EarthLoc2
/
image-matching-models
/matching
/third_party
/accelerated_features
/modules
/training
/losses.py
import torch | |
import torch.nn.functional as F | |
from modules.dataset.megadepth import megadepth_warper | |
from modules.training import utils | |
from third_party.alike_wrapper import extract_alike_kpts | |
def dual_softmax_loss(X, Y, temp = 0.2): | |
if X.size() != Y.size() or X.dim() != 2 or Y.dim() != 2: | |
raise RuntimeError('Error: X and Y shapes must match and be 2D matrices') | |
dist_mat = (X @ Y.t()) * temp | |
conf_matrix12 = F.log_softmax(dist_mat, dim=1) | |
conf_matrix21 = F.log_softmax(dist_mat.t(), dim=1) | |
with torch.no_grad(): | |
conf12 = torch.exp( conf_matrix12 ).max(dim=-1)[0] | |
conf21 = torch.exp( conf_matrix21 ).max(dim=-1)[0] | |
conf = conf12 * conf21 | |
target = torch.arange(len(X), device = X.device) | |
loss = F.nll_loss(conf_matrix12, target) + \ | |
F.nll_loss(conf_matrix21, target) | |
return loss, conf | |
def smooth_l1_loss(input, target, beta=2.0, size_average=True): | |
diff = torch.abs(input - target) | |
loss = torch.where(diff < beta, 0.5 * diff ** 2 / beta, diff - 0.5 * beta) | |
return loss.mean() if size_average else loss.sum() | |
def fine_loss(f1, f2, pts1, pts2, fine_module, ws=7): | |
''' | |
Compute Fine features and spatial loss | |
''' | |
C, H, W = f1.shape | |
N = len(pts1) | |
#Sort random offsets | |
with torch.no_grad(): | |
a = -(ws//2) | |
b = (ws//2) | |
offset_gt = (a - b) * torch.rand(N, 2, device = f1.device) + b | |
pts2_random = pts2 + offset_gt | |
#pdb.set_trace() | |
patches1 = utils.crop_patches(f1.unsqueeze(0), (pts1+0.5).long(), size=ws).view(C, N, ws * ws).permute(1, 2, 0) #[N, ws*ws, C] | |
patches2 = utils.crop_patches(f2.unsqueeze(0), (pts2_random+0.5).long(), size=ws).view(C, N, ws * ws).permute(1, 2, 0) #[N, ws*ws, C] | |
#Apply transformer | |
patches1, patches2 = fine_module(patches1, patches2) | |
features = patches1.view(N, ws, ws, C)[:, ws//2, ws//2, :].view(N, 1, 1, C) # [N, 1, 1, C] | |
patches2 = patches2.view(N, ws, ws, C) # [N, w, w, C] | |
#Dot Product | |
heatmap_match = (features * patches2).sum(-1) | |
offset_coords = utils.subpix_softmax2d(heatmap_match) | |
#Invert offset because center crop inverts it | |
offset_gt = -offset_gt | |
#MSE | |
error = ((offset_coords - offset_gt)**2).sum(-1).mean() | |
#error = smooth_l1_loss(offset_coords, offset_gt) | |
return error | |
def alike_distill_loss(kpts, img): | |
C, H, W = kpts.shape | |
kpts = kpts.permute(1,2,0) | |
img = img.permute(1,2,0).expand(-1,-1,3).cpu().numpy() * 255 | |
with torch.no_grad(): | |
alike_kpts = torch.tensor( extract_alike_kpts(img), device=kpts.device ) | |
labels = torch.ones((H, W), dtype = torch.long, device = kpts.device) * 64 # -> Default is non-keypoint (bin 64) | |
offsets = (((alike_kpts/8) - (alike_kpts/8).long())*8).long() | |
offsets = offsets[:, 0] + 8*offsets[:, 1] # Linear IDX | |
labels[(alike_kpts[:,1]/8).long(), (alike_kpts[:,0]/8).long()] = offsets | |
kpts = kpts.view(-1,C) | |
labels = labels.view(-1) | |
mask = labels < 64 | |
idxs_pos = mask.nonzero().flatten() | |
idxs_neg = (~mask).nonzero().flatten() | |
perm = torch.randperm(idxs_neg.size(0))[:len(idxs_pos)//32] | |
idxs_neg = idxs_neg[perm] | |
idxs = torch.cat([idxs_pos, idxs_neg]) | |
kpts = kpts[idxs] | |
labels = labels[idxs] | |
with torch.no_grad(): | |
predicted = kpts.max(dim=-1)[1] | |
acc = (labels == predicted) | |
acc = acc.sum() / len(acc) | |
kpts = F.log_softmax(kpts) | |
loss = F.nll_loss(kpts, labels, reduction = 'mean') | |
return loss, acc | |
def keypoint_position_loss(kpts1, kpts2, pts1, pts2, softmax_temp = 1.0): | |
''' | |
Computes coordinate classification loss, by re-interpreting the 64 bins to 8x8 grid and optimizing | |
