File size: 13,472 Bytes
0a82b18 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 |
"""
"XFeat: Accelerated Features for Lightweight Image Matching, CVPR 2024."
https://www.verlab.dcc.ufmg.br/descriptors/xfeat_cvpr24/
"""
import numpy as np
import os
import torch
import torch.nn.functional as F
import tqdm
from modules.model import *
from modules.interpolator import InterpolateSparse2d
class XFeat(nn.Module):
"""
Implements the inference module for XFeat.
It supports inference for both sparse and semi-dense feature extraction & matching.
"""
def __init__(self, weights = os.path.abspath(os.path.dirname(__file__)) + '/../weights/xfeat.pt', top_k = 4096, detection_threshold=0.05):
super().__init__()
self.dev = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
self.net = XFeatModel().to(self.dev).eval()
self.top_k = top_k
self.detection_threshold = detection_threshold
if weights is not None:
if isinstance(weights, str):
print('loading weights from: ' + weights)
self.net.load_state_dict(torch.load(weights, map_location=self.dev))
else:
self.net.load_state_dict(weights)
self.interpolator = InterpolateSparse2d('bicubic')
#Try to import LightGlue from Kornia
self.kornia_available = False
self.lighterglue = None
try:
import kornia
self.kornia_available=True
except:
pass
@torch.inference_mode()
def detectAndCompute(self, x, top_k = None, detection_threshold = None):
"""
Compute sparse keypoints & descriptors. Supports batched mode.
input:
x -> torch.Tensor(B, C, H, W): grayscale or rgb image
top_k -> int: keep best k features
return:
List[Dict]:
'keypoints' -> torch.Tensor(N, 2): keypoints (x,y)
'scores' -> torch.Tensor(N,): keypoint scores
'descriptors' -> torch.Tensor(N, 64): local features
"""
if top_k is None: top_k = self.top_k
if detection_threshold is None: detection_threshold = self.detection_threshold
x, rh1, rw1 = self.preprocess_tensor(x)
B, _, _H1, _W1 = x.shape
M1, K1, H1 = self.net(x)
M1 = F.normalize(M1, dim=1)
#Convert logits to heatmap and extract kpts
K1h = self.get_kpts_heatmap(K1)
mkpts = self.NMS(K1h, threshold=detection_threshold, kernel_size=5)
#Compute reliability scores
_nearest = InterpolateSparse2d('nearest')
_bilinear = InterpolateSparse2d('bilinear')
scores = (_nearest(K1h, mkpts, _H1, _W1) * _bilinear(H1, mkpts, _H1, _W1)).squeeze(-1)
scores[torch.all(mkpts == 0, dim=-1)] = -1
#Select top-k features
idxs = torch.argsort(-scores)
mkpts_x = torch.gather(mkpts[...,0], -1, idxs)[:, :top_k]
mkpts_y = torch.gather(mkpts[...,1], -1, idxs)[:, :top_k]
mkpts = torch.cat([mkpts_x[...,None], mkpts_y[...,None]], dim=-1)
scores = torch.gather(scores, -1, idxs)[:, :top_k]
#Interpolate descriptors at kpts positions
feats = self.interpolator(M1, mkpts, H = _H1, W = _W1)
#L2-Normalize
feats = F.normalize(feats, dim=-1)
#Correct kpt scale
mkpts = mkpts * torch.tensor([rw1,rh1], device=mkpts.device).view(1, 1, -1)
valid = scores > 0
return [
{'keypoints': mkpts[b][valid[b]],
'scores': scores[b][valid[b]],
'descriptors': feats[b][valid[b]]} for b in range(B)
]
@torch.inference_mode()
def detectAndComputeDense(self, x, top_k = None, multiscale = True):
"""
Compute dense *and coarse* descriptors. Supports batched mode.
