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A B S T R A C T   

In this paper, it is addressed by mathematical analysis how network-oriented modeling relates to the dynamical 
systems perspective on mental processes. It has been mathematically proven that any dynamical system can be 
modeled as a temporal-causal network model and that any adaptive dynamical system (of any order) can be 
modeled by a self-modeling network (of the same order).   

1. Introduction 

The scope of applicability of a network-oriented modelling approach 
covers mental processes described by networks for the interplay of 
mental states, social (interaction) processes described by social network 
models, and more; e.g., (Treur, 2016a; Treur, 2016b; Treur, 2017). In 
fact, any scientific area in which networks of causal relations and causal 
pathways within them are used to describe theories, hypotheses and 
findings falls within the scope of applicability of such a network- 
oriented modeling approach. This covers practically all scientific do-
mains, as causal explanation is used as a main vehicle almost every-
where in science. Besides, as a modeling paradigm it has a longstanding 
tradition in AI; e.g., (Kuipers, 1984; Kuipers and Kassirer, 1983; Pearl, 
2000). Also, from the area of philosophy of mind the important role of 
causality in mental processes is emphasized; e.g., (Kim, 1996). 

In (Port and Van Gelder, 1995; van Gelder, 1998; van Gelder and 
Port, 1995) it is argued that modeling realistic mental processes needs a 
dynamical system perspective where the temporal dimension is covered 
well; here a dynamical system is defined by the notion of a state- 
determined system as analysed by (Ashby, 1960). For similar positions 
emphasizing the role of dynamics to model mental processes, see, for 
example (Beer, 2000; Kelso, 1995; Scherer, 2009; Thelen and Smith, 
1994). Given these positions, an important question becomes in how far 
network-oriented modeling is able to cover dynamics well. Moreover, 
also adaptivity of mental processes is an important issue in this, what 
sometimes is silently assumed to be covered by dynamics as well, but 
deserves its own treatment. 

In the first place, the way in which the temporal dynamics of the 
impacts of network nodes (also called states) on other nodes are handled 
in (Treur, 2016a; Treur, 2016b) is important here, as for many appli-
cations detailed handling of such dynamics is required, for example, 
since usually there is no global synchrony of everything that happens in 
the world or in the mind. Secondly, in addition to such dynamics of 
impacts, in (Treur, 2020) adaptivity of network models is addressed as 
well. This provides good application possibilities for the many applica-
tions that concern learning or other forms of adaptation. However, these 
are just indications or expectations and some experiences; in addition to 
this, the question on how well dynamics is covered by network-oriented 
modeling can also be analysed mathematically. This is what is done in 
the current paper. Two theorems are presented that provide a positive 
answer to this question, one for nonadaptive dynamical systems in 
relation to network models and one for adaptive dynamical systems in 
relation to self-modeling network models. 

More specifically, in this paper, in Section 5 it is shown mathemat-
ically that temporal-causal network models can model any dynamical 
system (Ashby, 1960), or, equivalently, any set of first-order equations. 
Next, in Section 6 it is shown how this also holds for any adaptive 
dynamical system or any adaptive set of first-order differential equa-
tions. It is shown in particular how any adaptive dynamical system can 
be modeled by a self-modeling network model. But first, some prepa-
rations are made. In Section 2 the notion of state-determined system 
from (Ashby, 1960; Port and Van Gelder, 1995) is discussed which is the 
basis for the notion of dynamical system used. In Section 3, it is shown 
that this notion is equivalent to a set of first-order differential equations. 
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Section 4 briefly summarises the self-modeling network modeling 
approach. Finally, Section 7 is a discussion. 

2. The State-Determined system assumption 

The notion of state-determined system, adopted from Ashby (1960) is 
taken as the basis to describe what a dynamical system is in (van Gelder 
and Port, 1995, p. 6). That a system is state-determined means that its 
current state always determines a unique future behaviour. This property is 
reflected in modelling and simulation. Three features in particular are 
(van Gelder and Port, 1995):  

• The future behaviour cannot depend on states the system might have 
been in before the current state: past history only can make a dif-
ference insofar as it has left an effect on the current state. This means 
that if you want to make a prediction on a next state, for example by 
simulation, only the information from the current state is needed, not 
from earlier states. 

