PEFT-method-comparison / MetaMathQA /results /lora--llama-3.2-3B-rank32-dora.json
github-actions[bot]
🚀 Deploy method comparison app from GH action
3c8cd22
{
"run_info": {
"created_at": "2025-06-19T18:37:24+00:00",
"total_time": 2286.5437473089987,
"experiment_name": "lora/llama-3.2-3B-rank32-dora",
"peft_branch": "main",
"train_config": {
"model_id": "meta-llama/Llama-3.2-3B",
"dtype": "bfloat16",
"max_seq_length": 768,
"batch_size": 4,
"batch_size_eval": 50,
"max_steps": 5000,
"eval_steps": 250,
"compile": false,
"query_template": "Question: {query} Think step by step.\nAnswer:",
"seed": 0,
"grad_norm_clip": 1.0,
"optimizer_type": "AdamW",
"optimizer_kwargs": {
"lr": 0.0001,
"weight_decay": 0.1
},
"lr_scheduler": "cosine",
"use_amp": false,
"autocast_adapter_dtype": true,
"generation_kwargs": {
"max_length": 800,
"max_new_tokens": 300
},
"attn_implementation": null
},
"peft_config": {
"task_type": "CAUSAL_LM",
"peft_type": "LORA",
"auto_mapping": null,
"base_model_name_or_path": "meta-llama/Llama-3.2-3B",
"revision": null,
"inference_mode": false,
"r": 32,
"target_modules": [
"q_proj",
"v_proj"
],
"exclude_modules": null,
"lora_alpha": 64,
"lora_dropout": 0.0,
"fan_in_fan_out": false,
"bias": "none",
"use_rslora": false,
"modules_to_save": null,
"init_lora_weights": true,
"layers_to_transform": null,
"layers_pattern": null,
"rank_pattern": {},
"alpha_pattern": {},
"megatron_config": null,
"megatron_core": "megatron.core",
"trainable_token_indices": null,
"loftq_config": {},
"eva_config": null,
"corda_config": null,
"use_dora": true,
"layer_replication": null,
"lora_bias": false
},
"error_msg": ""
},
"train_info": {
"accelerator_memory_reserved_avg": 12490471636,
"accelerator_memory_max": 24553455616,
"accelerator_memory_reserved_99th": 19189150515,
"train_time": 2022.7454924520134,
"file_size": 37181760,
"num_trainable_params": 9289728,
"num_total_params": 3222039552,
"status": "success",
"metrics": [
{
"step": 250,
"valid accuracy": 0.36,
"train loss": 0.9800839998722076,
"train samples": 1000,
"train time": 35.42731901501611,
"eval time": 16.70931195599769,
"tokens / sec": 5976.150775345474,
"mem allocated avg": 6924859500.544,
"mem reserved avg": 12552201306.112,
"elapsed time": 105.33911871900273
},
{
"step": 500,
"valid accuracy": 0.44,
"train loss": 0.7162023800611496,
"train samples": 2000,
"train time": 35.53461015297944,
"eval time": 16.7331051809997,
"tokens / sec": 5853.307496678993,
"mem allocated avg": 6917484427.264,
"mem reserved avg": 12427118772.224,
"elapsed time": 204.02196035100133
},
{
"step": 750,
"valid accuracy": 0.42,
"train loss": 0.6790966511964798,
"train samples": 3000,
"train time": 35.395415813978616,
"eval time": 10.35499690800134,
"tokens / sec": 6057.309825848329,
"mem allocated avg": 6927996166.144,
"mem reserved avg": 12609050902.528,
"elapsed time": 296.3724143870022
},
{
"step": 1000,
"valid accuracy": 0.42,
"train loss": 0.6590274780988693,
"train samples": 4000,
"train time": 35.01134122798976,
"eval time": 16.638093278997985,
"tokens / sec": 5950.528962696411,
"mem allocated avg": 6919690883.072,
"mem reserved avg": 12464313860.096,
"elapsed time": 394.33112582000103
},
{
"step": 1250,
"valid accuracy": 0.42,
"train loss": 0.6542477097511291,
"train samples": 5000,
"train time": 34.85555366096378,
"eval time": 16.627405782997812,
"tokens / sec": 5982.920312453697,
"mem allocated avg": 6919055253.504,
"mem reserved avg": 12449952563.2,
"elapsed time": 492.1167898590029
},
{
"step": 1500,
"valid accuracy": 0.4,
"train loss": 0.6471435966491699,
"train samples": 6000,
"train time": 35.407848127983016,
"eval time": 10.318167828998412,