for correct offsets | |
''' | |
C, H, W = kpts1.shape | |
kpts1 = kpts1.permute(1,2,0) * softmax_temp | |
kpts2 = kpts2.permute(1,2,0) * softmax_temp | |
with torch.no_grad(): | |
#Generate meshgrid | |
x, y = torch.meshgrid(torch.arange(W, device=kpts1.device), torch.arange(H, device=kpts1.device), indexing ='xy') | |
xy = torch.cat([x.unsqueeze(-1), y.unsqueeze(-1)], dim=-1) | |
xy*=8 | |
#Generate collision map | |
hashmap = torch.ones((H*8, W*8, 2), dtype = torch.long, device = kpts1.device) * -1 | |
hashmap[(pts1[:,1]).long(), (pts1[:,0]).long(), :] = (pts2).long() | |
#Estimate offset of src kpts | |
_, kpts1_offsets = kpts1.max(dim=-1) | |
kpts1_offsets_x = kpts1_offsets % 8 | |
kpts1_offsets_y = kpts1_offsets // 8 | |
kpts1_offsets_xy = torch.cat([kpts1_offsets_x.unsqueeze(-1), | |
kpts1_offsets_y.unsqueeze(-1)], dim=-1) | |
#pdb.set_trace() | |
kpts1_coords = xy + kpts1_offsets_xy | |
#find src -> tgt pts | |
kpts1_coords = kpts1_coords.view(-1,2) | |
gt_12 = hashmap[kpts1_coords[:,1], kpts1_coords[:,0]] | |
mask_valid = torch.all(gt_12 >= 0, dim=-1) | |
gt_12 = gt_12[mask_valid] | |
#find offset labels | |
labels2 = (gt_12/8) - (gt_12/8).long() | |
labels2 = (labels2 * 8).long() | |
labels2 = labels2[:, 0] + 8*labels2[:, 1] #linear index | |
kpts2_selected = kpts2[(gt_12[:, 1]/8).long(), (gt_12[:, 0]/8).long()] | |
kpts1_selected = F.log_softmax(kpts1.view(-1,C)[mask_valid], dim=-1) | |
kpts2_selected = F.log_softmax(kpts2_selected, dim=-1) | |
#Here we enforce softmax to keep current max on src kps | |
with torch.no_grad(): | |
_, labels1 = kpts1_selected.max(dim=-1) | |
predicted2 = kpts2_selected.max(dim=-1)[1] | |
acc = (labels2 == predicted2) | |
acc = acc.sum() / len(acc) | |
loss = F.nll_loss(kpts1_selected, labels1, reduction = 'mean') + \ | |
F.nll_loss(kpts2_selected, labels2, reduction = 'mean') | |
#pdb.set_trace() | |
return loss, acc | |
def coordinate_classification_loss(coords1, pts1, pts2, conf): | |
''' | |
Computes the fine coordinate classification loss, by re-interpreting the 64 bins to 8x8 grid and optimizing | |
for correct offsets after warp | |
''' | |
#Do not backprop coordinate warps | |
with torch.no_grad(): | |
coords1_detached = pts1 * 8 | |
#find offset | |
offsets1_detached = (coords1_detached/8) - (coords1_detached/8).long() | |
offsets1_detached = (offsets1_detached * 8).long() | |
labels1 = offsets1_detached[:, 0] + 8*offsets1_detached[:, 1] | |
#pdb.set_trace() | |
coords1_log = F.log_softmax(coords1, dim=-1) | |
predicted = coords1.max(dim=-1)[1] | |
acc = (labels1 == predicted) | |
acc = acc[conf > 0.1] | |
acc = acc.sum() / len(acc) | |
loss = F.nll_loss(coords1_log, labels1, reduction = 'none') | |
#Weight loss by confidence, giving more emphasis on reliable matches | |
conf = conf / conf.sum() | |
loss = (loss * conf).sum() | |
return loss * 2., acc | |
def keypoint_loss(heatmap, target): | |
# Compute L1 loss | |
L1_loss = F.l1_loss(heatmap, target) | |
return L1_loss * 3.0 | |
def hard_triplet_loss(X,Y, margin = 0.5): | |
if X.size() != Y.size() or X.dim() != 2 or Y.dim() != 2: | |
raise RuntimeError('Error: X and Y shapes must match and be 2D matrices') | |
dist_mat = torch.cdist(X, Y, p=2.0) | |
dist_pos = torch.diag(dist_mat) | |
dist_neg = dist_mat + 100.*torch.eye(*dist_mat.size(), dtype = dist_mat.dtype, | |
device = dist_mat.get_device() if dist_mat.is_cuda else torch.device("cpu")) | |
#filter repeated patches on negative distances to avoid weird stuff on gradients | |
dist_neg = dist_neg + dist_neg.le(0.01).float()*100. | |
#Margin Ranking Loss | |
hard_neg = torch.min(dist_neg, 1)[0] | |
loss = torch.clamp(margin + dist_pos - hard_neg, min=0.) | |
return loss.mean() | |