• That the current state determines future behaviour implies the ex-
istence of some rule of evolution describing the behaviour of the 
system as a function of its current state. The idea is that this rule can 
be specified in some reasonable succinct and useful fashion. The 
formats of differential equations (Ashby, 1960; Port and van Gelder, 
1995) and of network models as described in (Treur, 2016a; Treur, 
2016b) are examples of formats in which such rules of evolution can 
be expressed.  

• That future behaviours are uniquely determined means that state 
space sequences can never fork. This means that when a next state is 
determined out of a current state, there is only one outcome. 

From a wider philosophical perspective, this notion of state- 
determined system can be related to the notions temporal factorisation 
and criterial causation as discussed in (Treur, 2007a; Treur, 2007b; 
Treur, 2021; Tse, 2013). 

The possibility of a choice of a proper set of state properties is the 
crucial factor to obtain a state-determined system that is practically 
usable. The validity of the assumptions underlying the Dynamical Sys-
tems Theory depends on the existence of such sets. For example, if to 
obtain a proper state-determined system to study some mental process, 
all states of the universe (including, for example the positions of all 
planets and stars and even the mental states of all other humans) are 
needed, then for practical purposes this perspective is useless. The truth 
is that, even for those who believe in science, for example, concerning 
Newton’s gravitation laws, even for the application of such solid 
monumental laws, in principle all mass and positions from the universe 
have to be taken into account, which obviously is infeasible. But in 
practice, only mass that is not very far away is incorporated in a model, 
which then in fact provides an approximation. If such an approximation 
is accurate enough (objects very far away have some effect, but this is a 
very small effect), then still a useful outcome can be obtained. So, more 
in general, usually an additional kind of locality assumption is made that 
to model a specific process (and not the whole universe), a limited set of 
state variables can be found to get a state-determined system. In Ashby 
(1960), such a hypothesis is expressed as follows: 

‘Because of its importance, science searches persistently for the state- 
determined. As a working guide, the scientist has for some centuries 
followed the hypothesis that, given a set of variables, he can always 
find a larger set that (1) includes the given variables, and (2) is state- 
determined. Much research work consists of trying to identify such a 
larger set, for when it is too small, important variables will be left out 
of the account, and the behaviour of the set will be capricious. The 
assumption that such a larger set exists is implicit in almost all sci-
ence, but, being fundamental, it is seldom mentioned explicitly.’ 
(Ashby, 1960, p. 28). 

In this paper it will be analyzed in some more depth in what formats 
in general such dynamical systems can be described adequately. It will 
turn out that one such format is by sets of first-order differential equa-
tions, and another adequate format is the temporal-causal network 
format described in (Treur, 2016a; Treur, 2016a). Similarly, adaptive 
dynamical systems and self-modeling networks (Treur, 2020a; Treur, 
2020a) turn out both to be adequate formats for adaptive processes. 

3. Dynamical systems and First-Order differential equations 

Dynamical systems can be specified in mathematical formats; see 
(Ashby, 1960, pp. 241–252) for some details. In the first place a finite set 
of states (or state variables) X1, …, Xn is assumed describing how the 
system changes over time via functions X1(t), …, Xn(t) of time t. As 
discussed in Section 2, the criteria for a dynamical system can be 
formalized in a numerical manner by a relation (rule of evolution) that 
expresses that for each time point t the future value of each state Xi at 
time t + s uniquely depends on s and on X1(t), …, Xn(t) and hence can be 
described via some function Fi(X1, …, Xn, s) in the following manner (see 
also Ashby, 1960, pp. 243–244): 

Xi(t + s) = Fi(X1(t),⋯,Xn(t), s) (1)  

for s ≥ 0 

Assuming continuous processes and smoothness (being differen-
tiable) of the functions Xi(t) and Fi, these relations can be reformulated 
(see Box 1) into a set of first-order differential equations of the form 

dXi(t)
dt

= fi(X1(t),⋯,Xn(t)) (2) 

for some functions fi(X1, …, Xn); see also (Ashby, 1960), pp. 244–246. 
Note that Xi may also occur in fi(X1, …, Xn). Conversely, such a set of 

first-order differential equations always describes a state-determined 
system; so for the smooth continuous numerical case, state-determined 
systems are the systems that can be described by sets of first-order dif-
ferential equations (Ashby, 1960, p. 246). 

