File size: 2,476 Bytes
647a796
 
e213acb
 
 
 
 
 
 
 
 
 
 
 
 
 
647a796
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
52bab4e
647a796
 
52bab4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
647a796
52bab4e
647a796
 
 
52bab4e
 
 
 
 
e213acb
 
647a796
 
e213acb
 
 
647a796
 
e213acb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
import gradio as gr
from transformers import T5Tokenizer, T5ForConditionalGeneration
from fastapi import FastAPI
from fastapi.middleware.cors import CORSMiddleware

# Create FastAPI app
app = FastAPI()

# Add CORS middleware
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

# Load the base T5 model and tokenizer
model = T5ForConditionalGeneration.from_pretrained('t5-small')
tokenizer = T5Tokenizer.from_pretrained('t5-small')

def generate_clinical_report(input_text):
    """
    Generate a clinical report from the input text using the fine-tuned T5 model.
    """
    # Prepare input text
    input_ids = tokenizer.encode("summarize: " + input_text, return_tensors="pt", max_length=512, truncation=True)
    
    # Generate report
    outputs = model.generate(
        input_ids,
        max_length=256,
        num_beams=4,
        no_repeat_ngram_size=3,
        length_penalty=2.0,
        early_stopping=True,
        bad_words_ids=[[tokenizer.encode(word, add_special_tokens=False)[0]] 
                      for word in ['http', 'www', '.com', '.org']]
    )
    
    # Decode and return the generated report
    return tokenizer.decode(outputs[0], skip_special_tokens=True)

# Create Gradio interface with updated styling
demo = gr.Interface(
    fn=generate_clinical_report,
    inputs=[
        gr.Textbox(
            lines=8,
            placeholder="Enter clinical notes here...",
            label="Clinical Notes",
            elem_id="input-box"
        )
    ],
    outputs=[
        gr.Textbox(
            lines=8,
            label="Generated Clinical Report",
            elem_id="output-box"
        )
    ],
    title="Clinical Report Generator",
    description="Generate professional clinical reports from clinical notes using a T5 model.",
    examples=[
        ["Patient presented with severe abdominal pain in the lower right quadrant. Temperature 38.5°C, BP 130/85."],
        ["Follow-up visit for diabetes management. Blood sugar levels have been stable with current medication regimen."]
    ],
    theme=gr.themes.Soft(),
    css="""
        #input-box { background-color: #f6f6f6; }
        #output-box { background-color: #f0f7ff; }
    """,
    allow_flagging="never"
)

# Mount the Gradio app
app = gr.mount_gradio_app(app, demo, path="/")

# Launch the app
if __name__ == "__main__":
    demo.launch(server_name="0.0.0.0", share=True)