File size: 12,206 Bytes
0a82b18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
# Copyright (C) 2024-present Naver Corporation. All rights reserved.
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
#
# --------------------------------------------------------
# Whitener and RetrievalModel
# --------------------------------------------------------
import numpy as np
from tqdm import tqdm
import time

import torch
import torch.nn as nn

import mast3r.utils.path_to_dust3r  # noqa
from dust3r.utils.image import load_images

default_device = torch.device('cuda' if torch.cuda.is_available() and torch.cuda.device_count() > 0 else 'cpu')


# from https://github.com/gtolias/how/blob/4d73c88e0ffb55506e2ce6249e2a015ef6ccf79f/how/utils/whitening.py#L20
def pcawhitenlearn_shrinkage(X, s=1.0):
    """Learn PCA whitening with shrinkage from given descriptors"""
    N = X.shape[0]

    # Learning PCA w/o annotations
    m = X.mean(axis=0, keepdims=True)
    Xc = X - m
    Xcov = np.dot(Xc.T, Xc)
    Xcov = (Xcov + Xcov.T) / (2 * N)
    eigval, eigvec = np.linalg.eig(Xcov)
    order = eigval.argsort()[::-1]
    eigval = eigval[order]
    eigvec = eigvec[:, order]

    eigval = np.clip(eigval, a_min=1e-14, a_max=None)
    P = np.dot(np.linalg.inv(np.diag(np.power(eigval, 0.5 * s))), eigvec.T)

    return m, P.T


class Dust3rInputFromImageList(torch.utils.data.Dataset):
    def __init__(self, image_list, imsize=512):
        super().__init__()
        self.image_list = image_list
        assert imsize == 512
        self.imsize = imsize

    def __len__(self):
        return len(self.image_list)

    def __getitem__(self, index):
        return load_images([self.image_list[index]], size=self.imsize, verbose=False)[0]


class Whitener(nn.Module):
    def __init__(self, dim, l2norm=None):
        super().__init__()
        self.m = torch.nn.Parameter(torch.zeros((1, dim)).double())
        self.p = torch.nn.Parameter(torch.eye(dim, dim).double())
        self.l2norm = l2norm  # if not None, apply l2 norm along a given dimension

    def forward(self, x):
        with torch.autocast(self.m.device.type, enabled=False):
            shape = x.size()
            input_type = x.dtype
            x_reshaped = x.view(-1, shape[-1]).to(dtype=self.m.dtype)
            # Center the input data
            x_centered = x_reshaped - self.m
            # Apply PCA transformation
            pca_output = torch.matmul(x_centered, self.p)
            # reshape back
            pca_output_shape = shape  # list(shape[:-1]) + [shape[-1]]
            pca_output = pca_output.view(pca_output_shape)
            if self.l2norm is not None:
                return torch.nn.functional.normalize(pca_output, dim=self.l2norm).to(dtype=input_type)
            return pca_output.to(dtype=input_type)


def weighted_spoc(feat, attn):
    """
    feat: BxNxC
    attn: BxN
    output: BxC L2-normalization weighted-sum-pooling of features
    """
    return torch.nn.functional.normalize((feat * attn[:, :, None]).sum(dim=1), dim=1)


def how_select_local(feat, attn, nfeat):
    """
    feat: BxNxC
    attn: BxN
    nfeat: nfeat to keep
    """
    # get nfeat
    if nfeat < 0:
        assert nfeat >= -1.0
        nfeat = int(-nfeat * feat.size(1))
    else:
        nfeat = int(nfeat)
    # asort
    topk_attn, topk_indices = torch.topk(attn, min(nfeat, attn.size(1)), dim=1)
    topk_indices_expanded = topk_indices.unsqueeze(-1).expand(-1, -1, feat.size(2))
    topk_features = torch.gather(feat, 1, topk_indices_expanded)
    return topk_features, topk_attn, topk_indices


