File size: 17,764 Bytes
a76607e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 |
# Copyright 2025-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Main entry point to run the experiments. Contains general setup and the proper training code.
"""
import argparse
import datetime as dt
import gc
import json
import os
import random
import sys
import textwrap
import time
from contextlib import ContextManager, nullcontext
from functools import partial
from typing import Any, Callable, Literal, Optional
import torch
from torch import nn
from torch.amp import GradScaler, autocast
from tqdm import tqdm
from transformers import GenerationConfig, set_seed
from utils import (
FILE_NAME_TRAIN_PARAMS,
BucketIterator,
TrainResult,
TrainStatus,
get_accuracy,
get_base_model_info,
get_dataset_info,
get_file_size,
get_model,
get_optimizer_and_scheduler,
get_peft_branch,
get_tokenizer,
get_train_config,
init_cuda,
log_results,
validate_experiment_path,
)
from data import get_train_valid_test_datasets
from peft import AdaLoraConfig, PeftConfig
from peft.utils import CONFIG_NAME
# # suppress all warnings
# warnings.filterwarnings("ignore") # FIXME?
dtype_to_bytes_linear = {"float32": 4, "float16": 2, "bfloat16": 2, "int8": 1, "int4": 0.5}
# if lr scheduler with warmup is used, the ratio of warmup steps to total steps
BUCKET_FACTOR = 20 # number of batches per bucket, increasing this further has diminishing returns
def get_generation_config(*, seq_len, generate_kwargs) -> GenerationConfig:
# filter out None values so that we don't depend on setting correct defaults in the config
generation_kwargs = {k: v for k, v in generate_kwargs.items() if v is not None}
if ("max_length" in generation_kwargs) and ("max_new_tokens" in generation_kwargs):
# transformers does not support setting both max_length and max_new_tokens, but what we want in this case is to
# take the smaller of the two values
new_max_length = min(generation_kwargs["max_new_tokens"] + seq_len, generation_kwargs["max_length"])
del generation_kwargs["max_new_tokens"]
generation_kwargs["max_length"] = new_max_length
generation_config = GenerationConfig(**generate_kwargs)
return generation_config
def evaluate(model, tokenizer, ds, batch_size, generate_kwargs, use_tqdm: bool = False) -> tuple[list[str], list[str]]:
with torch.inference_mode():
predictions = []
responses = []
pbar = range(0, len(ds), batch_size)
if use_tqdm:
pbar = tqdm(pbar)
for j in pbar:
sliced = ds[j : j + batch_size]
responses += sliced.pop("response")
batch = tokenizer.pad(sliced, return_tensors="pt", padding_side="left").to(model.device)
seq_len = batch["input_ids"].shape[1]
generation_config = get_generation_config(seq_len=seq_len, generate_kwargs=generate_kwargs)
outputs = model.generate(**batch, generation_config=generation_config, pad_token_id=tokenizer.eos_token_id)
predictions += tokenizer.batch_decode(outputs, skip_special_tokens=True)
return predictions, responses
class DummyGradScaler:
# if no mixed precision is being used
def scale(self, loss):
return loss
def unscale_(self, optimizer):
pass
def step(self, optimizer):
optimizer.step()
def update(self):
pass
def train(
*,
model: nn.Module,
max_steps: int,
batch_size: int,
batch_size_eval: int,
tokenizer: Any,
cuda_memory_init: int,
eval_steps: int,
generation_kwargs: dict[str, Any],
grad_norm_clip: float,
optimizer_type: str,
optimizer_kwargs: dict[str, Any],
query_template: str,
lr_scheduler_arg: Optional[Literal["cosine"]],
use_amp: bool,
is_adalora: bool,
) -> TrainResult:
cuda_memory_allocated_log = []
cuda_memory_reserved_log = []
losses = []
durations = []
metrics = []
sample = 0 # keep count of the current sample
total_samples = 0 # total number of samples over all epochs
total_tokens = [] # total number of tokens over all epochs
if use_amp:
grad_scaler: GradScaler | DummyGradScaler = GradScaler(device="cuda")
autocast_ctx: Callable[[], ContextManager[Any]] = partial(autocast, device_type="cuda")
else:
grad_scaler = DummyGradScaler()
autocast_ctx = nullcontext
optimizer, lr_scheduler = get_optimizer_and_scheduler(
model,
optimizer_type=optimizer_type,
max_steps=max_steps,
lr_scheduler_arg=lr_scheduler_arg,
**optimizer_kwargs,
)
# print this after getting the optimizer, in case it modifies requires_gard
if hasattr(model, "get_nb_trainable_parameters"):
num_trainable_params, num_params = model.get_nb_trainable_parameters()
else:
num_params = model.num_parameters()
num_trainable_params = num_params
print_verbose(
f"trainable params: {num_trainable_params:,d} || all params: {num_params:,d} || "
f"trainable: {100 * num_trainable_params / num_params:.4f}%"
)
status = TrainStatus.FAILED
tic_train = time.perf_counter()
eval_time = 0.0
error_msg = ""
ds_train, ds_valid, ds_test = get_train_valid_test_datasets(
tokenizer=tokenizer, query_template=query_template, print_fn=print_verbose
)
# note: bucketing by length is only really worth it for the train dataset, since it's length is big compared to the
# batch size
iterator_train = BucketIterator(
ds_train,
batch_size=batch_size,
bucket_factor=BUCKET_FACTOR,
delete_cols=["response"],
)
try:
pbar = tqdm(range(1, max_steps + 1))
for step, batch in zip(pbar, iterator_train):
tic = time.perf_counter()
# create the batch
tokens_per_sample = [len(i) for i in batch["input_ids"]]
total_tokens.append(sum(tokens_per_sample) + len(tokens_per_sample)) # add EOS token
batch = tokenizer.pad(batch, return_tensors="pt").to(model.device)
actual_batch_size = len(batch["input_ids"])
total_samples += actual_batch_size
sample += batch_size
if sample >= len(ds_train): # new epoch
sample = 0
# add labels, they are automatically shifted by transformers
labels = batch["input_ids"].clone()
