File size: 17,764 Bytes
a76607e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
# Copyright 2025-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""
Main entry point to run the experiments. Contains general setup and the proper training code.
"""

import argparse
import datetime as dt
import gc
import json
import os
import random
import sys
import textwrap
import time
from contextlib import ContextManager, nullcontext
from functools import partial
from typing import Any, Callable, Literal, Optional

import torch
from torch import nn
from torch.amp import GradScaler, autocast
from tqdm import tqdm
from transformers import GenerationConfig, set_seed
from utils import (
    FILE_NAME_TRAIN_PARAMS,
    BucketIterator,
    TrainResult,
    TrainStatus,
    get_accuracy,
    get_base_model_info,
    get_dataset_info,
    get_file_size,
    get_model,
    get_optimizer_and_scheduler,
    get_peft_branch,
    get_tokenizer,
    get_train_config,
    init_cuda,
    log_results,
    validate_experiment_path,
)

from data import get_train_valid_test_datasets
from peft import AdaLoraConfig, PeftConfig
from peft.utils import CONFIG_NAME


# # suppress all warnings
# warnings.filterwarnings("ignore") # FIXME?

dtype_to_bytes_linear = {"float32": 4, "float16": 2, "bfloat16": 2, "int8": 1, "int4": 0.5}
# if lr scheduler with warmup is used, the ratio of warmup steps to total steps
BUCKET_FACTOR = 20  # number of batches per bucket, increasing this further has diminishing returns


def get_generation_config(*, seq_len, generate_kwargs) -> GenerationConfig:
    # filter out None values so that we don't depend on setting correct defaults in the config
    generation_kwargs = {k: v for k, v in generate_kwargs.items() if v is not None}
    if ("max_length" in generation_kwargs) and ("max_new_tokens" in generation_kwargs):
        # transformers does not support setting both max_length and max_new_tokens, but what we want in this case is to
        # take the smaller of the two values
        new_max_length = min(generation_kwargs["max_new_tokens"] + seq_len, generation_kwargs["max_length"])
        del generation_kwargs["max_new_tokens"]
        generation_kwargs["max_length"] = new_max_length
    generation_config = GenerationConfig(**generate_kwargs)
    return generation_config


def evaluate(model, tokenizer, ds, batch_size, generate_kwargs, use_tqdm: bool = False) -> tuple[list[str], list[str]]:
    with torch.inference_mode():
        predictions = []
        responses = []
        pbar = range(0, len(ds), batch_size)
        if use_tqdm:
            pbar = tqdm(pbar)
        for j in pbar:
            sliced = ds[j : j + batch_size]
            responses += sliced.pop("response")
            batch = tokenizer.pad(sliced, return_tensors="pt", padding_side="left").to(model.device)
            seq_len = batch["input_ids"].shape[1]
            generation_config = get_generation_config(seq_len=seq_len, generate_kwargs=generate_kwargs)
            outputs = model.generate(**batch, generation_config=generation_config, pad_token_id=tokenizer.eos_token_id)
            predictions += tokenizer.batch_decode(outputs, skip_special_tokens=True)
    return predictions, responses


class DummyGradScaler:
    # if no mixed precision is being used
    def scale(self, loss):
        return loss

    def unscale_(self, optimizer):
        pass

    def step(self, optimizer):
        optimizer.step()

    def update(self):
        pass


def train(
    *,
    model: nn.Module,
    max_steps: int,
    batch_size: int,
    batch_size_eval: int,
    tokenizer: Any,
    cuda_memory_init: int,
    eval_steps: int,
    generation_kwargs: dict[str, Any],
    grad_norm_clip: float,
    optimizer_type: str,
    optimizer_kwargs: dict[str, Any],
    query_template: str,
    lr_scheduler_arg: Optional[Literal["cosine"]],
    use_amp: bool,
    is_adalora: bool,
) -> TrainResult:
    cuda_memory_allocated_log = []
    cuda_memory_reserved_log = []
    losses = []
    durations = []
    metrics = []
    sample = 0  # keep count of the current sample
    total_samples = 0  # total number of samples over all epochs
    total_tokens = []  # total number of tokens over all epochs
    if use_amp:
        grad_scaler: GradScaler | DummyGradScaler = GradScaler(device="cuda")
        autocast_ctx: Callable[[], ContextManager[Any]] = partial(autocast, device_type="cuda")
    else:
        grad_scaler = DummyGradScaler()
        autocast_ctx = nullcontext

