Commit
·
9beebbd
1
Parent(s):
d137d9f
cleaning files
Browse files- Dockerfile +20 -0
- main.py +44 -0
Dockerfile
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM python:3.9
|
2 |
+
|
3 |
+
WORKDIR /code
|
4 |
+
|
5 |
+
COPY ./requirements.txt /code/requirements.txt
|
6 |
+
|
7 |
+
RUN pip install --no-cache-dir --upgrade -r /code/requirements.txt
|
8 |
+
|
9 |
+
RUN useradd -m -u 1000 user
|
10 |
+
|
11 |
+
USER user
|
12 |
+
|
13 |
+
ENV HOME=/home/user \
|
14 |
+
PATH=/home/user/.local/bin:$PATH
|
15 |
+
|
16 |
+
WORKDIR $HOME/app
|
17 |
+
|
18 |
+
COPY --chown=user . $HOME/app
|
19 |
+
|
20 |
+
CMD ["uvicorn", "main:app", "--host", "0.0.0.0", "--port", "7860"]
|
main.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from pathlib import Path
|
3 |
+
from llama_index.embeddings import HuggingFaceEmbedding, VoyageEmbedding
|
4 |
+
from llama_index import (load_index_from_storage, ServiceContext, StorageContext)
|
5 |
+
from llama_index import download_loader, SimpleDirectoryReader
|
6 |
+
from llama_index.retrievers import RecursiveRetriever
|
7 |
+
from llama_index.query_engine import RetrieverQueryEngine
|
8 |
+
from llama_index.llms import Anyscale
|
9 |
+
from fastapi import FastAPI
|
10 |
+
|
11 |
+
app = FastAPI()
|
12 |
+
|
13 |
+
# Define the inference model
|
14 |
+
llm = Anyscale(model="mistralai/Mistral-7B-Instruct-v0.1", api_key=os.getenv("ANYSCALE_API_KEY"))
|
15 |
+
# Define the embedding model used to embed the query.
|
16 |
+
# query_embed_model = HuggingFaceEmbedding(model_name="BAAI/bge-base-en-v1.5")
|
17 |
+
embed_model = VoyageEmbedding(model_name=model_name, voyage_api_key=os.getenv("VOYAGE_API_KEY"))
|
18 |
+
service_context = ServiceContext.from_defaults(llm=llm, embed_model=embed_model)
|
19 |
+
|
20 |
+
if "index" in os.list():
|
21 |
+
storage_context = StorageContext.from_defaults(persist_dir=Path("./index"))
|
22 |
+
else:
|
23 |
+
UnstructuredReader = download_loader('UnstructuredReader')\n",
|
24 |
+
dir_reader = SimpleDirectoryReader(Path('./docs/'), file_extractor={".pdf": UnstructuredReader()
|
25 |
+
documents = dir_reader.load_data()
|
26 |
+
index = VectorStoreIndex.from_documents(documents, service_context=service_context, show_progress=True)
|
27 |
+
index.storage_context.persist(Path('index'))
|
28 |
+
storage_context = StorageContext.from_defaults(persist_dir=Path("./index"))
|
29 |
+
|
30 |
+
# Load the vector stores that were created earlier.
|
31 |
+
index = load_index_from_storage(storage_context=storage_context, service_context=service_context)
|
32 |
+
|
33 |
+
# Define query engine:
|
34 |
+
index_engine = index.as_retriever(similarity_top_k=4)
|
35 |
+
index_retriever = RecursiveRetriever("vector",retriever_dict={"vector": index_engine})
|
36 |
+
query_engine = RetrieverQueryEngine.from_args(index_retriever, service_context=service_context)
|
37 |
+
|
38 |
+
# Deploy the Ray Serve application.
|
39 |
+
@app.get("/generate")
|
40 |
+
def generate(query: str):
|
41 |
+
return str(query_engine.query(query))
|
42 |
+
|
43 |
+
if __name__ == '__main__':
|
44 |
+
uvicorn.run('main:app', reload=True)
|