# We want to ignore the padding tokens except for the first EOS token; if we don't ignore them, the loss
# will be dominated by padding tokens; if we ignore all, the model will not learn to predict the EOS token.
# TODO: Note that the longest sequence in the batch won't have any PAD/EOS token at the end, this is fine if
# the batch size is > 1 but should still be fixed eventually.
for i, num_tokens in enumerate(tokens_per_sample):
labels[i, num_tokens + 1 :] = -100
batch["labels"] = labels
num_items_in_batch = batch["attention_mask"].sum().item()
# train step
optimizer.zero_grad()
with autocast_ctx():
outputs = model(**batch, num_items_in_batch=num_items_in_batch)
loss = outputs.loss
grad_scaler.scale(loss).backward()
if grad_norm_clip:
grad_scaler.unscale_(optimizer)
torch.nn.utils.clip_grad_norm_(model.parameters(), grad_norm_clip)
grad_scaler.step(optimizer)
grad_scaler.update()
lr_scheduler.step()
if is_adalora:
model.base_model.update_and_allocate(step)
losses.append(loss.item())
pbar.set_postfix({"loss": loss.item()})
cuda_memory_allocated_log.append(torch.cuda.memory_allocated() - cuda_memory_init)
cuda_memory_reserved_log.append(torch.cuda.memory_reserved() - cuda_memory_init)
toc = time.perf_counter()
durations.append(toc - tic)
# every couple of steps, evaluate; this can be slow due to generation
if step % eval_steps == 0:
tic_eval = time.perf_counter()
loss_avg = sum(losses[-eval_steps:]) / eval_steps
memory_allocated_avg = sum(cuda_memory_allocated_log[-eval_steps:]) / eval_steps
memory_reserved_avg = sum(cuda_memory_reserved_log[-eval_steps:]) / eval_steps
token_sum = sum(total_tokens[-eval_steps:])
dur_train = sum(durations[-eval_steps:])
tokens_per_sec = token_sum / dur_train
model.eval()
predictions, responses = evaluate(
model=model,
tokenizer=tokenizer,
ds=ds_valid,
batch_size=batch_size_eval,
generate_kwargs={**generation_kwargs},
)
model.train()
example = random.choice(predictions)
example = textwrap.shorten(example, width=750)
example = textwrap.indent(example, " ")
print_verbose(f"\nExample prediction:\n{example}\n")
accuracy = get_accuracy(predictions=predictions, responses=responses)
num_tokens_generated = sum(sum(mask) for mask in tokenizer(predictions)["attention_mask"])
toc_eval = time.perf_counter()
dur_eval = toc_eval - tic_eval
eval_time += toc_eval - tic_eval
elapsed = time.perf_counter() - tic_train
metrics.append(
{
"step": step,
"valid accuracy": accuracy,
"train loss": loss_avg,
"train samples": total_samples,
"train time": dur_train,
"eval time": dur_eval,
"tokens / sec": tokens_per_sec,
"mem allocated avg": memory_allocated_avg,
"mem reserved avg": memory_reserved_avg,
"elapsed time": elapsed,
}
)
log_dict = {
"step": f"{step:5d}",
"samples": f"{total_samples:7d}",
"lr": f"{lr_scheduler.get_last_lr()[0]:.2e}",
"loss avg": f"{loss_avg:.4f}",
"valid acc": f"{accuracy:.3f}",
"gen valid tokens": num_tokens_generated,
"train time": f"{dur_train:.1f}s",
"eval time": f"{dur_eval:.1f}s",
"train tokens / sec": f"{tokens_per_sec:.0f}",
"mem allocated": f"{memory_allocated_avg:.0f}",
"mem reserved": f"{memory_reserved_avg:.0f}",
"elapsed time": f"{elapsed // 60:.0f}min {elapsed % 60:.0f}s",
}
print_verbose(json.dumps(log_dict))
# # TODO is this needed?
torch.cuda.empty_cache()
gc.collect()
print_verbose(f"Training finished after {max_steps} steps, evaluation on test set follows.")
