts)
# compute the mean
tag_mean = tag * ind_mask
tag_mean = tag_mean.sum(2) / (ind_mask.sum(2) + 1e-4)
# pull ae of the same object to their mean
pull_dist = (tag - tag_mean.unsqueeze(2)).pow(2) * ind_mask
obj_num = obj_mask.sum(dim=1).float()
pull = (pull_dist.sum(dim=(1, 2)) / (obj_num + 1e-4)).sum()
pull /= b
# push away the mean of different objects
push_dist = torch.abs(tag_mean.unsqueeze(1) - tag_mean.unsqueeze(2))
push_dist = 1 - push_dist
push_dist = nn.functional.relu(push_dist, inplace=True)
obj_mask = (obj_mask.unsqueeze(1) + obj_mask.unsqueeze(2)) == 2
push_dist = push_dist * obj_mask.float()
push = ((push_dist.sum(dim=(1, 2)) - obj_num) /
(obj_num * (obj_num - 1) + 1e-4)).sum()
push /= b
return pull, push
class PolyMatchingLoss(nn.Module):
def __init__(self, pnum):
super(PolyMatchingLoss, self).__init__()
self.pnum = pnum
batch_size = 1
pidxall = np.zeros(shape=(batch_size, pnum, pnum), dtype=np.int32)
for b in range(batch_size):
for i in range(pnum):
pidx = (np.arange(pnum) + i) % pnum
pidxall[b, i] = pidx
device = torch.device('cuda')
pidxall = torch.from_numpy(
np.reshape(pidxall, newshape=(batch_size, -1))).to(device)
self.feature_id = pidxall.unsqueeze_(2).long().expand(
pidxall.size(0), pidxall.size(1), 2).detach()
def forward(self, pred, gt, loss_type="L2"):
pnum = self.pnum
batch_size = pred.size()[0]
feature_id = self.feature_id.expand(batch_size,
self.feature_id.size(1), 2)
device = torch.device('cuda')
gt_expand = torch.gather(gt, 1,
feature_id).view(batch_size, pnum, pnum, 2)
pred_expand = pred.unsqueeze(1)
dis = pred_expand - gt_expand
if loss_type == "L2":
dis = (dis**2).sum(3).sqrt().sum(2)
elif loss_type == "L1":
dis = torch.abs(dis).sum(3).sum(2)
min_dis, min_id = torch.min(dis, dim=1, keepdim=True)
# print(min_id)
# min_id = torch.from_numpy(min_id.data.cpu().numpy()).to(device)
# min_gt_id_to_gather = min_id.unsqueeze_(2).unsqueeze_(3).long().\
# expand(min_id.size(0), min_id.size(1), gt_expand.size(2), gt_expand.size(3))
# gt_right_order = torch.gather(gt_expand, 1, min_gt_id_to_gather).view(batch_size, pnum, 2)
return torch.mean(min_dis)
class AttentionLoss(nn.Module):
def __init__(self, beta=4, gamma=0.5):
super(AttentionLoss, self).__init__()
self.beta = beta
self.gamma = gamma
def forward(self, pred, gt):
num_pos = torch.sum(gt)
num_neg = torch.sum(1 - gt)
alpha = num_neg / (num_pos + num_neg)
edge_beta = torch.pow(self.beta, torch.pow(1 - pred, self.gamma))
bg_beta = torch.pow(self.beta, torch.pow(pred, self.gamma))
loss = 0
loss = loss - alpha * edge_beta * torch.log(pred) * gt
loss = loss - (1 - alpha) * bg_beta * torch.log(1 - pred) * (1 - gt)
return torch.mean(loss)
def _gather_feat(feat, ind, mask=None):
dim = feat.size(2)
ind = ind.unsqueeze(2).expand(ind.size(0), ind.size(1), dim)
feat = feat.gather(1, ind)
if mask is not None:
mask = mask.unsqueeze(2).expand_as(feat)
feat = feat[mask]
feat = feat.view(-1, dim)
return feat
def _tranpose_and_gather_feat(feat, ind):
feat = feat.permute(0, 2, 3, 1).contiguous()
feat = feat.view(feat.size(0), -1, feat.size(3))
feat = _gather_feat(feat, ind)
return feat
class Ind2dRegL1Loss(nn.Module):
def __init__(self, type='l1'):
super(Ind2dRegL1Loss, self).__init__()
if type == 'l1':
self.loss = torch.nn.functional.l1_loss
elif type == 'smooth_l1':
self.loss = torch.nn.functional.smooth_l1_loss
def forward(self, output, target, ind, ind_mask):
"""ind: [b, max_objs, max_parts]"""
b, max_objs, max_parts = ind.shape
ind = ind.view(b, max_objs * max_parts)
pred = _tranpose_and_gather_feat(output,
ind).view(b, max_objs, max_parts,
output.size(1))
mask = ind_mask.unsqueeze(3).expand_as(pred)
loss = self.loss(pred * mask, target * mask, reduction='sum')
loss = loss / (mask.sum() + 1e-4)
return loss
class IndL1Loss1d(nn.Module):
def __init__(self, type='l1'):
super(IndL1Loss1d, self).__init__()
if type == 'l1':
self.loss = torch.nn.functional.l1_loss
elif type == 'smooth_l1':
