PEFT-method-comparison / MetaMathQA /results /vblora--llama-3.2-3B-default.json
github-actions[bot]
🚀 Deploy method comparison app from GH action
27668b0
{
"run_info": {
"created_at": "2025-06-19T23:49:12+00:00",
"total_time": 2210.184595478997,
"experiment_name": "vblora/llama-3.2-3B-default",
"peft_branch": "main",
"train_config": {
"model_id": "meta-llama/Llama-3.2-3B",
"dtype": "bfloat16",
"max_seq_length": 768,
"batch_size": 4,
"batch_size_eval": 50,
"max_steps": 5000,
"eval_steps": 250,
"compile": false,
"query_template": "Question: {query} Think step by step.\nAnswer:",
"seed": 0,
"grad_norm_clip": 1.0,
"optimizer_type": "AdamW",
"optimizer_kwargs": {
"lr": 0.0001,
"weight_decay": 0.1
},
"lr_scheduler": "cosine",
"use_amp": false,
"autocast_adapter_dtype": true,
"generation_kwargs": {
"max_length": 800,
"max_new_tokens": 300
},
"attn_implementation": null
},
"peft_config": {
"task_type": null,
"peft_type": "VBLORA",
"auto_mapping": null,
"base_model_name_or_path": "meta-llama/Llama-3.2-3B",
"revision": null,
"inference_mode": false,
"r": 4,
"num_vectors": 256,
"vector_length": 256,
"topk": 2,
"target_modules": [
"v_proj",
"q_proj"
],
"exclude_modules": null,
"save_only_topk_weights": false,
"vblora_dropout": 0.0,
"fan_in_fan_out": false,
"bias": "none",
"modules_to_save": null,
"init_vector_bank_bound": 0.02,
"init_logits_std": 0.1,
"layers_to_transform": null,
"layers_pattern": null
},
"error_msg": ""
},
"train_info": {
"accelerator_memory_reserved_avg": 11735344663,
"accelerator_memory_max": 22181576704,
"accelerator_memory_reserved_99th": 17635223797,
"train_time": 1961.761054087001,
"file_size": 4864912,
"num_trainable_params": 1212416,
"num_total_params": 3213962240,
"status": "success",
"metrics": [
{
"step": 250,
"valid accuracy": 0.0,
"train loss": 1.308416832447052,
"train samples": 1000,
"train time": 40.12101128498034,
"eval time": 12.847303112997906,
"tokens / sec": 5277.010554299236,
"mem allocated avg": 6798303909.888,
"mem reserved avg": 11786547888.128,
"elapsed time": 101.0704645309961
},
{
"step": 500,
"valid accuracy": 0.38,
"train loss": 1.0353211228847503,
"train samples": 2000,
"train time": 39.44148263899842,
"eval time": 12.918682472998626,
"tokens / sec": 5273.508653408011,
"mem allocated avg": 6790843463.68,
"mem reserved avg": 11678368399.36,
"elapsed time": 195.96383863499796
},
{
"step": 750,
"valid accuracy": 0.3,
"train loss": 0.8149400608539581,
"train samples": 3000,
"train time": 39.73428049797076,
"eval time": 12.816220013999555,
"tokens / sec": 5395.869695210651,
"mem allocated avg": 6801506754.56,
"mem reserved avg": 11833448595.456,
"elapsed time": 291.3562671039981
},
{
"step": 1000,
"valid accuracy": 0.34,
"train loss": 0.766725031375885,
"train samples": 4000,
"train time": 39.66955411599338,
"eval time": 12.954798815000686,
"tokens / sec": 5251.785774824381,
"mem allocated avg": 6791902521.344,
"mem reserved avg": 11700715651.072,
"elapsed time": 386.48246048299916
},
{
"step": 1250,
"valid accuracy": 0.4,
"train loss": 0.7548577107191086,
"train samples": 5000,
"train time": 39.58740361595119,
"eval time": 12.921318173001055,
"tokens / sec": 5267.786744063522,
"mem allocated avg": 6792241373.184,
"mem reserved avg": 11698584944.64,
"elapsed time": 481.6297270110008
},
{
"step": 1500,
"valid accuracy": 0.42,
"train loss": 0.744083244919777,
"train samples": 6000,
"train time": 39.58100679998461,
"eval time": 7.990361490003124,
"tokens / sec": 5288.672950079719,
"mem allocated avg": 6792975718.4,
"mem reserved avg": 11729908006.912,
