from kornia.feature import LoFTR import torchvision.transforms as tfm from matching import BaseMatcher class LoftrMatcher(BaseMatcher): def __init__(self, device="cpu", *args, **kwargs): super().__init__(device, **kwargs) self.model = LoFTR(pretrained="outdoor").to(self.device) def preprocess(self, img): return tfm.Grayscale()(img).unsqueeze(0).to(self.device) def _forward(self, img0, img1): img0 = self.preprocess(img0) img1 = self.preprocess(img1) batch = {"image0": img0, "image1": img1} output = self.model(batch) mkpts0, mkpts1 = output["keypoints0"], output["keypoints1"] return mkpts0, mkpts1, None, None, None, None