File size: 11,581 Bytes
0a82b18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
# Copyright (C) 2024-present Naver Corporation. All rights reserved.
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only).
#
# --------------------------------------------------------
# MASt3R heads
# --------------------------------------------------------
import torch
import torch.nn as nn
import torch.nn.functional as F

import mast3r.utils.path_to_dust3r  # noqa
from dust3r.heads.postprocess import reg_dense_depth, reg_dense_conf  # noqa
from dust3r.heads.dpt_head import PixelwiseTaskWithDPT  # noqa
import dust3r.utils.path_to_croco  # noqa
from models.blocks import Mlp  # noqa
from models.dpt_block import Interpolate  # noqa


def reg_desc(desc, mode):
    if 'norm' in mode:
        desc = desc / desc.norm(dim=-1, keepdim=True)
    else:
        raise ValueError(f"Unknown desc mode {mode}")
    return desc


def postprocess(out, depth_mode, conf_mode, desc_dim=None, desc_mode='norm', two_confs=False, desc_conf_mode=None):
    if desc_conf_mode is None:
        desc_conf_mode = conf_mode
    fmap = out.permute(0, 2, 3, 1)  # B,H,W,D
    res = dict(pts3d=reg_dense_depth(fmap[..., 0:3], mode=depth_mode))
    if conf_mode is not None:
        res['conf'] = reg_dense_conf(fmap[..., 3], mode=conf_mode)
    if desc_dim is not None:
        start = 3 + int(conf_mode is not None)
        res['desc'] = reg_desc(fmap[..., start:start + desc_dim], mode=desc_mode)
        if two_confs:
            res['desc_conf'] = reg_dense_conf(fmap[..., start + desc_dim], mode=desc_conf_mode)
        else:
            res['desc_conf'] = res['conf'].clone()
    return res


class Cat_MLP_LocalFeatures_DPT_Pts3d(PixelwiseTaskWithDPT):
    """ Mixture between MLP and DPT head that outputs 3d points and local features (with MLP).
    The input for both heads is a concatenation of Encoder and Decoder outputs
    """

    def __init__(self, net, has_conf=False, local_feat_dim=16, hidden_dim_factor=4., hooks_idx=None, dim_tokens=None,
                 num_channels=1, postprocess=None, feature_dim=256, last_dim=32, depth_mode=None, conf_mode=None, head_type="regression", **kwargs):
        super().__init__(num_channels=num_channels, feature_dim=feature_dim, last_dim=last_dim, hooks_idx=hooks_idx,
                         dim_tokens=dim_tokens, depth_mode=depth_mode, postprocess=postprocess, conf_mode=conf_mode, head_type=head_type)
        self.local_feat_dim = local_feat_dim

        patch_size = net.patch_embed.patch_size
        if isinstance(patch_size, tuple):
            assert len(patch_size) == 2 and isinstance(patch_size[0], int) and isinstance(
                patch_size[1], int), "What is your patchsize format? Expected a single int or a tuple of two ints."
            assert patch_size[0] == patch_size[1], "Error, non square patches not managed"
            patch_size = patch_size[0]
        self.patch_size = patch_size

        self.desc_mode = net.desc_mode
        self.has_conf = has_conf
        self.two_confs = net.two_confs  # independent confs for 3D regr and descs
        self.desc_conf_mode = net.desc_conf_mode
        idim = net.enc_embed_dim + net.dec_embed_dim

        self.head_local_features = Mlp(in_features=idim,
                                       hidden_features=int(hidden_dim_factor * idim),
                                       out_features=(self.local_feat_dim + self.two_confs) * self.patch_size**2)

    def forward(self, decout, img_shape):
        # pass through the heads
        pts3d = self.dpt(decout, image_size=(img_shape[0], img_shape[1]))

        # recover encoder and decoder outputs
        enc_output, dec_output = decout[0], decout[-1]
        cat_output = torch.cat([enc_output, dec_output], dim=-1)  # concatenate
        H, W = img_shape
        B, S, D = cat_output.shape