"elapsed time": 571.7995823969977
},
{
"step": 1750,
"valid accuracy": 0.4,
"train loss": 0.7353366105556488,
"train samples": 7000,
"train time": 39.89848869200068,
"eval time": 9.013003496002057,
"tokens / sec": 5247.191231129864,
"mem allocated avg": 6795538806.784,
"mem reserved avg": 11737281593.344,
"elapsed time": 663.3418345429964
},
{
"step": 2000,
"valid accuracy": 0.36,
"train loss": 0.735884799003601,
"train samples": 8000,
"train time": 39.573877232054656,
"eval time": 13.005171182994673,
"tokens / sec": 5248.3106161699825,
"mem allocated avg": 6792414906.368,
"mem reserved avg": 11683577724.928,
"elapsed time": 758.2818646219966
},
{
"step": 2250,
"valid accuracy": 0.34,
"train loss": 0.7294247032403945,
"train samples": 9000,
"train time": 40.16309046502283,
"eval time": 12.827437616993848,
"tokens / sec": 5351.878989172747,
"mem allocated avg": 6803159742.464,
"mem reserved avg": 11872145244.16,
"elapsed time": 854.2901024749954
},
{
"step": 2500,
"valid accuracy": 0.36,
"train loss": 0.7273153622150421,
"train samples": 10000,
"train time": 39.40831322706072,
"eval time": 12.578817460002028,
"tokens / sec": 5226.48606686793,
"mem allocated avg": 6788682082.304,
"mem reserved avg": 11624815525.888,
"elapsed time": 948.6046375669976
},
{
"step": 2750,
"valid accuracy": 0.3,
"train loss": 0.7221734907627105,
"train samples": 11000,
"train time": 39.99460277392063,
"eval time": 12.831681943003787,
"tokens / sec": 5297.739827488966,
"mem allocated avg": 6798795204.608,
"mem reserved avg": 11800045158.4,
"elapsed time": 1044.2291650330008
},
{
"step": 3000,
"valid accuracy": 0.44,
"train loss": 0.7163265677690506,
"train samples": 12000,
"train time": 39.72457089692762,
"eval time": 9.721318816998973,
"tokens / sec": 5254.455750864856,
"mem allocated avg": 6794274019.328,
"mem reserved avg": 11717786468.352,
"elapsed time": 1136.276137433997
},
{
"step": 3250,
"valid accuracy": 0.24,
"train loss": 0.7239821909666061,
"train samples": 13000,
"train time": 39.57894092098286,
"eval time": 12.939295003001462,
"tokens / sec": 5328.616559524724,
"mem allocated avg": 6796102031.36,
"mem reserved avg": 11749923225.6,
"elapsed time": 1231.5789504099957
},
{
"step": 3500,
"valid accuracy": 0.3,
"train loss": 0.7123430745601654,
"train samples": 14000,
"train time": 39.774808847985696,
"eval time": 12.81972120499995,
"tokens / sec": 5273.438291096208,
"mem allocated avg": 6794877718.528,
"mem reserved avg": 11727257206.784,
"elapsed time": 1327.2042175199967
},
{
"step": 3750,
"valid accuracy": 0.32,
"train loss": 0.7080619329214096,
"train samples": 15000,
"train time": 40.429172475058294,
"eval time": 12.810948685997573,
"tokens / sec": 5360.065188910042,
"mem allocated avg": 6804612114.432,
"mem reserved avg": 11907847159.808,
"elapsed time": 1424.0900874009967
},
{
"step": 4000,
"valid accuracy": 0.42,
"train loss": 0.7257569855451584,
"train samples": 16000,
"train time": 39.64596449997771,
"eval time": 12.844434396996803,
"tokens / sec": 5154.950890401844,
"mem allocated avg": 6787030419.456,
"mem reserved avg": 11605689499.648,
"elapsed time": 1519.344677588997
},
{
"step": 4250,
"valid accuracy": 0.38,
"train loss": 0.7041294666528701,
"train samples": 17000,
"train time": 39.938396073041076,
"eval time": 12.83599700799823,
"tokens / sec": 5292.876549508964,
"mem allocated avg": 6797280624.64,
"mem reserved avg": 11765333098.496,
"elapsed time": 1614.829351510998
},
{
"step": 4500,
"valid accuracy": 0.38,
"train loss": 0.7148806138038635,
"train samples": 18000,
"train time": 39.55479707601626,