"tokens / sec": 5911.994404273457,
"mem allocated avg": 6921185224.704,
"mem reserved avg": 12477500751.872,
"elapsed time": 584.325913470002
},
{
"step": 1750,
"valid accuracy": 0.42,
"train loss": 0.6376023133993148,
"train samples": 7000,
"train time": 35.61810469696138,
"eval time": 10.057756549002079,
"tokens / sec": 5877.7692350896,
"mem allocated avg": 6922196224.0,
"mem reserved avg": 12495888580.608,
"elapsed time": 676.5556904380028
},
{
"step": 2000,
"valid accuracy": 0.36,
"train loss": 0.6404745506048203,
"train samples": 8000,
"train time": 35.01814225999988,
"eval time": 10.846777078000741,
"tokens / sec": 5931.097042724754,
"mem allocated avg": 6919877345.28,
"mem reserved avg": 12428771328.0,
"elapsed time": 768.7593245980024
},
{
"step": 2250,
"valid accuracy": 0.48,
"train loss": 0.6327905882596969,
"train samples": 9000,
"train time": 35.941867801058834,
"eval time": 16.654083295998134,
"tokens / sec": 5980.434884178939,
"mem allocated avg": 6930785019.904,
"mem reserved avg": 12637135962.112,
"elapsed time": 868.0876048490027
},
{
"step": 2500,
"valid accuracy": 0.44,
"train loss": 0.6293514591455459,
"train samples": 10000,
"train time": 35.19044898093853,
"eval time": 16.654415837998386,
"tokens / sec": 5852.923334725435,
"mem allocated avg": 6914962546.688,
"mem reserved avg": 12361175924.736,
"elapsed time": 965.9673830700012
},
{
"step": 2750,
"valid accuracy": 0.34,
"train loss": 0.6212090995311738,
"train samples": 11000,
"train time": 35.78923041201051,
"eval time": 12.364532577001228,
"tokens / sec": 5920.2446535116005,
"mem allocated avg": 6926067247.104,
"mem reserved avg": 12561110007.808,
"elapsed time": 1060.7434992320013
},
{
"step": 3000,
"valid accuracy": 0.48,
"train loss": 0.6132309092283249,
"train samples": 12000,
"train time": 35.434680095979274,
"eval time": 10.902270734000922,
"tokens / sec": 5890.585139604081,
"mem allocated avg": 6921261266.944,
"mem reserved avg": 12472811520.0,
"elapsed time": 1153.3681941970026
},
{
"step": 3250,
"valid accuracy": 0.5,
"train loss": 0.6223928620815277,
"train samples": 13000,
"train time": 35.475069620017166,
"eval time": 9.885322058999009,
"tokens / sec": 5945.048234126565,
"mem allocated avg": 6922737405.952,
"mem reserved avg": 12498002509.824,
"elapsed time": 1245.241280964001
},
{
"step": 3500,
"valid accuracy": 0.5,
"train loss": 0.605602259516716,
"train samples": 14000,
"train time": 35.607162244014035,
"eval time": 10.090815307001321,
"tokens / sec": 5890.668808780496,
"mem allocated avg": 6920974434.304,
"mem reserved avg": 12474329858.048,
"elapsed time": 1337.4724736530006
},
{
"step": 3750,
"valid accuracy": 0.48,
"train loss": 0.6031041693687439,
"train samples": 15000,
"train time": 36.209776319014054,
"eval time": 10.371932055000798,
"tokens / sec": 5984.6544781390285,
"mem allocated avg": 6933558140.928,
"mem reserved avg": 12681738190.848,
"elapsed time": 1431.2058649130013
},
{
"step": 4000,
"valid accuracy": 0.46,
"train loss": 0.6162525477409363,
"train samples": 16000,
"train time": 35.48366187599095,
"eval time": 12.394127589999698,
"tokens / sec": 5759.636666425441,
"mem allocated avg": 6914222096.384,
"mem reserved avg": 12349406707.712,
"elapsed time": 1525.3134414390006
},
{
"step": 4250,
"valid accuracy": 0.5,
"train loss": 0.6013483003377914,
"train samples": 17000,
"train time": 35.15769277801883,
"eval time": 16.63699178299794,
"tokens / sec": 6012.59591562743,
"mem allocated avg": 6924507731.968,
"mem reserved avg": 12521616441.344,
"elapsed time": 1623.6120678540028
},
{
"step": 4500,
"valid accuracy": 0.48,
"train loss": 0.6073888168334961,
"train samples": 18000,