        # extract local_features
        local_features = self.head_local_features(cat_output)  # B,S,D
        local_features = local_features.transpose(-1, -2).view(B, -1, H // self.patch_size, W // self.patch_size)
        local_features = F.pixel_shuffle(local_features, self.patch_size)  # B,d,H,W

        # post process 3D pts, descriptors and confidences
        out = torch.cat([pts3d, local_features], dim=1)
        if self.postprocess:
            out = self.postprocess(out,
                                   depth_mode=self.depth_mode,
                                   conf_mode=self.conf_mode,
                                   desc_dim=self.local_feat_dim,
                                   desc_mode=self.desc_mode,
                                   two_confs=self.two_confs,
                                   desc_conf_mode=self.desc_conf_mode)
        return out


class MLP_MiniConv_Head(nn.Module):
    """
    A special Convolutional head inspired by DPT architecture
    A MLP predicts pixelwise feats in lower resolution. Prediction is upsampled to target res and goes through a mini convolutional head

    Input : [B, S, D]  # S = (H//p) * (W//p)

    MLP: 
        D -> (mlp_hidden_dim) -> out_mlp_dim * (p/2)*2 
        reshape to [out_mlp_dim, H/2, W/2] (MLP predicts in half-res)

    MiniConv head from DPT: 
        Upsample x2 -> [out_mlp_dim,H,W]
        Conv 3x3 -> [conv_inner_dim,H,W]
        ReLU
        Conv 1x1 -> [odim,H,W]

    """

    def __init__(self, idim, mlp_hidden_dim, mlp_odim, conv_inner_dim, odim, patch_size, subpatch=2, **kw):
        super().__init__()
        self.patch_size = patch_size
        self.subpatch = subpatch
        self.sub_patch_size = patch_size // subpatch
        self.mlp = Mlp(idim, mlp_hidden_dim, mlp_odim * self.sub_patch_size**2, **kw)  # D -> mlp_odim*sub_patch_size**2

        # DPT conv head
        self.head = nn.Sequential(Interpolate(scale_factor=self.subpatch, mode="bilinear", align_corners=True) if self.subpatch != 1 else nn.Identity(),
                                  nn.Conv2d(mlp_odim, conv_inner_dim, kernel_size=3, stride=1, padding=1),
                                  nn.ReLU(True),
                                  nn.Conv2d(conv_inner_dim, odim, kernel_size=1, stride=1, padding=0)
                                  )

    def forward(self, decout, img_shape):
        H, W = img_shape
        tokens = decout[-1]
        B, S, D = tokens.shape
        # extract features
        feat = self.mlp(tokens)  # [B, S, mlp_odim*sub_patch_size**2]
        feat = feat.transpose(-1, -2).reshape(B, -1, H // self.patch_size, W // self.patch_size)
        feat = F.pixel_shuffle(feat, self.sub_patch_size)  # B,mlp_odim,H/sub,W/sub

        return self.head(feat)  # B, odim, H, W


class Cat_MLP_LocalFeatures_MiniConv_Pts3d(nn.Module):
    """ Mixture between MLP and MLP-Convolutional head that outputs 3d points (with miniconv) and local features (with MLP).
    simply contains two MLP_MiniConv_Head: one for 3D points and one for features.
    The input for both heads is a concatenation of Encoder and Decoder outputs
    """

    def __init__(self, net, has_conf=False, local_feat_dim=16, hidden_dim_factor=4., mlp_odim=24, conv_inner_dim=100, subpatch=2, **kw):
        super().__init__()

        self.local_feat_dim = local_feat_dim
        patch_size = net.patch_embed.patch_size
        if isinstance(patch_size, tuple):
            assert len(patch_size) == 2 and isinstance(patch_size[0], int) and isinstance(
                patch_size[1], int), "What is your patchsize format? Expected a single int or a tuple of two ints."
            assert patch_size[0] == patch_size[1], "Error, non square patches not managed"
            patch_size = patch_size[0]
        self.patch_size = patch_size

