import torch from torch import nn class CustomMultiheadAttention(nn.MultiheadAttention): def forward(self, *args, attn_weights=None, **kwargs): q, k, v = args[:3] need_weights = kwargs.get('need_weights', False) w = self.in_proj_weight.chunk(3, dim=0) b = self.in_proj_bias.chunk(3, dim=0) if not self.batch_first: q, k, v = q.permute(0, 1), k.permute(0, 1), v.permute(0, 1) q = nn.functional.linear(q, w[0], bias=b[0]).view(q.size(0), q.size(1), self.num_heads, -1).permute(0, 2, 1, 3) k = nn.functional.linear(k, w[1], bias=b[1]).view(k.size(0), k.size(1), self.num_heads, -1).permute(0, 2, 1, 3) v = nn.functional.linear(v, w[2], bias=b[2]).view(v.size(0), v.size(1), self.num_heads, -1).permute(0, 2, 1, 3) scores = (q @ k.transpose(-2, -1)) / (q.size(-1) ** 0.5) attention = scores.softmax(dim=-1) # print(attention.shape) if attn_weights is not None: # print("q ", q.shape) # print("k ", k.shape) weights = torch.ones((attention.shape[2], attention.shape[3])).to(q.device) # print("Weights: ", weights.shape) attn_weights = attn_weights.expand(attention.shape[2], attn_weights.shape[0]) weights[-attn_weights.shape[0]:, -attn_weights.shape[1]:] = attn_weights # print(f"{-attn_weights.shape[0]}, {-attn_weights.shape[1]}") attn_weights = weights.clone() # print("Attn Weights: ", weights.shape) # print("weight", attn_weights.shape) attention = attention * attn_weights x = attention @ v x = x.permute(0, 2, 1, 3).reshape(x.size(0), x.size(2), -1) x = self.out_proj(x) if not self.batch_first: x = x.permute(0, 1) return (x, attention if need_weights else None) def replace_attention_layers(model): for n, module in model.named_children(): if len(list(module.children())) > 0: replace_attention_layers(module) if isinstance(module, nn.MultiheadAttention): new_module = CustomMultiheadAttention(module.embed_dim, module.num_heads, dropout=module.dropout, bias=True, batch_first=module.batch_first) new_module.load_state_dict(module.state_dict()) setattr(model, n, new_module)