class RetrievalModel(nn.Module):
    def __init__(self, backbone, freeze_backbone=1, prewhiten=None, hdims=[1024], residual=False, postwhiten=None,
                 featweights='l2norm', nfeat=300, pretrained_retrieval=None):
        super().__init__()
        self.backbone = backbone
        self.freeze_backbone = freeze_backbone
        if freeze_backbone:
            for p in self.backbone.parameters():
                p.requires_grad = False
        self.backbone_dim = backbone.enc_embed_dim
        self.prewhiten = nn.Identity() if prewhiten is None else Whitener(self.backbone_dim)
        self.prewhiten_freq = prewhiten
        if prewhiten is not None and prewhiten != -1:
            for p in self.prewhiten.parameters():
                p.requires_grad = False
        self.residual = residual
        self.projector = self.build_projector(hdims, residual)
        self.dim = hdims[-1] if len(hdims) > 0 else self.backbone_dim
        self.postwhiten_freq = postwhiten
        self.postwhiten = nn.Identity() if postwhiten is None else Whitener(self.dim)
        if postwhiten is not None and postwhiten != -1:
            assert len(hdims) > 0
            for p in self.postwhiten.parameters():
                p.requires_grad = False
        self.featweights = featweights
        if featweights == 'l2norm':
            self.attention = lambda x: x.norm(dim=-1)
        else:
            raise NotImplementedError(featweights)
        self.nfeat = nfeat
        self.pretrained_retrieval = pretrained_retrieval
        if self.pretrained_retrieval is not None:
            ckpt = torch.load(pretrained_retrieval, 'cpu')
            msg = self.load_state_dict(ckpt['model'], strict=False)
            assert len(msg.unexpected_keys) == 0 and all(k.startswith('backbone')
                                                         or k.startswith('postwhiten') for k in msg.missing_keys)

    def build_projector(self, hdims, residual):
        if self.residual:
            assert hdims[-1] == self.backbone_dim
        d = self.backbone_dim
        if len(hdims) == 0:
            return nn.Identity()
        layers = []
        for i in range(len(hdims) - 1):
            layers.append(nn.Linear(d, hdims[i]))
            d = hdims[i]
            layers.append(nn.LayerNorm(d))
            layers.append(nn.GELU())
        layers.append(nn.Linear(d, hdims[-1]))
        return nn.Sequential(*layers)

    def state_dict(self, *args, destination=None, prefix='', keep_vars=False):
        ss = super().state_dict(*args, destination=destination, prefix=prefix, keep_vars=keep_vars)
        if self.freeze_backbone:
            ss = {k: v for k, v in ss.items() if not k.startswith('backbone')}
        return ss