4. Self-Modeling network modeling 

According to the network-oriented modeling approach described in 
(Treur, 2016a) a network model is characterised by:  

• connectivity characteristics 
Connections from a node (or state) X to a node Y and their weights ωX,Y  

• aggregation characteristics 
For any node Y, some combination function cY(..) defines aggregation 
that is applied to the single impacts ωX,YX(t) on Y through its 
incoming connections from states X  

• timing characteristics 
Each node Y has a speed factor ηY defining how fast it changes for 
given (aggregated) impact 

The difference (or differential) equations that are useful for simula-
tion purposes and also for analysis of network dynamics incorporate 
these network characteristics ωX,Y, cY(..), ηY: it holds 

Y(t + Δt) = Y(t) + ηY [cY(ωX1 ,Y X1(t),⋯,ωXk ,Y Xk(t)) − Y(t)]Δt  

dY(t)
dt

= ηY [cY(ωX1 ,Y X1(t),⋯,ωXk ,Y Xk(t)) − Y(t)] (3) 

for any state Y and where X1,⋯,Xk are the states from which it gets 
its incoming connections. The above concepts enable to design network 
models and their dynamics in a declarative manner, based on mathe-
matically defined functions and relations. 

To support the design of network models, for any application from a 
library predefined basic combination functions bcfi(..), i = 1, .., m are 
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selected by assigning combination function weights γi,Y, where the com-
bination function then becomes the weighted average 

cY(.) =
γ1,Y bcf1(..) + ...+ γm,Y bcfm(..)

γ1,Y + ...+ γm,Y
(4) 

Furthermore, combination function parameters are specified, so that 
bcfi(..) = bcfi(p,v) where p is a list of parameters (sometimes denoted by 
πi,j,Y) and v is a list of values. 

A network model is fully defined by its network characteristics. A 
standardised (and computer-readable) form of specification in table 
format is used to specify the network characteristics of a model. This 
format is called the role matrices format; role matrices group the different 
types of characteristics:  

• connectivity characteristics role matrices  
o mb for base connectivity  
o mcw for connection weights ωX,Y  

• aggregation characteristics role matrices  
o mcfw for combination function weights γi,Y  
o mcfp for combination function parameters πi,j,Y  

• timing characteristics role matrix  
o ms for speed factors ηY 

Examples of specifications of network models in this standard role 
matrices format will be shown in Sections 5.2 and 6.2. 

Realistic network models are usually adaptive: their network char-
acteristics often are adapted over time. Therefore, their dynamics is 
usually an interaction (sometimes called co-evolution) of these two sorts 
of dynamics: dynamics of the nodes (or states) in the network (dynamics 

within the network) versus dynamics of the characteristics of the 
network (dynamics of the network). By using self-models within the 
network, a network-oriented conceptualisation can also be applied to 
adaptive networks to obtain a declarative description using mathemati-
cally defined functions and relations; see (Treur, 2020a; Treur, 2020b). 
This works through the addition of new nodes to the network (called self- 
model states or reification states) which represent (adaptive) network 
characteristics. Such nodes are depicted at a next level (self-model level), 
where the original network is at a base level. These types of character-
istics with their self-model states and their roles are shown in Table 1. 

This provides an extended network, also called self-modeling network. 
Like for all network models, a self-modeling network model is specified 
in a (network-oriented) declarative mathematical manner based on 
nodes and connections. These include interlevel connections relating 
nodes at one level to nodes on the other. The outcome is also a network 
model; so, this whole construction can be applied iteratively to obtain 
multiple self-model levels that can provide higher-order adaptive net-
works, and is quite useful to model, for example, plasticity and meta-
plasticity in the form of a second-order adaptive network with three 
levels, one base level and a first- and a second-order self-model level; e. 
g., (Treur, 2020a) or (Treur, 2020b), Ch 4. 

5. Relating dynamical systems to network models 

Sets of first-order differential equations form a very general format 
used in computational modeling in many disciplines. For cognitive and 
neurological modeling in particular, often causal relationships are used 
in explaining mental processes. But also in many other domains, in a 
wide variety of scientific disciplines causal relationships play a crucial 

Box 1 
Why a smooth continuous state-determined system can be represented by a set of first-order differential equations.  

