File size: 14,024 Bytes
0a82b18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
"""
	"XFeat: Accelerated Features for Lightweight Image Matching, CVPR 2024."
	https://www.verlab.dcc.ufmg.br/descriptors/xfeat_cvpr24/
"""

import argparse
import os
import time
import sys

def parse_arguments():
    parser = argparse.ArgumentParser(description="XFeat training script.")

    parser.add_argument('--megadepth_root_path', type=str, default='/ssd/guipotje/Data/MegaDepth',
                        help='Path to the MegaDepth dataset root directory.')
    parser.add_argument('--synthetic_root_path', type=str, default='/homeLocal/guipotje/sshfs/datasets/coco_20k',
                        help='Path to the synthetic dataset root directory.')
    parser.add_argument('--ckpt_save_path', type=str, required=True,
                        help='Path to save the checkpoints.')
    parser.add_argument('--training_type', type=str, default='xfeat_default',
                        choices=['xfeat_default', 'xfeat_synthetic', 'xfeat_megadepth'],
                        help='Training scheme. xfeat_default uses both megadepth & synthetic warps.')
    parser.add_argument('--batch_size', type=int, default=10,
                        help='Batch size for training. Default is 10.')
    parser.add_argument('--n_steps', type=int, default=160_000,
                        help='Number of training steps. Default is 160000.')
    parser.add_argument('--lr', type=float, default=3e-4,
                        help='Learning rate. Default is 0.0003.')
    parser.add_argument('--gamma_steplr', type=float, default=0.5,
                        help='Gamma value for StepLR scheduler. Default is 0.5.')
    parser.add_argument('--training_res', type=lambda s: tuple(map(int, s.split(','))),
                        default=(800, 608), help='Training resolution as width,height. Default is (800, 608).')
    parser.add_argument('--device_num', type=str, default='0',
                        help='Device number to use for training. Default is "0".')
    parser.add_argument('--dry_run', action='store_true',
                        help='If set, perform a dry run training with a mini-batch for sanity check.')
    parser.add_argument('--save_ckpt_every', type=int, default=500,
                        help='Save checkpoints every N steps. Default is 500.')

    args = parser.parse_args()

    os.environ['CUDA_VISIBLE_DEVICES'] = args.device_num

    return args

args = parse_arguments()

import torch
from torch import nn
from torch import optim
import torch.nn.functional as F
from torch.utils.tensorboard import SummaryWriter

import numpy as np

from modules.model import *
from modules.dataset.augmentation import *
from modules.training.utils import *
from modules.training.losses import *

from modules.dataset.megadepth.megadepth import MegaDepthDataset
from modules.dataset.megadepth import megadepth_warper
from torch.utils.data import Dataset, DataLoader


class Trainer():
    """
        Class for training XFeat with default params as described in the paper.
        We use a blend of MegaDepth (labeled) pairs with synthetically warped images (self-supervised).
        The major bottleneck is to keep loading huge megadepth h5 files from disk, 
        the network training itself is quite fast.
    """

    def __init__(self, megadepth_root_path, 
                       synthetic_root_path, 
                       ckpt_save_path, 
                       model_name = 'xfeat_default',
                       batch_size = 10, n_steps = 160_000, lr= 3e-4, gamma_steplr=0.5, 
                       training_res = (800, 608), device_num="0", dry_run = False,
                       save_ckpt_every = 500):

        self.dev = torch.device ('cuda' if torch.cuda.is_available() else 'cpu')
        self.net = XFeatModel().to(self.dev)

        #Setup optimizer 
        self.batch_size = batch_size
        self.steps = n_steps
        self.opt = optim.Adam(filter(lambda x: x.requires_grad, self.net.parameters()) , lr = lr)
        self.scheduler = torch.optim.lr_scheduler.StepLR(self.opt, step_size=30_000, gamma=gamma_steplr)

        ##################### Synthetic COCO INIT ##########################
        if model_name in ('xfeat_default', 'xfeat_synthetic'):
            self.augmentor = AugmentationPipe(
                                        img_dir = synthetic_root_path,
                                        device = self.dev, load_dataset = True,
                                        batch_size = int(self.batch_size * 0.4 if model_name=='xfeat_default' else batch_size),
                                        out_resolution = training_res, 
                                        warp_resolution = training_res,
                                        sides_crop = 0.1,
                                        max_num_imgs = 3_000,
                                        num_test_imgs = 5,
                                        photometric = True,
                                        geometric = True,
                                        reload_step = 4_000
                                        )
        else:
            self.augmentor = None
        ##################### Synthetic COCO END #######################