"eval time": 12.901207727001747,
"tokens / sec": 5253.926586972907,
"mem allocated avg": 6791958038.528,
"mem reserved avg": 11679299534.848,
"elapsed time": 1710.0793527279966
},
{
"step": 4750,
"valid accuracy": 0.32,
"train loss": 0.7083848255872727,
"train samples": 19000,
"train time": 39.88160159892141,
"eval time": 12.8585010780007,
"tokens / sec": 5264.056396513368,
"mem allocated avg": 6794248144.896,
"mem reserved avg": 11730923028.48,
"elapsed time": 1806.240128286001
},
{
"step": 5000,
"valid accuracy": 0.36,
"train loss": 0.7142883945703506,
"train samples": 20000,
"train time": 39.631631882970396,
"eval time": 12.818420095005422,
"tokens / sec": 5255.398026885119,
"mem allocated avg": 6791235981.312,
"mem reserved avg": 11677395320.832,
"elapsed time": 1901.3912653839943
},
{
"step": 5000,
"test accuracy": 0.36997725549658833,
"train loss": 0.7142883945703506,
"train samples": 20000,
"train total tokens": 4198051
}
]
},
"meta_info": {
"model_info": {
"sha": "13afe5124825b4f3751f836b40dafda64c1ed062",
"created_at": "2024-09-18T15:23:48+00:00"
},
"dataset_info": {
"metamath": {
"sha": "aa4f34d3d2d3231299b5b03d9b3e5a20da45aa18",
"created_at": "2023-09-21T17:22:46+00:00"
},
"gsm8k": {
"sha": "e53f048856ff4f594e959d75785d2c2d37b678ee",
"created_at": "2022-04-12T10:22:10+00:00"
}
},
"package_info": {
"transformers-version": "4.52.4",
"transformers-commit-hash": null,
"peft-version": "0.15.2.dev0",
"peft-commit-hash": "5fe7f8f8abe914d313fc3751f2ea92de7718fbaf",
"datasets-version": "3.6.0",
"datasets-commit-hash": null,
"bitsandbytes-version": "0.46.0",
"bitsandbytes-commit-hash": null,
"torch-version": "2.7.1+cu126",
"torch-commit-hash": null
},
"system_info": {
"system": "Linux",
"release": "6.8.0-1029-aws",
"version": "#31-Ubuntu SMP Wed Apr 23 18:42:41 UTC 2025",
"machine": "x86_64",
"processor": "x86_64",
"accelerator": "NVIDIA L40S"
},
"pytorch_info": "PyTorch built with:\n - GCC 11.2\n - C++ Version: 201703\n - Intel(R) oneAPI Math Kernel Library Version 2024.2-Product Build 20240605 for Intel(R) 64 architecture applications\n - Intel(R) MKL-DNN v3.7.1 (Git Hash 8d263e693366ef8db40acc569cc7d8edf644556d)\n - OpenMP 201511 (a.k.a. OpenMP 4.5)\n - LAPACK is enabled (usually provided by MKL)\n - NNPACK is enabled\n - CPU capability usage: AVX2\n - CUDA Runtime 12.6\n - NVCC architecture flags: -gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86;-gencode;arch=compute_90,code=sm_90\n - CuDNN 90.7.1 (built against CUDA 12.8)\n - Built with CuDNN 90.5.1\n - Magma 2.6.1\n - Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, COMMIT_SHA=e2d141dbde55c2a4370fac5165b0561b6af4798b, CUDA_VERSION=12.6, CUDNN_VERSION=9.5.1, CXX_COMPILER=/opt/rh/gcc-toolset-11/root/usr/bin/c++, CXX_FLAGS= -D_GLIBCXX_USE_CXX11_ABI=1 -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOROCTRACER -DLIBKINETO_NOXPUPTI=ON -DUSE_FBGEMM -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -O2 -fPIC -Wall -Wextra -Werror=return-type -Werror=non-virtual-dtor -Werror=range-loop-construct -Werror=bool-operation -Wnarrowing -Wno-missing-field-initializers -Wno-unknown-pragmas -Wno-unused-parameter -Wno-strict-overflow -Wno-strict-aliasing -Wno-stringop-overflow -Wsuggest-override -Wno-psabi -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, TORCH_VERSION=2.7.1, USE_CUDA=ON, USE_CUDNN=ON, USE_CUSPARSELT=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_GLOO=ON, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=1, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF, USE_ROCM_KERNEL_ASSERT=OFF, \n"
}
}