"train time": 34.98748015804085,
"eval time": 12.561758541996824,
"tokens / sec": 5939.781860861995,
"mem allocated avg": 6918951696.384,
"mem reserved avg": 12432495869.952,
"elapsed time": 1717.352138276001
},
{
"step": 4750,
"valid accuracy": 0.5,
"train loss": 0.5993685643672944,
"train samples": 19000,
"train time": 35.57701125005042,
"eval time": 13.379837485997996,
"tokens / sec": 5900.973483254653,
"mem allocated avg": 6921678901.248,
"mem reserved avg": 12490880581.632,
"elapsed time": 1812.886111721
},
{
"step": 5000,
"valid accuracy": 0.48,
"train loss": 0.6068210340738297,
"train samples": 20000,
"train time": 35.678432397002325,
"eval time": 10.087769599998865,
"tokens / sec": 5837.700425916121,
"mem allocated avg": 6918288025.6,
"mem reserved avg": 12423931101.184,
"elapsed time": 1905.221841073002
},
{
"step": 5000,
"test accuracy": 0.4806671721000758,
"train loss": 0.6068210340738297,
"train samples": 20000,
"train total tokens": 4198051
}
]
},
"meta_info": {
"model_info": {
"sha": "13afe5124825b4f3751f836b40dafda64c1ed062",
"created_at": "2024-09-18T15:23:48+00:00"
},
"dataset_info": {
"metamath": {
"sha": "aa4f34d3d2d3231299b5b03d9b3e5a20da45aa18",
"created_at": "2023-09-21T17:22:46+00:00"
},
"gsm8k": {
"sha": "e53f048856ff4f594e959d75785d2c2d37b678ee",
"created_at": "2022-04-12T10:22:10+00:00"
}
},
"package_info": {
"transformers-version": "4.52.4",
"transformers-commit-hash": null,
"peft-version": "0.15.2.dev0",
"peft-commit-hash": "5fe7f8f8abe914d313fc3751f2ea92de7718fbaf",
"datasets-version": "3.6.0",
"datasets-commit-hash": null,
"bitsandbytes-version": "0.46.0",
"bitsandbytes-commit-hash": null,
"torch-version": "2.7.1+cu126",
"torch-commit-hash": null
},
"system_info": {
"system": "Linux",
"release": "6.8.0-1029-aws",
"version": "#31-Ubuntu SMP Wed Apr 23 18:42:41 UTC 2025",
"machine": "x86_64",
"processor": "x86_64",
"accelerator": "NVIDIA L40S"
},
"pytorch_info": "PyTorch built with:\n - GCC 11.2\n - C++ Version: 201703\n - Intel(R) oneAPI Math Kernel Library Version 2024.2-Product Build 20240605 for Intel(R) 64 architecture applications\n - Intel(R) MKL-DNN v3.7.1 (Git Hash 8d263e693366ef8db40acc569cc7d8edf644556d)\n - OpenMP 201511 (a.k.a. OpenMP 4.5)\n - LAPACK is enabled (usually provided by MKL)\n - NNPACK is enabled\n - CPU capability usage: AVX2\n - CUDA Runtime 12.6\n - NVCC architecture flags: -gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86;-gencode;arch=compute_90,code=sm_90\n - CuDNN 90.7.1 (built against CUDA 12.8)\n - Built with CuDNN 90.5.1\n - Magma 2.6.1\n - Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, COMMIT_SHA=e2d141dbde55c2a4370fac5165b0561b6af4798b, CUDA_VERSION=12.6, CUDNN_VERSION=9.5.1, CXX_COMPILER=/opt/rh/gcc-toolset-11/root/usr/bin/c++, CXX_FLAGS= -D_GLIBCXX_USE_CXX11_ABI=1 -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOROCTRACER -DLIBKINETO_NOXPUPTI=ON -DUSE_FBGEMM -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -O2 -fPIC -Wall -Wextra -Werror=return-type -Werror=non-virtual-dtor -Werror=range-loop-construct -Werror=bool-operation -Wnarrowing -Wno-missing-field-initializers -Wno-unknown-pragmas -Wno-unused-parameter -Wno-strict-overflow -Wno-strict-aliasing -Wno-stringop-overflow -Wsuggest-override -Wno-psabi -Wno-error=old-style-cast -fdiagnostics-color=always -faligned-new -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, TORCH_VERSION=2.7.1, USE_CUDA=ON, USE_CUDNN=ON, USE_CUSPARSELT=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_GLOO=ON, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=1, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF, USE_ROCM_KERNEL_ASSERT=OFF, \n"
}
}