        ##################### MEGADEPTH INIT ##########################
        if model_name in ('xfeat_default', 'xfeat_megadepth'):
            TRAIN_BASE_PATH = f"{megadepth_root_path}/train_data/megadepth_indices"
            TRAINVAL_DATA_SOURCE = f"{megadepth_root_path}/MegaDepth_v1"

            TRAIN_NPZ_ROOT = f"{TRAIN_BASE_PATH}/scene_info_0.1_0.7"

            npz_paths = glob.glob(TRAIN_NPZ_ROOT + '/*.npz')[:]
            data = torch.utils.data.ConcatDataset( [MegaDepthDataset(root_dir = TRAINVAL_DATA_SOURCE,
                            npz_path = path) for path in tqdm.tqdm(npz_paths, desc="[MegaDepth] Loading metadata")] )

            self.data_loader = DataLoader(data, 
                                          batch_size=int(self.batch_size * 0.6 if model_name=='xfeat_default' else batch_size),
                                          shuffle=True)
            self.data_iter = iter(self.data_loader)

        else:
            self.data_iter = None
        ##################### MEGADEPTH INIT END #######################

        os.makedirs(ckpt_save_path, exist_ok=True)
        os.makedirs(ckpt_save_path + '/logdir', exist_ok=True)

        self.dry_run = dry_run
        self.save_ckpt_every = save_ckpt_every
        self.ckpt_save_path = ckpt_save_path
        self.writer = SummaryWriter(ckpt_save_path + f'/logdir/{model_name}_' + time.strftime("%Y_%m_%d-%H_%M_%S"))
        self.model_name = model_name


    def train(self):

        self.net.train()

        difficulty = 0.10

        p1s, p2s, H1, H2 = None, None, None, None
        d = None

        if self.augmentor is not None:
            p1s, p2s, H1, H2 = make_batch(self.augmentor, difficulty)
        
        if self.data_iter is not None:
            d = next(self.data_iter)

        with tqdm.tqdm(total=self.steps) as pbar:
            for i in range(self.steps):
                if not self.dry_run:
                    if self.data_iter is not None:
                        try:
                            # Get the next MD batch
                            d = next(self.data_iter)

                        except StopIteration:
                            print("End of DATASET!")
                            # If StopIteration is raised, create a new iterator.
                            self.data_iter = iter(self.data_loader)
                            d = next(self.data_iter)

                    if self.augmentor is not None:
                        #Grab synthetic data
                        p1s, p2s, H1, H2 = make_batch(self.augmentor, difficulty)

                if d is not None:
                    for k in d.keys():
                        if isinstance(d[k], torch.Tensor):
                            d[k] = d[k].to(self.dev)
                
                    p1, p2 = d['image0'], d['image1']
                    positives_md_coarse = megadepth_warper.spvs_coarse(d, 8)

                if self.augmentor is not None:
                    h_coarse, w_coarse = p1s[0].shape[-2] // 8, p1s[0].shape[-1] // 8
                    _ , positives_s_coarse = get_corresponding_pts(p1s, p2s, H1, H2, self.augmentor, h_coarse, w_coarse)

                #Join megadepth & synthetic data
                with torch.inference_mode():
                    #RGB -> GRAY
                    if d is not None:
                        p1 = p1.mean(1, keepdim=True)
                        p2 = p2.mean(1, keepdim=True)
                    if self.augmentor is not None:
                        p1s = p1s.mean(1, keepdim=True)
                        p2s = p2s.mean(1, keepdim=True)

                    #Cat two batches
                    if self.model_name in ('xfeat_default'):
                        p1 = torch.cat([p1s, p1], dim=0)
                        p2 = torch.cat([p2s, p2], dim=0)
                        positives_c = positives_s_coarse + positives_md_coarse
                    elif self.model_name in ('xfeat_synthetic'):
                        p1 = p1s ; p2 = p2s
                        positives_c = positives_s_coarse
                    else:
                        positives_c = positives_md_coarse

                #Check if batch is corrupted with too few correspondences
                is_corrupted = False
                for p in positives_c:
                    if len(p) < 30:
                        is_corrupted = True

                if is_corrupted:
                    continue

                #Forward pass
                feats1, kpts1, hmap1 = self.net(p1)
                feats2, kpts2, hmap2 = self.net(p2)

                loss_items = []

                for b in range(len(positives_c)):
                    #Get positive correspondencies
                    pts1, pts2 = positives_c[b][:, :2], positives_c[b][:, 2:]

