import tensorflow as tf from tensorflow import keras from keras.layers import * import keras_nlp import math import json from transformers import AutoTokenizer from tokenizers import AddedToken # Config input_size = 512 embed_dim = 128 # Tokenizer tokenizer = AutoTokenizer.from_pretrained('google/t5-v1_1-base') tokenizer.add_tokens(AddedToken("\n", normalized=False)) tokenizer.add_tokens(AddedToken("", normalized=False)) vocab_size = len(tokenizer.get_vocab().keys()) print("vocab_size:", vocab_size) print("pad token id:", tokenizer.pad_token) # Masked Accuracy Metric def masked_accuracy(y_true, y_pred, padding_token=tokenizer.pad_token_id): y_true = tf.cast(y_true, tf.int32) y_pred = tf.cast(tf.argmax(y_pred, axis=-1), tf.int32) mask = tf.cast(tf.not_equal(y_true, padding_token), tf.float32) matches = tf.cast(tf.equal(y_true, y_pred), tf.float32) accuracy = tf.reduce_sum(matches * mask) / tf.reduce_sum(mask) return accuracy # Embedding Layer class SharedEmbedding(tf.keras.layers.Layer): def __init__(self, vocab_size, embed_dim, **kwargs): super(SharedEmbedding, self).__init__(**kwargs) self.vocab_size = vocab_size self.embed_dim = embed_dim def build(self, input_shape): self.shared_weights = self.add_weight( shape=(self.vocab_size, self.embed_dim), initializer='random_normal', trainable=True, name='shared_weights' ) super(SharedEmbedding, self).build(input_shape) def call(self, inputs, mode='embedding', temp=0.1): if mode == 'embedding': return tf.nn.embedding_lookup(self.shared_weights, inputs) elif mode == 'classify': sw = tf.nn.l2_normalize(self.shared_weights, axis=-1) return tf.nn.softmax(tf.matmul(inputs, sw, transpose_b=True)/temp, axis=-1) # Attention Layer class Attention(keras.layers.Layer): def __init__(self, **kwargs): super(Attention, self).__init__(**kwargs) def build(self, input_shape): self.embed_dim = input_shape[-1] self.mask = tf.where(tf.linalg.band_part(tf.ones((input_shape[-2], input_shape[-2])), -1, 0) == 1.0, 0.0, float("-inf")) self.range_do = -tf.range(input_shape[-2])-1 self.range_undo = tf.range(input_shape[-2])+1 self.Q = self.add_weight(name='kernelQ', shape=(input_shape[-1], input_shape[-1]), initializer='uniform', trainable=True) self.K = self.add_weight(name='kernelK', shape=(input_shape[-1], input_shape[-1]), initializer='uniform', trainable=True) self.V = self.add_weight(name='kernelV', shape=(input_shape[-1], input_shape[-1]), initializer='uniform', trainable=True) super(Attention, self).build(input_shape) def roll_embeddings(self, tensor, shift_values): batch_size, time_size, embed_dim = tensor.shape if batch_size is None: return tensor shift_matrix = tf.reshape(shift_values, (1, -1, 1)) shift_matrix = tf.tile(shift_matrix, [batch_size, 1, embed_dim]) indices = tf.range(embed_dim) indices_matrix = tf.tile(indices, [batch_size * time_size]) indices_matrix = tf.reshape(indices_matrix, (batch_size, time_size, embed_dim)) new_indices = (indices_matrix + shift_matrix) % embed_dim rolled_tensor = tf.gather(tensor, new_indices, batch_dims=2) return rolled_tensor def call(self, x, pos): q = x @ self.Q k = x @ self.K v = x @ self.V atti = tf.matmul(q, k, transpose_b=True) attp = tf.matmul(q, pos, transpose_b=True) attp = self.roll_embeddings(attp, self.range_do) att = atti + attp att = tf.nn.softmax((att / math.sqrt(self.embed_dim)) + self.mask, axis=-1) outi = att @ v attp = self.roll_embeddings(att, self.range_undo) outp = attp @ pos out = outi + outp return out # Encoder inputs = Input(shape=(input_size, ), dtype=tf.int32) emb_layer = SharedEmbedding(vocab_size, embed_dim) pos_layer = keras_nlp.layers.PositionEmbedding(input_size) x = LayerNormalization()(emb_layer(inputs, mode="embedding")) pos = pos_layer(x) b = 6 for _ in range(b): x += (2*b)**-0.5 * LayerNormalization()(Attention()(x, pos)) x += (2*b)**-0.5 * LayerNormalization()(Dense(embed_dim, activation="gelu")(x)) x = tf.nn.l2_normalize(x, axis=-1) for _ in range(b): x1 = Dense(embed_dim, activation="gelu")(x) x1 = Dense(embed_dim, activation="gelu")(x1) x += b**-0.5 * LayerNormalization()(x1) x = tf.nn.l2_normalize(x, axis=-1) x = emb_layer(x, mode="classify", temp=0.1) model = keras.Model(inputs=inputs, outputs=x) model.compile( loss=keras.losses.SparseCategoricalCrossentropy(ignore_class=tokenizer.pad_token_id), optimizer=keras.optimizers.AdamW(learning_rate=0.001), metrics=[masked_accuracy, keras_nlp.metrics.Perplexity(mask_token_id=tokenizer.pad_token_id)], ) # Import Model model.load_weights("rpc.keras") encoder = keras.Model(inputs=model.layers[0].input, outputs=model.layers[52].output) encoder.summary() # Vectorize Function def vectorize_texts(all_texts): batch_size = 128 vects = [] for i in range(0, len(all_texts), batch_size): texts = all_texts[i:i+batch_size] toks = [text + ([tokenizer.pad_token_id] * (input_size - len(text))) for text in texts] if len(toks) > 0: toks = tf.constant(toks, shape=(len(toks), input_size)) vect = encoder.predict(toks, verbose=0) for v, t in zip(vect, texts): vects.append(v[:len(t), :]) return tf.concat(vects, axis=0).numpy() # Import Database and All Toks index = None all_toks = None def load_index(index_path="/dev/shm/rpc-vecdb/index"): global index global all_toks #import ngtpy #index = ngtpy.Index(index_path, read_only=True) import faiss index = faiss.read_index(index_path + "/index.faiss") with open(index_path + "/all_toks.json", "r") as f: all_toks = json.loads(f.read()) # Generate Function def generate(text, use_rpc=True, max_tokens=128): enc_text = tokenizer.encode(text, add_special_tokens=False) i = 0 while i < max_tokens and tok != vocab_size - 2: enc_text = enc_text[-input_size:] if use_rpc: xq = vectorize_texts([enc_text])[-1] #_id, _ = index.search(xq, size=1, epsilon=2)[0] D, I = index.search(xq.reshape((1, -1)), 1) _id = I[0][0] if all_toks[_id] in carry_toks: tmp = tf.argmax(tf.matmul(xq.reshape((1, -1)), encoder.layers[1].shared_weights, transpose_b=True), axis=-1).numpy()[0] if all_toks[tmp] in enc_text: tok = tmp else: tok = all_toks[_id] else: tok = all_toks[_id] else: ins = enc_text + [tokenizer.pad_token_id] * (input_size - len(enc_text)) ins = tf.constant(ins, shape=(1, input_size)) res = model.predict(ins, verbose=0)[0][len(enc_text)-1] tok = tf.argmax(res, axis=-1).numpy().tolist() enc_text += [tok] response = tokenizer.decode(enc_text) yield response