input:
x -> torch.Tensor(B, C, H, W): grayscale or rgb image
top_k -> int: keep best k features
return: features sorted by their reliability score -- from most to least
List[Dict]:
'keypoints' -> torch.Tensor(top_k, 2): coarse keypoints
'scales' -> torch.Tensor(top_k,): extraction scale
'descriptors' -> torch.Tensor(top_k, 64): coarse local features
"""
if top_k is None: top_k = self.top_k
if multiscale:
mkpts, sc, feats = self.extract_dualscale(x, top_k)
else:
mkpts, feats = self.extractDense(x, top_k)
sc = torch.ones(mkpts.shape[:2], device=mkpts.device)
return {'keypoints': mkpts,
'descriptors': feats,
'scales': sc }
@torch.inference_mode()
def match_lighterglue(self, d0, d1, min_conf = 0.1):
"""
Match XFeat sparse features with LightGlue (smaller version) -- currently does NOT support batched inference because of padding, but its possible to implement easily.
input:
d0, d1: Dict('keypoints', 'scores, 'descriptors', 'image_size (Width, Height)')
output:
mkpts_0, mkpts_1 -> np.ndarray (N,2) xy coordinate matches from image1 to image2
idx -> np.ndarray (N,2) the indices of the matching features
"""
if not self.kornia_available:
raise RuntimeError('We rely on kornia for LightGlue. Install with: pip install kornia')
elif self.lighterglue is None:
from modules.lighterglue import LighterGlue
self.lighterglue = LighterGlue()
data = {
'keypoints0': d0['keypoints'][None, ...],
'keypoints1': d1['keypoints'][None, ...],
'descriptors0': d0['descriptors'][None, ...],
'descriptors1': d1['descriptors'][None, ...],
'image_size0': torch.tensor(d0['image_size']).to(self.dev)[None, ...],
'image_size1': torch.tensor(d1['image_size']).to(self.dev)[None, ...]
}
#Dict -> log_assignment: [B x M+1 x N+1] matches0: [B x M] matching_scores0: [B x M] matches1: [B x N] matching_scores1: [B x N] matches: List[[Si x 2]], scores: List[[Si]]
out = self.lighterglue(data, min_conf = min_conf)
idxs = out['matches'][0]
return d0['keypoints'][idxs[:, 0]].cpu().numpy(), d1['keypoints'][idxs[:, 1]].cpu().numpy(), out['matches'][0].cpu().numpy()
@torch.inference_mode()
def match_xfeat(self, img1, img2, top_k = None, min_cossim = -1):
"""
Simple extractor and MNN matcher.
For simplicity it does not support batched mode due to possibly different number of kpts.
input:
img1 -> torch.Tensor (1,C,H,W) or np.ndarray (H,W,C): grayscale or rgb image.
img2 -> torch.Tensor (1,C,H,W) or np.ndarray (H,W,C): grayscale or rgb image.
top_k -> int: keep best k features
returns:
mkpts_0, mkpts_1 -> np.ndarray (N,2) xy coordinate matches from image1 to image2
"""
if top_k is None: top_k = self.top_k
img1 = self.parse_input(img1)
img2 = self.parse_input(img2)
out1 = self.detectAndCompute(img1, top_k=top_k)[0]
out2 = self.detectAndCompute(img2, top_k=top_k)[0]
idxs0, idxs1 = self.match(out1['descriptors'], out2['descriptors'], min_cossim=min_cossim )
return out1['keypoints'][idxs0].cpu().numpy(), out2['keypoints'][idxs1].cpu().numpy()
@torch.inference_mode()
def match_xfeat_star(self, im_set1, im_set2, top_k = None):
"""
Extracts coarse feats, then match pairs and finally refine matches, currently supports batched mode.
input:
im_set1 -> torch.Tensor(B, C, H, W) or np.ndarray (H,W,C): grayscale or rgb images.
im_set2 -> torch.Tensor(B, C, H, W) or np.ndarray (H,W,C): grayscale or rgb images.