                    #Grab features at corresponding idxs
                    m1 = feats1[b, :, pts1[:,1].long(), pts1[:,0].long()].permute(1,0)
                    m2 = feats2[b, :, pts2[:,1].long(), pts2[:,0].long()].permute(1,0)

                    #grab heatmaps at corresponding idxs
                    h1 = hmap1[b, 0, pts1[:,1].long(), pts1[:,0].long()]
                    h2 = hmap2[b, 0, pts2[:,1].long(), pts2[:,0].long()]
                    coords1 = self.net.fine_matcher(torch.cat([m1, m2], dim=-1))

                    #Compute losses
                    loss_ds, conf = dual_softmax_loss(m1, m2)
                    loss_coords, acc_coords = coordinate_classification_loss(coords1, pts1, pts2, conf)

                    loss_kp_pos1, acc_pos1 = alike_distill_loss(kpts1[b], p1[b])
                    loss_kp_pos2, acc_pos2 = alike_distill_loss(kpts2[b], p2[b])
                    loss_kp_pos = (loss_kp_pos1 + loss_kp_pos2)*2.0
                    acc_pos = (acc_pos1 + acc_pos2)/2

                    loss_kp =  keypoint_loss(h1, conf) + keypoint_loss(h2, conf)

                    loss_items.append(loss_ds.unsqueeze(0))
                    loss_items.append(loss_coords.unsqueeze(0))
                    loss_items.append(loss_kp.unsqueeze(0))
                    loss_items.append(loss_kp_pos.unsqueeze(0))

                    if b == 0:
                        acc_coarse_0 = check_accuracy(m1, m2)

                acc_coarse = check_accuracy(m1, m2)

                nb_coarse = len(m1)
                loss = torch.cat(loss_items, -1).mean()
                loss_coarse = loss_ds.item()
                loss_coord = loss_coords.item()
                loss_coord = loss_coords.item()
                loss_kp_pos = loss_kp_pos.item()
                loss_l1 = loss_kp.item()

                # Compute Backward Pass
                loss.backward()
                torch.nn.utils.clip_grad_norm_(self.net.parameters(), 1.)
                self.opt.step()
                self.opt.zero_grad()
                self.scheduler.step()

                if (i+1) % self.save_ckpt_every == 0:
                    print('saving iter ', i+1)
                    torch.save(self.net.state_dict(), self.ckpt_save_path + f'/{self.model_name}_{i+1}.pth')

                pbar.set_description( 'Loss: {:.4f} acc_c0 {:.3f} acc_c1 {:.3f} acc_f: {:.3f} loss_c: {:.3f} loss_f: {:.3f} loss_kp: {:.3f} #matches_c: {:d} loss_kp_pos: {:.3f} acc_kp_pos: {:.3f}'.format(
                                                                        loss.item(), acc_coarse_0, acc_coarse, acc_coords, loss_coarse, loss_coord, loss_l1, nb_coarse, loss_kp_pos, acc_pos) )
                pbar.update(1)

                # Log metrics
                self.writer.add_scalar('Loss/total', loss.item(), i)
                self.writer.add_scalar('Accuracy/coarse_synth', acc_coarse_0, i)
                self.writer.add_scalar('Accuracy/coarse_mdepth', acc_coarse, i)
                self.writer.add_scalar('Accuracy/fine_mdepth', acc_coords, i)
                self.writer.add_scalar('Accuracy/kp_position', acc_pos, i)
                self.writer.add_scalar('Loss/coarse', loss_coarse, i)
                self.writer.add_scalar('Loss/fine', loss_coord, i)
                self.writer.add_scalar('Loss/reliability', loss_l1, i)
                self.writer.add_scalar('Loss/keypoint_pos', loss_kp_pos, i)
                self.writer.add_scalar('Count/matches_coarse', nb_coarse, i)



if __name__ == '__main__':

    trainer = Trainer(
        megadepth_root_path=args.megadepth_root_path, 
        synthetic_root_path=args.synthetic_root_path, 
        ckpt_save_path=args.ckpt_save_path,
        model_name=args.training_type,
        batch_size=args.batch_size,
        n_steps=args.n_steps,
        lr=args.lr,
        gamma_steplr=args.gamma_steplr,
        training_res=args.training_res,
        device_num=args.device_num,
        dry_run=args.dry_run,
        save_ckpt_every=args.save_ckpt_every
    )

    #The most fun part
    trainer.train()