self.loss = torch.nn.functional.smooth_l1_loss
def forward(self, output, target, ind, weight):
"""ind: [b, n]"""
output = _tranpose_and_gather_feat(output, ind)
weight = weight.unsqueeze(2)
loss = self.loss(output * weight, target * weight, reduction='sum')
loss = loss / (weight.sum() * output.size(2) + 1e-4)
return loss
class GeoCrossEntropyLoss(nn.Module):
def __init__(self):
super(GeoCrossEntropyLoss, self).__init__()
def forward(self, output, target, poly):
output = torch.nn.functional.softmax(output, dim=1)
output = torch.log(torch.clamp(output, min=1e-4))
poly = poly.view(poly.size(0), 4, poly.size(1) // 4, 2)
target = target[..., None, None].expand(poly.size(0), poly.size(1), 1,
poly.size(3))
target_poly = torch.gather(poly, 2, target)
sigma = (poly[:, :, 0] - poly[:, :, 1]).pow(2).sum(2, keepdim=True)
kernel = torch.exp(-(poly - target_poly).pow(2).sum(3) / (sigma / 3))
loss = -(output * kernel.transpose(2, 1)).sum(1).mean()
return loss
def load_model(net,
optim,
scheduler,
recorder,
model_dir,
resume=True,
epoch=-1):
if not resume:
os.system('rm -rf {}'.format(model_dir))
if not os.path.exists(model_dir):
return 0
pths = [
int(pth.split('.')[0]) for pth in os.listdir(model_dir)
if pth != 'latest.pth'
]
if len(pths) == 0 and 'latest.pth' not in os.listdir(model_dir):
return 0
if epoch == -1:
if 'latest.pth' in os.listdir(model_dir):
pth = 'latest'
else:
pth = max(pths)
else:
pth = epoch
print('load model: {}'.format(os.path.join(model_dir,
'{}.pth'.format(pth))))
pretrained_model = torch.load(
os.path.join(model_dir, '{}.pth'.format(pth)), 'cpu')
net.load_state_dict(pretrained_model['net'])
optim.load_state_dict(pretrained_model['optim'])
scheduler.load_state_dict(pretrained_model['scheduler'])
recorder.load_state_dict(pretrained_model['recorder'])
return pretrained_model['epoch'] + 1
def save_model(net, optim, scheduler, recorder, model_dir, epoch, last=False):
os.system('mkdir -p {}'.format(model_dir))
model = {
'net': net.state_dict(),
'optim': optim.state_dict(),
'scheduler': scheduler.state_dict(),
'recorder': recorder.state_dict(),
'epoch': epoch
}
if last:
torch.save(model, os.path.join(model_dir, 'latest.pth'))
else:
torch.save(model, os.path.join(model_dir, '{}.pth'.format(epoch)))
# remove previous pretrained model if the number of models is too big
pths = [
int(pth.split('.')[0]) for pth in os.listdir(model_dir)
if pth != 'latest.pth'
]
if len(pths) <= 20:
return
os.system('rm {}'.format(
os.path.join(model_dir, '{}.pth'.format(min(pths)))))
def load_network(net, model_dir, resume=True, epoch=-1, strict=True):
if not resume:
return 0
if not os.path.exists(model_dir):
print(colored('pretrained model does not exist', 'red'))
return 0
if os.path.isdir(model_dir):
pths = [
int(pth.split('.')[0]) for pth in os.listdir(model_dir)
if pth != 'latest.pth'
]
if len(pths) == 0 and 'latest.pth' not in os.listdir(model_dir):
return 0
if epoch == -1:
if 'latest.pth' in os.listdir(model_dir):
pth = 'latest'
else:
pth = max(pths)
else:
pth = epoch
model_path = os.path.join(model_dir, '{}.pth'.format(pth))
else:
model_path = model_dir
print('load model: {}'.format(model_path))
pretrained_model = torch.load(model_path)
net.load_state_dict(pretrained_model['net'], strict=strict)
return pretrained_model['epoch'] + 1
def remove_net_prefix(net, prefix):
net_ = OrderedDict()
for k in net.keys():
if k.startswith(prefix):
net_[k[len(prefix):]] = net[k]
else:
net_[k] = net[k]
return net_
def add_net_prefix(net, prefix):
net_ = OrderedDict()
for k in net.keys():
net_[prefix + k] = net[k]
return net_
def replace_net_prefix(net, orig_prefix, prefix):
net_ = OrderedDict()
for k in net.keys():
if k.startswith(orig_prefix):
net_[prefix + k[len(orig_prefix):]] = net[k]
else:
net_[k] = net[k]
return net_
def remove_net_layer(net, layers):
keys = list(net.keys())
for k in keys:
for layer in layers:
if k.startswith(layer):
del net[k]
return net
|