top_k -> int: keep best k features
returns:
matches -> List[torch.Tensor(N, 4)]: List of size B containing tensor of pairwise matches (x1,y1,x2,y2)
"""
if top_k is None: top_k = self.top_k
im_set1 = self.parse_input(im_set1)
im_set2 = self.parse_input(im_set2)
#Compute coarse feats
out1 = self.detectAndComputeDense(im_set1, top_k=top_k)
out2 = self.detectAndComputeDense(im_set2, top_k=top_k)
#Match batches of pairs
idxs_list = self.batch_match(out1['descriptors'], out2['descriptors'] )
B = len(im_set1)
#Refine coarse matches
#this part is harder to batch, currently iterate
matches = []
for b in range(B):
matches.append(self.refine_matches(out1, out2, matches = idxs_list, batch_idx=b))
return matches if B > 1 else (matches[0][:, :2].cpu().numpy(), matches[0][:, 2:].cpu().numpy())
def preprocess_tensor(self, x):
""" Guarantee that image is divisible by 32 to avoid aliasing artifacts. """
if isinstance(x, np.ndarray):
if len(x.shape) == 3:
x = torch.tensor(x).permute(2,0,1)[None]
elif len(x.shape) == 2:
x = torch.tensor(x[..., None]).permute(2,0,1)[None]
else:
raise RuntimeError('For numpy arrays, only (H,W) or (H,W,C) format is supported.')
if len(x.shape) != 4:
raise RuntimeError('Input tensor needs to be in (B,C,H,W) format')
x = x.to(self.dev).float()
H, W = x.shape[-2:]
_H, _W = (H//32) * 32, (W//32) * 32
rh, rw = H/_H, W/_W
x = F.interpolate(x, (_H, _W), mode='bilinear', align_corners=False)
return x, rh, rw
def get_kpts_heatmap(self, kpts, softmax_temp = 1.0):
scores = F.softmax(kpts*softmax_temp, 1)[:, :64]
B, _, H, W = scores.shape
heatmap = scores.permute(0, 2, 3, 1).reshape(B, H, W, 8, 8)
heatmap = heatmap.permute(0, 1, 3, 2, 4).reshape(B, 1, H*8, W*8)
return heatmap
def NMS(self, x, threshold = 0.05, kernel_size = 5):
B, _, H, W = x.shape
pad=kernel_size//2
local_max = nn.MaxPool2d(kernel_size=kernel_size, stride=1, padding=pad)(x)
pos = (x == local_max) & (x > threshold)
pos_batched = [k.nonzero()[..., 1:].flip(-1) for k in pos]
pad_val = max([len(x) for x in pos_batched])
pos = torch.zeros((B, pad_val, 2), dtype=torch.long, device=x.device)
#Pad kpts and build (B, N, 2) tensor
for b in range(len(pos_batched)):
pos[b, :len(pos_batched[b]), :] = pos_batched[b]
return pos
@torch.inference_mode()
def batch_match(self, feats1, feats2, min_cossim = -1):
B = len(feats1)
cossim = torch.bmm(feats1, feats2.permute(0,2,1))
match12 = torch.argmax(cossim, dim=-1)
match21 = torch.argmax(cossim.permute(0,2,1), dim=-1)
idx0 = torch.arange(len(match12[0]), device=match12.device)
batched_matches = []
for b in range(B):
mutual = match21[b][match12[b]] == idx0
if min_cossim > 0:
cossim_max, _ = cossim[b].max(dim=1)
good = cossim_max > min_cossim
idx0_b = idx0[mutual & good]
idx1_b = match12[b][mutual & good]
else:
idx0_b = idx0[mutual]
idx1_b = match12[b][mutual]
batched_matches.append((idx0_b, idx1_b))
return batched_matches
def subpix_softmax2d(self, heatmaps, temp = 3):
N, H, W = heatmaps.shape
heatmaps = torch.softmax(temp * heatmaps.view(-1, H*W), -1).view(-1, H, W)