Suppose a smooth continuous state-determined system is given. A sketch of why it can be described by a set of first-order differential 
equations is as follows. For any given time point t the future states Xi(t + s) at some future time point time t + s purely depend on s and the 
states Xi(t) at t. This can be described by (smooth) mathematical functions Fi(…): 

Xi(t + s) = Fi(X1(t),⋯,Xn(t), s) for s ≥ 0.  
In the particular case of s = 0 it holds. 
Xi(t) = Fi(X1(t),⋯,Xn(t),0)
Subtracting these two expressions above and dividing by s>0 provides: 
Xi(t + s) − Xi(t)

s
=

Fi(X1(t),⋯,Xn(t), s) − Fi(X1(t),⋯,Xn(t), 0)
s  

When the limit for s very small, approaching 0 is taken, it follows that: 
dXi(t)

dt
= [

∂Fi(X1(t),⋯,Xn(t), s )
∂s

]s=0  
Now define the function fi(X1, …, Xn) by: 

fi(X1,⋯,Xn) = [
∂Fi(X1(t),⋯,Xn(t), s )

∂s
]s=0  

Then it holds. 
dXi(t)

dt
= fi(X1(t),⋯,Xn(t))

This shows that the given state-determined system can be described by a set of first-order differential equations.    

Table 1 
Different network characteristics and self-model states for them.  

Types of characteristics Concepts Notations Self-model 
states 

Role played by the self-model state 

Connectivity 
characteristics 

Connections weights ωX,Y WX,Y Connection weight W 

Aggregation characteristics Combination functions weights and 
parameters 

γi,Y πi,j,Y Ci,Y Pi,j,Y Combination function weight C Combination function parameter 
P 

Timing characteristics Speed factors ηY HY Speed factor H  
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role. In this context it will be useful if it can be explained more explicitly 
how any state-determined system can be described or transformed into a 
format that more directly relates to causal relationships between states. 
This indeed can always be achieved in the temporal-causal network 
format (when arbitrary combination functions are allowed), in the 
manner shown below in general in Section 5.1 and illustrated by an 
example in Section 5.2. 

5.1. Transforming a dynamical system model into a network model 

In a dynamical system the changes in each state S depend on the 
other states. Those states R that actually play a role in this dependence 
relation form a subset DS of the set of all states (in some special cases this 
subset may be the set of all states). The states R not in this subset DS are 
those states for which never any state change of R has influence on a 
change of the state of S. The states in this subset DS can be considered to 
cause the changes in the state S. Such causal effects of states on each 
other by causal relationships can be visualized in a graphical manner as, 
for example, in the network shown in Fig. 3. Such a network model can 
be simply defined by the following criterion: for any state R and any 
state S there is a connection from R to S if and only if R ∈ DS. This 
provides a conceptual representation of the dynamical system as a 
causal graph. 

Another transformation can be done for the numerical representation 
on the basis of a set of differential equations representing the dynamical 
system. Suppose a differential equation for one of the states Xi is given of 
the form: 

dXi(t)
dt

= fi(X1(t),⋯,Xn(t)) (5) 

Then this function fi(X1(t), …, Xn(t)) will depend on a subset DXi of 
the set of states {X1, …, Xn}. Note that Xi itself may occur in DXi. Usually 
this function fi will be given as a formula in X1, …, Xn; then this subset 
can be taken as the set of all states in {X1, …, Xn} that actually occur in 
this formula. Again, for any two states Xj and Xi with j ∕= i a causal 
connection from Xj to Xi can be defined by the criterion that Xj ∈ DXi. 
Now, by defining the function hi(X1, …, Xn) by 

hi(X1,⋯,Xn) = Xi + fi(X1,⋯,Xn) (6) 

differential equation (5) for Xi always can be rewritten into a dif-
ferential equation of the form 

dXi(t)
dt

= ηi[ci(ω1,iX1(t),⋯,ωn,iXn(t)) − Xi(t)] (7) 

where ηi = 1, and also ωj,i = 1, and for combination function ci(…) it 
holds ci(…) = hi(…). Note that Xi itself may occur in ci(…). So, having 
started with any arbitrary continuous, smooth dynamical system and its 
representation (5) in differential equation format, finally a numerical 
representation of a temporal-causal network model was obtained. This 
shows that any continuous smooth dynamical system can be described 
by a specific temporal-causal network model, as long as any type of 
combination function is allowed. So, the following theorem has been 
obtained: 

Theorem 1 (from dynamical system to network model) 
Any continuous smooth dynamical system model can be transformed 

into a temporal-causal network model. Conversely, any temporal-causal 
network model is a dynamical system model. 