    def reinitialize_whitening(self, epoch, train_dataset, nimgs=5000, log_writer=None, max_nfeat_per_image=None, seed=0, device=default_device):
        do_prewhiten = self.prewhiten_freq is not None and self.pretrained_retrieval is None and \
            (epoch == 0 or (self.prewhiten_freq > 0 and epoch % self.prewhiten_freq == 0))
        do_postwhiten = self.postwhiten_freq is not None and ((epoch == 0 and self.postwhiten_freq in [0, -1])
                                                              or (self.postwhiten_freq > 0 and
                                                                  epoch % self.postwhiten_freq == 0 and epoch > 0))
        if do_prewhiten or do_postwhiten:
            self.eval()
            imdataset = train_dataset.imlist_dataset_n_images(nimgs, seed)
            loader = torch.utils.data.DataLoader(imdataset, batch_size=1, shuffle=False, num_workers=8, pin_memory=True)
        if do_prewhiten:
            print('Re-initialization of pre-whitening')
            t = time.time()
            with torch.no_grad():
                features = []
                for d in tqdm(loader):
                    feat = self.backbone._encode_image(d['img'][0, ...].to(device),
                                                       true_shape=d['true_shape'][0, ...])[0]
                    feat = feat.flatten(0, 1)
                    if max_nfeat_per_image is not None and max_nfeat_per_image < feat.size(0):
                        l2norms = torch.linalg.vector_norm(feat, dim=1)
                        feat = feat[torch.argsort(-l2norms)[:max_nfeat_per_image], :]
                    features.append(feat.cpu())
            features = torch.cat(features, dim=0)
            features = features.numpy()
            m, P = pcawhitenlearn_shrinkage(features)
            self.prewhiten.load_state_dict({'m': torch.from_numpy(m), 'p': torch.from_numpy(P)})
            prewhiten_time = time.time() - t
            print(f'Done in {prewhiten_time:.1f} seconds')
            if log_writer is not None:
                log_writer.add_scalar('time/prewhiten', prewhiten_time, epoch)
        if do_postwhiten:
            print(f'Re-initialization of post-whitening')
            t = time.time()
            with torch.no_grad():
                features = []
                for d in tqdm(loader):
                    backbone_feat = self.backbone._encode_image(d['img'][0, ...].to(device),
                                                                true_shape=d['true_shape'][0, ...])[0]
                    backbone_feat_prewhitened = self.prewhiten(backbone_feat)
                    proj_feat = self.projector(backbone_feat_prewhitened) + \
                        (0.0 if not self.residual else backbone_feat_prewhitened)
                    proj_feat = proj_feat.flatten(0, 1)
                    if max_nfeat_per_image is not None and max_nfeat_per_image < proj_feat.size(0):
                        l2norms = torch.linalg.vector_norm(proj_feat, dim=1)
                        proj_feat = proj_feat[torch.argsort(-l2norms)[:max_nfeat_per_image], :]
                    features.append(proj_feat.cpu())
                features = torch.cat(features, dim=0)
                features = features.numpy()
            m, P = pcawhitenlearn_shrinkage(features)
            self.postwhiten.load_state_dict({'m': torch.from_numpy(m), 'p': torch.from_numpy(P)})
            postwhiten_time = time.time() - t
            print(f'Done in {postwhiten_time:.1f} seconds')
            if log_writer is not None:
                log_writer.add_scalar('time/postwhiten', postwhiten_time, epoch)

    def extract_features_and_attention(self, x):
        backbone_feat = self.backbone._encode_image(x['img'], true_shape=x['true_shape'])[0]
        backbone_feat_prewhitened = self.prewhiten(backbone_feat)
        proj_feat = self.projector(backbone_feat_prewhitened) + \
            (0.0 if not self.residual else backbone_feat_prewhitened)
        attention = self.attention(proj_feat)
        proj_feat_whitened = self.postwhiten(proj_feat)
        return proj_feat_whitened, attention

    def forward_local(self, x):
        feat, attn = self.extract_features_and_attention(x)
        return how_select_local(feat, attn, self.nfeat)

    def forward_global(self, x):
        feat, attn = self.extract_features_and_attention(x)
        return weighted_spoc(feat, attn)

    def forward(self, x):
        return self.forward_global(x)


def identity(x):  # to avoid Can't pickle local object 'extract_local_features.<locals>.<lambda>'
    return x


@torch.no_grad()
def extract_local_features(model, images, imsize, seed=0, tocpu=False, max_nfeat_per_image=None,
                           max_nfeat_per_image2=None, device=default_device):
    model.eval()
    imdataset = Dust3rInputFromImageList(images, imsize=imsize) if isinstance(images, list) else images
    loader = torch.utils.data.DataLoader(imdataset, batch_size=1, shuffle=False,
                                         num_workers=8, pin_memory=True, collate_fn=identity)
    with torch.no_grad():
        features = []
        imids = []
        for i, d in enumerate(tqdm(loader)):
            dd = d[0]
            dd['img'] = dd['img'].to(device, non_blocking=True)
            feat, _, _ = model.forward_local(dd)
            feat = feat.flatten(0, 1)
            if max_nfeat_per_image is not None and feat.size(0) > max_nfeat_per_image:
                feat = feat[torch.randperm(feat.size(0))[:max_nfeat_per_image], :]
            if max_nfeat_per_image2 is not None and feat.size(0) > max_nfeat_per_image2:
                feat = feat[:max_nfeat_per_image2, :]
            features.append(feat)
            if tocpu:
                features[-1] = features[-1].cpu()
            imids.append(i * torch.ones_like(features[-1][:, 0]).to(dtype=torch.int64))
    features = torch.cat(features, dim=0)
    imids = torch.cat(imids, dim=0)
    return features, imids