    optimizer, lr_scheduler = get_optimizer_and_scheduler(
        model,
        optimizer_type=optimizer_type,
        max_steps=max_steps,
        lr_scheduler_arg=lr_scheduler_arg,
        **optimizer_kwargs,
    )
    # print this after getting the optimizer, in case it modifies requires_gard
    if hasattr(model, "get_nb_trainable_parameters"):
        num_trainable_params, num_params = model.get_nb_trainable_parameters()
    else:
        num_params = model.num_parameters()
        num_trainable_params = num_params
    print_verbose(
        f"trainable params: {num_trainable_params:,d} || all params: {num_params:,d} || "
        f"trainable: {100 * num_trainable_params / num_params:.4f}%"
    )

    status = TrainStatus.FAILED
    tic_train = time.perf_counter()
    eval_time = 0.0
    error_msg = ""

    ds_train, ds_valid, ds_test = get_train_valid_test_datasets(
        tokenizer=tokenizer, query_template=query_template, print_fn=print_verbose
    )
    # note: bucketing by length is only really worth it for the train dataset, since it's length is big compared to the
    # batch size
    iterator_train = BucketIterator(
        ds_train,
        batch_size=batch_size,
        bucket_factor=BUCKET_FACTOR,
        delete_cols=["response"],
    )
    try:
        pbar = tqdm(range(1, max_steps + 1))
        for step, batch in zip(pbar, iterator_train):
            tic = time.perf_counter()

            # create the batch
            tokens_per_sample = [len(i) for i in batch["input_ids"]]
            total_tokens.append(sum(tokens_per_sample) + len(tokens_per_sample))  # add EOS token
            batch = tokenizer.pad(batch, return_tensors="pt").to(model.device)
            actual_batch_size = len(batch["input_ids"])
            total_samples += actual_batch_size
            sample += batch_size
            if sample >= len(ds_train):  # new epoch
                sample = 0

            # add labels, they are automatically shifted by transformers
            labels = batch["input_ids"].clone()
            # We want to ignore the padding tokens except for the first EOS token; if we don't ignore them, the loss
            # will be dominated by padding tokens; if we ignore all, the model will not learn to predict the EOS token.
            # TODO: Note that the longest sequence in the batch won't have any PAD/EOS token at the end, this is fine if
            # the batch size is > 1 but should still be fixed eventually.
            for i, num_tokens in enumerate(tokens_per_sample):
                labels[i, num_tokens + 1 :] = -100
            batch["labels"] = labels
            num_items_in_batch = batch["attention_mask"].sum().item()

            # train step
            optimizer.zero_grad()
            with autocast_ctx():
                outputs = model(**batch, num_items_in_batch=num_items_in_batch)
                loss = outputs.loss
            grad_scaler.scale(loss).backward()
            if grad_norm_clip:
                grad_scaler.unscale_(optimizer)
                torch.nn.utils.clip_grad_norm_(model.parameters(), grad_norm_clip)
            grad_scaler.step(optimizer)
            grad_scaler.update()
            lr_scheduler.step()

            if is_adalora:
                model.base_model.update_and_allocate(step)

            losses.append(loss.item())
            pbar.set_postfix({"loss": loss.item()})
            cuda_memory_allocated_log.append(torch.cuda.memory_allocated() - cuda_memory_init)
            cuda_memory_reserved_log.append(torch.cuda.memory_reserved() - cuda_memory_init)
            toc = time.perf_counter()
            durations.append(toc - tic)