This Theorem 1 and the underlying transformation will be illustrated 
by an example in Section 5.2. 

5.2. Illustration of the transformation for an example dynamical system 

As an illustration, consider an arbitrary example of a dynamical 
system model described by numerical first-order differential equations 
representation with parameters α, β, γ, δ: 

dX1(t)
dt

= X1(t)(X5(t) − α)

dX2(t)
dt

= X1(t) − X2(t)+X3(t)

dX3(t)
dt

= X2(t)(β − X3(t))

dX4(t)
dt

= X3(t) − X4(t)(γ − X5(t))

dX5(t)
dt

= X5(t)(δ − X4(t)) (8) 

To transform this dynamical system model (8) into a temporal-causal 
network model, the five states X1, X2, X3, X4, X5 are considered. From 
each of the equations by inspecting which states occur in the right hand 
side it can subsequently be determined that:  

X5 affects X1 
X1 and X3 affect X2 
X2 affects X3 
X3 and X5 affect X4 
X4 affects X5  

These connections are represented in a graphical network format as 
shown in Fig. 1. 

Note that, when comparing, for example, the first differential equa-
tion in (8) to the standard format of differential equations for temporal- 
causal networks, it can be written as 

dX1(t)
dt

= X1(t)(X5(t) − α)

= X1(t)(X5(t) − α ) + X1(t) − X1(t)

= [X1(t)(X5(t) − α ) + X1(t) ] − X1(t) (9) 

Here the part (X1(t) (X5(t) - α) + X1(t)) can be considered the result 
of a combination function cX1(..) defined by 

cX1 (V1,V5) = V1 + V1(V5 − α) (10) 

applied to X1(t) (for V1) and X5(t) (for V5). In a similar manner the 
following combination functions (built from sum and product functions) 
can be identified from the five differential equations (8): 

cX1 (V1,V5) = V1 + V1(V5 − α) = (1 − α)V1 + V1V5 (11)  

cX2 (V1,V3) = V2+V1 − V2 +V3= V1 +V3  

cX3 (V2,V3) = V3 + V2(β − V3) = βV2 + V3 − V2V3  

cX4 (V3,V4,V5) = V4 + V3 − V4(γ − V5) = V3 + (1 − γ)V4 + V4V5  

cX5 (V4,V5) = V5 + V5(δ − V4)= (1 + δ)V5 − V4V5 

Using these combination functions, the differential equations (8) can 

Fig. 1. Graphical network representation for the example model based on the 
given differential equation representation. 
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be rewritten into: 

dX1(t)
dt

= cX1 (X1(t),X5(t)) − X1(t)

dX2(t)
dt

= cX2 (X1(t),X3(t)) − X1(t)

dX3(t)
dt

= cX3 (X2(t),X3(t)) − X3(t)

dX4(t)
dt

= cX4 (X3(t),X4(t),X5(t)) − X4(t)

dX5(t)
dt

= cX5 (X4(t),X5(t)) − X5(t) (12) 

This is the numerical representation (3) of a temporal-causal network 
model with ηXi = 1 for all i and ωXiXj = 1 for all i and j. It turns out that 
the dynamical system model described by the differential equations 
representation (8) can be transformed in an exact manner into an 
instance of the numerical representation of the more general temporal- 
causal model described by the following differential equations: 

dX1(t)
dt

= ηX1
[cX1

(
(ωX1 ,X1 X1(t),ωX5 ,X1 X5(t)

)
− X1(t)]

dX2(t)
dt

= ηX2
[cX2

(
ωX1 ,X2 X1(t),ωX3 ,X2 X3(t)

)
− X2(t)]

dX3(t)
dt

= ηX3
[cX3

(
ωX2 ,X3 X2(t),ωX3 ,X3 X3(t)

)
− X3(t)]

dX4(t)
dt

= ηX4
[cX4

(
ωX3 ,X4 X3(t),ωX4 ,X4 X4(t),ωX5 ,X4 X5(t)

)
− X4(t)

dX5(t)
dt

= ηX5
[cX5

(
ωX4 ,X5 X4(t),ωX5 ,X5 X5(t)

)
− X5(t)] (13) 

Based on these network characteristics ωX,Y, cY, ηY found from the 
given set of differential equations, the role matrix representation of the 
corresponding network model (with parameter values 1 chosen) can be 
obtained as shown in Fig. 2. Here the different rows in each matrix 
address the different states Xj of the network model. Recall that they 
group the different types of characteristics 

Connectivity characteristics  

• In role matrix mb at each row for the indicated state Xj it is specified 
from which other states it gets incoming connections. For example, 
in the second row it is indicated that state X2 has incoming connec-
tions from state X1 and X3.  

