File size: 2,831 Bytes
647a796 e213acb 1310cf1 e213acb 1310cf1 e213acb 1310cf1 e213acb 647a796 1310cf1 647a796 52bab4e 647a796 52bab4e 647a796 52bab4e e213acb 1310cf1 647a796 1310cf1 e213acb 1310cf1 647a796 1310cf1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 |
import gradio as gr
from transformers import T5Tokenizer, T5ForConditionalGeneration
from fastapi import FastAPI
from fastapi.middleware.cors import CORSMiddleware
# Create FastAPI app with CORS configuration
app = FastAPI()
# Add CORS middleware with specific origin
app.add_middleware(
CORSMiddleware,
allow_origins=["https://pdarleyjr.github.io"], # Specifically allow the GitHub Pages domain
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Load the base T5 model and tokenizer
model = T5ForConditionalGeneration.from_pretrained('t5-small')
tokenizer = T5Tokenizer.from_pretrained('t5-small')
def generate_clinical_report(input_text):
"""
Generate a clinical report from the input text using the fine-tuned T5 model.
"""
# Prepare input text
input_ids = tokenizer.encode("summarize: " + input_text, return_tensors="pt", max_length=512, truncation=True)
# Generate report
outputs = model.generate(
input_ids,
max_length=256,
num_beams=4,
no_repeat_ngram_size=3,
length_penalty=2.0,
early_stopping=True,
bad_words_ids=[[tokenizer.encode(word, add_special_tokens=False)[0]]
for word in ['http', 'www', '.com', '.org']]
)
# Decode and return the generated report
return tokenizer.decode(outputs[0], skip_special_tokens=True)
# Create Gradio interface with queue
demo = gr.Interface(
fn=generate_clinical_report,
inputs=[
gr.Textbox(
lines=8,
placeholder="Enter clinical notes here...",
label="Clinical Notes",
elem_id="input-box"
)
],
outputs=[
gr.Textbox(
lines=8,
label="Generated Clinical Report",
elem_id="output-box"
)
],
title="Clinical Report Generator",
description="Generate professional clinical reports from clinical notes using a T5 model.",
examples=[
["Patient presented with severe abdominal pain in the lower right quadrant. Temperature 38.5°C, BP 130/85."],
["Follow-up visit for diabetes management. Blood sugar levels have been stable with current medication regimen."]
],
theme=gr.themes.Soft(),
css="""
#input-box { background-color: #f6f6f6; }
#output-box { background-color: #f0f7ff; }
""",
flagging_mode="never"
)
# Enable queue
demo.queue()
# Mount the Gradio app with queue support
app = gr.mount_gradio_app(app, demo, path="/")
# Launch the app with proper queue configuration
if __name__ == "__main__":
demo.launch(
server_name="0.0.0.0",
server_port=7860, # Default Gradio port
share=True,
max_threads=40,
show_error=True,
root_path="",
enable_queue=True
)
|