            # every couple of steps, evaluate; this can be slow due to generation
            if step % eval_steps == 0:
                tic_eval = time.perf_counter()
                loss_avg = sum(losses[-eval_steps:]) / eval_steps
                memory_allocated_avg = sum(cuda_memory_allocated_log[-eval_steps:]) / eval_steps
                memory_reserved_avg = sum(cuda_memory_reserved_log[-eval_steps:]) / eval_steps
                token_sum = sum(total_tokens[-eval_steps:])
                dur_train = sum(durations[-eval_steps:])
                tokens_per_sec = token_sum / dur_train

                model.eval()
                predictions, responses = evaluate(
                    model=model,
                    tokenizer=tokenizer,
                    ds=ds_valid,
                    batch_size=batch_size_eval,
                    generate_kwargs={**generation_kwargs},
                )
                model.train()

                example = random.choice(predictions)
                example = textwrap.shorten(example, width=750)
                example = textwrap.indent(example, "    ")
                print_verbose(f"\nExample prediction:\n{example}\n")
                accuracy = get_accuracy(predictions=predictions, responses=responses)
                num_tokens_generated = sum(sum(mask) for mask in tokenizer(predictions)["attention_mask"])

                toc_eval = time.perf_counter()
                dur_eval = toc_eval - tic_eval
                eval_time += toc_eval - tic_eval
                elapsed = time.perf_counter() - tic_train

                metrics.append(
                    {
                        "step": step,
                        "valid accuracy": accuracy,
                        "train loss": loss_avg,
                        "train samples": total_samples,
                        "train time": dur_train,
                        "eval time": dur_eval,
                        "tokens / sec": tokens_per_sec,
                        "mem allocated avg": memory_allocated_avg,
                        "mem reserved avg": memory_reserved_avg,
                        "elapsed time": elapsed,
                    }
                )

                log_dict = {
                    "step": f"{step:5d}",
                    "samples": f"{total_samples:7d}",
                    "lr": f"{lr_scheduler.get_last_lr()[0]:.2e}",
                    "loss avg": f"{loss_avg:.4f}",
                    "valid acc": f"{accuracy:.3f}",
                    "gen valid tokens": num_tokens_generated,
                    "train time": f"{dur_train:.1f}s",
                    "eval time": f"{dur_eval:.1f}s",
                    "train tokens / sec": f"{tokens_per_sec:.0f}",
                    "mem allocated": f"{memory_allocated_avg:.0f}",
                    "mem reserved": f"{memory_reserved_avg:.0f}",
                    "elapsed time": f"{elapsed // 60:.0f}min {elapsed % 60:.0f}s",
                }
                print_verbose(json.dumps(log_dict))

            # # TODO is this needed?
            torch.cuda.empty_cache()
            gc.collect()

        print_verbose(f"Training finished after {max_steps} steps, evaluation on test set follows.")
        # test set evaluation
        model.eval()
        predictions, responses = evaluate(
            model=model,
            tokenizer=tokenizer,
            ds=ds_test,
            batch_size=batch_size_eval,
            generate_kwargs={**generation_kwargs, "pad_token_id": tokenizer.eos_token_id},
            use_tqdm=len(ds_test) > 100,
        )
        accuracy = get_accuracy(predictions=predictions, responses=responses)
        metrics.append(
            {
                "step": step,
                "test accuracy": accuracy,
                "train loss": sum(losses[-eval_steps:]) / eval_steps,
                "train samples": total_samples,
                "train total tokens": sum(total_tokens),
            }
        )
        print_verbose(f"Test accuracy: {accuracy:.3f}")

    except KeyboardInterrupt:
        print_verbose("canceled training")
        status = TrainStatus.CANCELED
        error_msg = "manually canceled"
    except torch.OutOfMemoryError as exc:
        # ouch, still let's try to log some results
        print_verbose("out of memory error encountered")
        status = TrainStatus.CANCELED
        error_msg = str(exc)
    except Exception as exc:
        print_verbose(f"encountered an error: {exc}")
        status = TrainStatus.CANCELED
        error_msg = str(exc)

    toc_train = time.perf_counter()
    train_time = toc_train - tic_train - eval_time

    if status != TrainStatus.CANCELED:
        status = TrainStatus.SUCCESS
    train_result = TrainResult(
        status=status,
        train_time=train_time,
        cuda_memory_reserved_log=cuda_memory_reserved_log,
        losses=losses,
        metrics=metrics,
        error_msg=error_msg,
        num_trainable_params=num_trainable_params,
        num_total_params=num_params,
    )
    return train_result