• In role matrix mcw at each row for the indicated state Xj the 
connection weight ωXi,Xj is specified for each of the incoming con-
nections for Xj as indicated in mb. For example, in the second row it 
is indicated that state X2 has connection weights 1 for both incoming 
connections (as all other states have). 

Aggregation characteristics  

• In role matrix mcfw at each row for the indicated state Xj it is 
specified which combination function(s) are used and with what 
weight(s) γi,Y. For example, in the fourth row it is indicated that state 
X4 uses combination function cX4(..) with weight 1.  

• In role matrix mcfp at each row for the indicated state Xj the 
parameter values πi,j,Xi of the combination function(s) are specified 
for each of the combination functions indicated in mcfw. For 
example, in the fourth row it is indicated that the combination 
function indicated in mcfw for state X4 uses value 1 for parameter γ. 

Timing characteristics  

• In role matrix ms at each row for the indicated state Xj it is specified 
which speed factor is used. It shows that for this network model all 
speed factors are 1. 

6. Relating adaptive dynamical systems to self-modeling 
network models 

In this section, it is shown how the approach described in Section 5 
can be extended to obtain a transformation of an adaptive dynamical 
system into a self-modeling network model. In Section 6.1 the general 
approach is described and in Section 6.2 it is illustrated for an example 
adaptive dynamical system. 

6.1. Transforming an adaptive dynamical system model into a self- 
modeling network model 

Adaptive dynamical systems are usually modeled by two levels of 
dynamical systems (see Fig. 3) where the higher level dynamical system 

Fig. 2. Role matrices specification of the example set of differential equations.  
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models the dynamics of the parameters Pi,j of the lower level dynamical 
system (the lower level component in Fig. 3) that describes the dynamics 
of variables Xi, for example by 

dXi(t)
dt

= fi
(
Pi,1,⋯,Pi,k,X1(t),⋯,Xn(t)

)
(14) 

These parameters Pi,j then become time-dependent: Pi,j(t). In addi-
tion, for the dynamics of the Pi,j there will also be differential equations 
(the upper level component in Fig. 3): 

dPi,j(t)
dt

= pi,j
(
P1,1(t),⋯,Pn,k(t),X1(t),⋯,Xn(t)

)
(15) 

Applying the transformation described in Section 5 on the base 
dynamical system (14) for the Xi, these Pi,j will also become parameters 
of the combination functions hi(…) found for the base level states Xi: 

hi
(
Pi,1,⋯,Pi,k,X1,⋯,Xn

)
= Xi + fi

(
Pi,1,⋯,Pi,k,X1,⋯,Xn

)
(16) 

Applying a similar transformation to the adaptation level described 
by (15), in this case define function qi,j(..) by:   

Then 

dPi,j(t)
dt

= ηi,j[ci,j

(
ω1,1,i,jP1,1(t),⋯,ωn,k,i,jPn,k(t),ω1,i,jX1(t),⋯,ωn,i,jXn(t)

)
− Pi,j(t)]

(18) 

where again ηi,j = 1 and all connection weights ω involved are 1 too 
and for the combination function ci,j(…), it simply holds ci,j(…) = qi, 

j(…). By this, the states Pi,j can be modeled at the first-order self-model 
level as self-model states for the base level. In a similar manner it can be 
shown by iteration that any higher-order adaptive dynamical system can 
be modelled as a higher-order self-modeling network model. Thus the 
following theorem is obtained: 

Theorem 2 (from adaptive dynamical system to self-modeling 
network model) 

Any adaptive continuous smooth dynamical system model can be 
transformed into a self-modeling temporal-causal network model. 
Conversely, any self-modeling temporal-causal network model is an 
adaptive dynamical system model. These also apply to higher-order 
adaptive dynamical systems in relation to higher-order self-modeling 
networks. 

