import torch from pathlib import Path import gdown from copy import deepcopy import torchvision.transforms as tfm from matching import WEIGHTS_DIR, THIRD_PARTY_DIR, BaseMatcher from matching.utils import to_numpy, resize_to_divisible, add_to_path add_to_path(THIRD_PARTY_DIR.joinpath("EfficientLoFTR"), insert=0) from src.loftr import LoFTR, full_default_cfg, opt_default_cfg, reparameter class EfficientLoFTRMatcher(BaseMatcher): weights_src = "https://drive.google.com/file/d/1jFy2JbMKlIp82541TakhQPaoyB5qDeic/view" model_path = WEIGHTS_DIR.joinpath("eloftr_outdoor.ckpt") divisible_size = 32 def __init__(self, device="cpu", cfg="full", **kwargs): super().__init__(device, **kwargs) self.precision = kwargs.get("precision", self.get_precision()) self.download_weights() self.matcher = LoFTR(config=deepcopy(full_default_cfg if cfg == "full" else opt_default_cfg)) self.matcher.load_state_dict(torch.load(self.model_path, map_location=torch.device("cpu"))["state_dict"]) self.matcher = reparameter(self.matcher).to(self.device).eval() def get_precision(self): return "fp16" def download_weights(self): if not Path(EfficientLoFTRMatcher.model_path).is_file(): print("Downloading eLoFTR outdoor... (takes a while)") gdown.download( EfficientLoFTRMatcher.weights_src, output=str(EfficientLoFTRMatcher.model_path), fuzzy=True, ) def preprocess(self, img): _, h, w = img.shape orig_shape = h, w img = resize_to_divisible(img, self.divisible_size) return tfm.Grayscale()(img).unsqueeze(0), orig_shape def _forward(self, img0, img1): img0, img0_orig_shape = self.preprocess(img0) img1, img1_orig_shape = self.preprocess(img1) batch = {"image0": img0, "image1": img1} if self.precision == "mp" and self.device == "cuda": with torch.autocast(enabled=True, device_type="cuda"): self.matcher(batch) else: self.matcher(batch) mkpts0 = to_numpy(batch["mkpts0_f"]) mkpts1 = to_numpy(batch["mkpts1_f"]) H0, W0, H1, W1 = *img0.shape[-2:], *img1.shape[-2:] mkpts0 = self.rescale_coords(mkpts0, *img0_orig_shape, H0, W0) mkpts1 = self.rescale_coords(mkpts1, *img1_orig_shape, H1, W1) return mkpts0, mkpts1, None, None, None, None