x, y = torch.meshgrid(torch.arange(W, device = heatmaps.device ), torch.arange(H, device = heatmaps.device ), indexing = 'xy')
x = x - (W//2)
y = y - (H//2)
coords_x = (x[None, ...] * heatmaps)
coords_y = (y[None, ...] * heatmaps)
coords = torch.cat([coords_x[..., None], coords_y[..., None]], -1).view(N, H*W, 2)
coords = coords.sum(1)
return coords
def refine_matches(self, d0, d1, matches, batch_idx, fine_conf = 0.25):
idx0, idx1 = matches[batch_idx]
feats1 = d0['descriptors'][batch_idx][idx0]
feats2 = d1['descriptors'][batch_idx][idx1]
mkpts_0 = d0['keypoints'][batch_idx][idx0]
mkpts_1 = d1['keypoints'][batch_idx][idx1]
sc0 = d0['scales'][batch_idx][idx0]
#Compute fine offsets
offsets = self.net.fine_matcher(torch.cat([feats1, feats2],dim=-1))
conf = F.softmax(offsets*3, dim=-1).max(dim=-1)[0]
offsets = self.subpix_softmax2d(offsets.view(-1,8,8))
mkpts_0 += offsets* (sc0[:,None]) #*0.9 #* (sc0[:,None])
mask_good = conf > fine_conf
mkpts_0 = mkpts_0[mask_good]
mkpts_1 = mkpts_1[mask_good]
return torch.cat([mkpts_0, mkpts_1], dim=-1)
@torch.inference_mode()
def match(self, feats1, feats2, min_cossim = 0.82):
cossim = feats1 @ feats2.t()
cossim_t = feats2 @ feats1.t()
_, match12 = cossim.max(dim=1)
_, match21 = cossim_t.max(dim=1)
idx0 = torch.arange(len(match12), device=match12.device)
mutual = match21[match12] == idx0
if min_cossim > 0:
cossim, _ = cossim.max(dim=1)
good = cossim > min_cossim
idx0 = idx0[mutual & good]
idx1 = match12[mutual & good]
else:
idx0 = idx0[mutual]
idx1 = match12[mutual]
return idx0, idx1
def create_xy(self, h, w, dev):
y, x = torch.meshgrid(torch.arange(h, device = dev),
torch.arange(w, device = dev), indexing='ij')
xy = torch.cat([x[..., None],y[..., None]], -1).reshape(-1,2)
return xy
def extractDense(self, x, top_k = 8_000):
if top_k < 1:
top_k = 100_000_000
x, rh1, rw1 = self.preprocess_tensor(x)
M1, K1, H1 = self.net(x)
B, C, _H1, _W1 = M1.shape
xy1 = (self.create_xy(_H1, _W1, M1.device) * 8).expand(B,-1,-1)
M1 = M1.permute(0,2,3,1).reshape(B, -1, C)
H1 = H1.permute(0,2,3,1).reshape(B, -1)
_, top_k = torch.topk(H1, k = min(len(H1[0]), top_k), dim=-1)
feats = torch.gather( M1, 1, top_k[...,None].expand(-1, -1, 64))
mkpts = torch.gather(xy1, 1, top_k[...,None].expand(-1, -1, 2))
mkpts = mkpts * torch.tensor([rw1, rh1], device=mkpts.device).view(1,-1)
return mkpts, feats
def extract_dualscale(self, x, top_k, s1 = 0.6, s2 = 1.3):
x1 = F.interpolate(x, scale_factor=s1, align_corners=False, mode='bilinear')
x2 = F.interpolate(x, scale_factor=s2, align_corners=False, mode='bilinear')
B, _, _, _ = x.shape
mkpts_1, feats_1 = self.extractDense(x1, int(top_k*0.20))
mkpts_2, feats_2 = self.extractDense(x2, int(top_k*0.80))
mkpts = torch.cat([mkpts_1/s1, mkpts_2/s2], dim=1)
sc1 = torch.ones(mkpts_1.shape[:2], device=mkpts_1.device) * (1/s1)
sc2 = torch.ones(mkpts_2.shape[:2], device=mkpts_2.device) * (1/s2)
sc = torch.cat([sc1, sc2],dim=1)
feats = torch.cat([feats_1, feats_2], dim=1)
return mkpts, sc, feats
def parse_input(self, x):
if len(x.shape) == 3:
x = x[None, ...]
if isinstance(x, np.ndarray):
x = torch.tensor(x).permute(0,3,1,2)/255
return x
|