# test set evaluation
model.eval()
predictions, responses = evaluate(
model=model,
tokenizer=tokenizer,
ds=ds_test,
batch_size=batch_size_eval,
generate_kwargs={**generation_kwargs, "pad_token_id": tokenizer.eos_token_id},
use_tqdm=len(ds_test) > 100,
)
accuracy = get_accuracy(predictions=predictions, responses=responses)
metrics.append(
{
"step": step,
"test accuracy": accuracy,
"train loss": sum(losses[-eval_steps:]) / eval_steps,
"train samples": total_samples,
"train total tokens": sum(total_tokens),
}
)
print_verbose(f"Test accuracy: {accuracy:.3f}")
except KeyboardInterrupt:
print_verbose("canceled training")
status = TrainStatus.CANCELED
error_msg = "manually canceled"
except torch.OutOfMemoryError as exc:
# ouch, still let's try to log some results
print_verbose("out of memory error encountered")
status = TrainStatus.CANCELED
error_msg = str(exc)
except Exception as exc:
print_verbose(f"encountered an error: {exc}")
status = TrainStatus.CANCELED
error_msg = str(exc)
toc_train = time.perf_counter()
train_time = toc_train - tic_train - eval_time
if status != TrainStatus.CANCELED:
status = TrainStatus.SUCCESS
train_result = TrainResult(
status=status,
train_time=train_time,
cuda_memory_reserved_log=cuda_memory_reserved_log,
losses=losses,
metrics=metrics,
error_msg=error_msg,
num_trainable_params=num_trainable_params,
num_total_params=num_params,
)
return train_result
def main(*, path_experiment: str, experiment_name: str, clean: bool) -> None:
tic_total = time.perf_counter()
start_date = dt.datetime.now(tz=dt.timezone.utc).replace(microsecond=0).isoformat()
peft_branch = get_peft_branch()
if peft_branch == "main":
print_verbose("===== This experiment is categorized as a MAIN run because the PEFT branch is 'main' ======")
else:
print_verbose(
f"===== This experiment is categorized as a TEST run because the PEFT branch is '{peft_branch}' ======"
)
# load configs
peft_config: Optional[PeftConfig] = None
if os.path.exists(os.path.join(path_experiment, CONFIG_NAME)):
peft_config = PeftConfig.from_pretrained(path_experiment)
else:
print_verbose(f"Could not find PEFT config at {path_experiment}, performing FULL FINETUNING")
path_train_config = os.path.join(path_experiment, FILE_NAME_TRAIN_PARAMS)
train_config = get_train_config(path_train_config)
set_seed(train_config.seed)
# initialize objects
cuda_memory_init = init_cuda()
tokenizer = get_tokenizer(model_id=train_config.model_id, max_seq_length=train_config.max_seq_length)
model_info = get_base_model_info(train_config.model_id)
metamath_info = get_dataset_info("meta-math/MetaMathQA")
gsm8k_info = get_dataset_info("openai/gsm8k")
model = get_model(
model_id=train_config.model_id,
dtype=train_config.dtype,
compile=train_config.compile,
attn_implementation=train_config.attn_implementation,
peft_config=peft_config,
autocast_adapter_dtype=train_config.autocast_adapter_dtype,
)
print_verbose(model)
# train model
train_result = train(
model=model,
max_steps=train_config.max_steps,
batch_size=train_config.batch_size,
batch_size_eval=train_config.batch_size_eval,
tokenizer=tokenizer,
cuda_memory_init=cuda_memory_init,
eval_steps=train_config.eval_steps,
generation_kwargs=train_config.generation_kwargs,
grad_norm_clip=train_config.grad_norm_clip,
optimizer_type=train_config.optimizer_type,
optimizer_kwargs=train_config.optimizer_kwargs,
query_template=train_config.query_template,
lr_scheduler_arg=train_config.lr_scheduler,
use_amp=train_config.use_amp,
is_adalora=isinstance(peft_config, AdaLoraConfig),
)
if train_result.status == TrainStatus.FAILED:
print_verbose("Training failed, not logging results")
sys.exit(1)
file_size = get_file_size(
model,
peft_config=peft_config,
clean=clean,
print_fn=print_verbose,
)
time_total = time.perf_counter() - tic_total
# log results: print and save to file
log_results(
experiment_name=experiment_name,
train_result=train_result,
cuda_memory_init=cuda_memory_init,
time_total=time_total,
file_size=file_size,
model_info=model_info,
datasets_info={"metamath": metamath_info, "gsm8k": gsm8k_info},
start_date=start_date,
train_config=train_config,
peft_config=peft_config,
print_fn=print_verbose,
)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("-v", "--verbose", action="store_true", help="Enable verbose output")
parser.add_argument("path_experiment", type=str, help="Path to the experiment directory")
parser.add_argument(
"--clean",
action="store_true",
help="Delete training artifacts after run finishes (logs are still saved)",
)
args = parser.parse_args()
experiment_name = validate_experiment_path(args.path_experiment)
if args.verbose:
def print_verbose(*args, **kwargs) -> None:
kwargs["file"] = sys.stderr
print(*args, **kwargs)
else:
def print_verbose(*args, **kwargs) -> None:
pass
main(
path_experiment=args.path_experiment,
experiment_name=experiment_name,
clean=args.clean,
)
|