        self.depth_mode = net.depth_mode
        self.conf_mode = net.conf_mode
        self.desc_mode = net.desc_mode
        self.desc_conf_mode = net.desc_conf_mode
        self.has_conf = has_conf
        self.two_confs = net.two_confs  # independent confs for 3D regr and descs
        idim = net.enc_embed_dim + net.dec_embed_dim
        self.head_pts3d = MLP_MiniConv_Head(idim=idim,
                                            mlp_hidden_dim=int(hidden_dim_factor * idim),
                                            mlp_odim=mlp_odim + self.has_conf,
                                            conv_inner_dim=conv_inner_dim,
                                            odim=3 + self.has_conf,
                                            subpatch=subpatch,
                                            patch_size=self.patch_size,
                                            **kw)

        self.head_local_features = Mlp(in_features=idim,
                                       hidden_features=int(hidden_dim_factor * idim),
                                       out_features=(self.local_feat_dim + self.two_confs) * self.patch_size**2)

    def forward(self, decout, img_shape):
        enc_output, dec_output = decout[0], decout[-1]  # recover encoder and decoder outputs
        cat_output = torch.cat([enc_output, dec_output], dim=-1)  # concatenate
        # pass through the heads
        pts3d = self.head_pts3d([cat_output], img_shape)

        H, W = img_shape
        B, S, D = cat_output.shape

        # extract 3D points
        local_features = self.head_local_features(cat_output)  # B,S,D
        local_features = local_features.transpose(-1, -2).view(B, -1, H // self.patch_size, W // self.patch_size)
        local_features = F.pixel_shuffle(local_features, self.patch_size)  # B,d,H,W

        # post process 3D pts, descriptors and confidences
        out = postprocess(torch.cat([pts3d, local_features], dim=1),
                          depth_mode=self.depth_mode,
                          conf_mode=self.conf_mode,
                          desc_dim=self.local_feat_dim,
                          desc_mode=self.desc_mode,
                          two_confs=self.two_confs, desc_conf_mode=self.desc_conf_mode)
        return out


def mast3r_head_factory(head_type, output_mode, net, has_conf=False):
    """" build a prediction head for the decoder 
    """
    if head_type == 'catmlp+dpt' and output_mode.startswith('pts3d+desc'):
        local_feat_dim = int(output_mode[10:])
        assert net.dec_depth > 9
        l2 = net.dec_depth
        feature_dim = 256
        last_dim = feature_dim // 2
        out_nchan = 3
        ed = net.enc_embed_dim
        dd = net.dec_embed_dim
        return Cat_MLP_LocalFeatures_DPT_Pts3d(net, local_feat_dim=local_feat_dim, has_conf=has_conf,
                                               num_channels=out_nchan + has_conf,
                                               feature_dim=feature_dim,
                                               last_dim=last_dim,
                                               hooks_idx=[0, l2 * 2 // 4, l2 * 3 // 4, l2],
                                               dim_tokens=[ed, dd, dd, dd],
                                               postprocess=postprocess,
                                               depth_mode=net.depth_mode,
                                               conf_mode=net.conf_mode,
                                               head_type='regression')
    elif head_type == 'catconv' and output_mode.startswith('pts3d+desc'):
        local_feat_dim = int(output_mode[10:])
        # more params (anounced by a ':' and comma separated)
        kw = {}
        if ':' in head_type:
            kw = eval("dict(" + head_type[8:] + ")")
        return Cat_MLP_LocalFeatures_MiniConv_Pts3d(net, local_feat_dim=local_feat_dim, has_conf=has_conf, **kw)
    else:
        raise NotImplementedError(
            f"unexpected {head_type=} and {output_mode=}")