This Theorem 2 and the underlying transformation will be illustrated 
by an example in Section 6.2. 

6.2. Illustration of the transformation for an example adaptive dynamical 
system 

The transformation described in Section 6.1 can be applied to an 
adaptive extension of the example described in Section 5.2 by making 
the four parameters α, β, γ, δ adaptive. To this end, for each of these 
parameters α, β, γ, δ a differential equation is assumed for the Pi,j states 
used, where: 

P1,1 = α P3,1 = β P4,1 = γ P5,1 = δ (19) 

Extending the example, suppose these are the equations for them: 

dP1,1(t)
dt

= X1(t)+X5(t)

dP3,1(t)
dt

= X2(t)+X3(t)

dP4,1(t)
dt

= X3(t)+X4(t)

dP5,1(t)
dt

= X4(t)+X5(t) (20) 

Now rename them as self-model states X6, X7, X8, X9, respectively: 

X6 = P1,1 = α X7 = P3,1 = β X8 = P4,1 = γ X9 = P5,1 = δ (21) 

Then the above equations (20) for the parameters (now denoted by 
additional network self-model states X6 to X9) can be rewritten (as in 
Section 6.1) in the standard network format using combination func-
tions named cX6, cX7, cX8, cX9, respectively, leading to the equations 

dX6(t)
dt

= cX6 (X1(t),X5(t),X6(t))− X6(t)

dX7(t)
dt

= cX7 (X2(t),X3(t),X7(t))− X7(t)

dX8(t)
dt

= cX8 (X3(t),X4(t),X8(t))− X8(t)

dX9(t)
dt

= cX9 (X4(t),X5(t),X9(t))− X9(t) (22) 

where the new combination functions cX6(..) to cX9(..) are defined by 

Adaptation  
system

Base dynamical  
system 

Parameter values Pi,j
Values Xi

Input 
values Xi

Fig. 3. Architecture of an adaptive dynamical system.  

X1 X5

X4

X2 X3

X6 X8X9

X7

Fig. 4. Graphical representation of the self-modeling network model based on 
the given differential equation representation of an adaptive dynamical system. 

qi,j
(
P1,1(t),⋯,Pn,k(t),X1(t),⋯,Xn(t)

)
= Pi,j(t) + pi,j

(
P1,1(t),⋯,Pn,k(t),X1(t),⋯,Xn(t)

)
(17)   
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cX6 (V1,V5,V6) =V1 +V5 +V6  

cX7 (V2,V3,V7) =V2 +V3 +V7  

cX8 (V3,V4,V8) =V3 +V4 +V8  

cX9 (V4,V5,V9) =V4 +V5 +V9 (23) 

Here Vi are variables used for Xi(t). Note that these four functions 
cX6, cX7, cX8, cX9 are actually the same function, namely the sum func-
tion; but for generality of the illustration they will be named by their 
different names. This then will get the form of the example picture as 
shown in Fig. 4 and the role matrices in Fig. 5. 

7. Discussion 

In this paper it was addressed how network-oriented modeling re-
lates to the dynamical systems perspective on mental processes as 
described by (Ashby, 1960; Beer, 2000; Kelso, 1995; Port and Van 
Gelder, 1995; Scherer, 2009; Thelen and Smith, 1994; van Gelder, 1998; 
van Gelder and Port, 1995). It has been mathematically proven that any 
dynamical system can be modeled as a temporal-causal network model 
according to the approach described in (Treur, 2016a; Treur, 2016b) 
and that any adaptive dynamical system (of any order) can be modeled 
by a self-modeling network (of the same order) as described in (Treur, 
2020a; Treur, 2020b). Note that the approach presented here gives exact 
mathematical transformations, not approximations such as, for example 
described in (Funahashi and Nakamura, 1993). 

In a wider philosophical context, the dynamical systems perspective 
has its foundation in the notion of state-determined system (Ashby, 
1960), and relates to the role the notions of temporal factorisation and 
criterial causation play in adaptive dynamical systems (Treur, 2007a; 
Treur, 2007b; Treur, 2021; Tse, 2013) and to the earlier ideas on dy-
namics introduced by Descartes (1634) and Laplace (1825). What the 
current paper shows is that from a mathematical analysis perspective, 
network-oriented modeling provide adequates means to model such 
dynamics and adaptivity. 
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