T5 / app.py
pdarleyjr's picture
Initial commit
647a796
raw
history blame
1.77 kB
import gradio as gr
from transformers import T5Tokenizer, T5ForConditionalGeneration
# Load the base T5 model and tokenizer
model = T5ForConditionalGeneration.from_pretrained('t5-small')
tokenizer = T5Tokenizer.from_pretrained('t5-small')
def generate_clinical_report(input_text):
"""
Generate a clinical report from the input text using the fine-tuned T5 model.
"""
# Prepare input text
input_ids = tokenizer.encode("summarize: " + input_text, return_tensors="pt", max_length=512, truncation=True)
# Generate report
outputs = model.generate(
input_ids,
max_length=256,
num_beams=4,
no_repeat_ngram_size=3,
length_penalty=2.0,
early_stopping=True,
bad_words_ids=[[tokenizer.encode(word, add_special_tokens=False)[0]]
for word in ['http', 'www', '.com', '.org']]
)
# Decode and return the generated report
return tokenizer.decode(outputs[0], skip_special_tokens=True)
# Create Gradio interface
demo = gr.Interface(
fn=generate_clinical_report,
inputs=gr.Textbox(
lines=8,
placeholder="Enter clinical notes here...",
label="Clinical Notes"
),
outputs=gr.Textbox(
lines=8,
label="Generated Clinical Report"
),
title="Clinical Report Generator",
description="Generate professional clinical reports from clinical notes using a fine-tuned T5 model.",
examples=[
["Patient presented with severe abdominal pain in the lower right quadrant. Temperature 38.5°C, BP 130/85."],
["Follow-up visit for diabetes management. Blood sugar levels have been stable with current medication regimen."]
]
)
# Launch the app
if __name__ == "__main__":
demo.launch()