def main(*, path_experiment: str, experiment_name: str, clean: bool) -> None:
    tic_total = time.perf_counter()
    start_date = dt.datetime.now(tz=dt.timezone.utc).replace(microsecond=0).isoformat()

    peft_branch = get_peft_branch()
    if peft_branch == "main":
        print_verbose("===== This experiment is categorized as a MAIN run because the PEFT branch is 'main' ======")
    else:
        print_verbose(
            f"===== This experiment is categorized as a TEST run because the PEFT branch is '{peft_branch}' ======"
        )

    # load configs
    peft_config: Optional[PeftConfig] = None
    if os.path.exists(os.path.join(path_experiment, CONFIG_NAME)):
        peft_config = PeftConfig.from_pretrained(path_experiment)
    else:
        print_verbose(f"Could not find PEFT config at {path_experiment}, performing FULL FINETUNING")
    path_train_config = os.path.join(path_experiment, FILE_NAME_TRAIN_PARAMS)
    train_config = get_train_config(path_train_config)
    set_seed(train_config.seed)

    # initialize objects
    cuda_memory_init = init_cuda()
    tokenizer = get_tokenizer(model_id=train_config.model_id, max_seq_length=train_config.max_seq_length)

    model_info = get_base_model_info(train_config.model_id)
    metamath_info = get_dataset_info("meta-math/MetaMathQA")
    gsm8k_info = get_dataset_info("openai/gsm8k")
    model = get_model(
        model_id=train_config.model_id,
        dtype=train_config.dtype,
        compile=train_config.compile,
        attn_implementation=train_config.attn_implementation,
        peft_config=peft_config,
        autocast_adapter_dtype=train_config.autocast_adapter_dtype,
    )
    print_verbose(model)

    # train model
    train_result = train(
        model=model,
        max_steps=train_config.max_steps,
        batch_size=train_config.batch_size,
        batch_size_eval=train_config.batch_size_eval,
        tokenizer=tokenizer,
        cuda_memory_init=cuda_memory_init,
        eval_steps=train_config.eval_steps,
        generation_kwargs=train_config.generation_kwargs,
        grad_norm_clip=train_config.grad_norm_clip,
        optimizer_type=train_config.optimizer_type,
        optimizer_kwargs=train_config.optimizer_kwargs,
        query_template=train_config.query_template,
        lr_scheduler_arg=train_config.lr_scheduler,
        use_amp=train_config.use_amp,
        is_adalora=isinstance(peft_config, AdaLoraConfig),
    )

    if train_result.status == TrainStatus.FAILED:
        print_verbose("Training failed, not logging results")
        sys.exit(1)

    file_size = get_file_size(
        model,
        peft_config=peft_config,
        clean=clean,
        print_fn=print_verbose,
    )

    time_total = time.perf_counter() - tic_total
    # log results: print and save to file
    log_results(
        experiment_name=experiment_name,
        train_result=train_result,
        cuda_memory_init=cuda_memory_init,
        time_total=time_total,
        file_size=file_size,
        model_info=model_info,
        datasets_info={"metamath": metamath_info, "gsm8k": gsm8k_info},
        start_date=start_date,
        train_config=train_config,
        peft_config=peft_config,
        print_fn=print_verbose,
    )


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("-v", "--verbose", action="store_true", help="Enable verbose output")
    parser.add_argument("path_experiment", type=str, help="Path to the experiment directory")
    parser.add_argument(
        "--clean",
        action="store_true",
        help="Delete training artifacts after run finishes (logs are still saved)",
    )
    args = parser.parse_args()

    experiment_name = validate_experiment_path(args.path_experiment)

    if args.verbose:

        def print_verbose(*args, **kwargs) -> None:
            kwargs["file"] = sys.stderr
            print(*args, **kwargs)
    else:

        def print_verbose(*args, **kwargs) -> None:
            pass

    main(
        path_experiment=args.path_experiment,
        experiment_name=experiment_name,
        clean=args.clean,
    )