File size: 17,372 Bytes
0a82b18 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 |
"""
"XFeat: Accelerated Features for Lightweight Image Matching, CVPR 2024."
https://www.verlab.dcc.ufmg.br/descriptors/xfeat_cvpr24/
Camera pose metrics adapted from LoFTR https://github.com/zju3dv/LoFTR/blob/master/src/utils/metrics.py
The main difference is the use of poselib instead of OpenCV's vanilla RANSAC for E_mat, which is more stable and MUCH and faster.
"""
import argparse
import numpy as np
import os
import cv2
from tqdm import tqdm
import json
import multiprocessing as mp
# Disable scientific notation
np.set_printoptions(suppress=True)
def intrinsics_to_camera(K):
px, py = K[0, 2], K[1, 2]
fx, fy = K[0, 0], K[1, 1]
return {
"model": "PINHOLE",
"width": int(2 * px),
"height": int(2 * py),
"params": [fx, fy, px, py],
}
def angle_error_vec(v1, v2):
n = np.linalg.norm(v1) * np.linalg.norm(v2)
return np.rad2deg(np.arccos(np.clip(np.dot(v1, v2) / n, -1.0, 1.0)))
def angle_error_mat(R1, R2):
cos = (np.trace(np.dot(R1.T, R2)) - 1) / 2
cos = np.clip(cos, -1., 1.) # numercial errors can make it out of bounds
return np.rad2deg(np.abs(np.arccos(cos)))
def compute_pose_error(T_0to1, R, t):
R_gt = T_0to1[:3, :3]
t_gt = T_0to1[:3, 3]
error_t = angle_error_vec(t, t_gt)
error_t = np.minimum(error_t, 180 - error_t) # ambiguity of E estimation
error_R = angle_error_mat(R, R_gt)
return error_t, error_R
def estimate_pose(kpts0, kpts1, K0, K1, thresh, conf=0.99999, type='poselib'):
if len(kpts0) < 5:
return None
if type == 'poselib':
import poselib
(pose,details) = poselib.estimate_relative_pose(
kpts0.tolist(),
kpts1.tolist(),
intrinsics_to_camera(K0),
intrinsics_to_camera(K1),
ransac_opt={
'max_iterations': 10000, # default 100000
'success_prob': conf, # default 0.99999
'max_epipolar_error': thresh, # default 1.0
},
bundle_opt={ # all defaults
},
)
ret = (pose.R, pose.t, details['inliers'])
elif type == 'opencv':
f_mean = np.mean([K0[0, 0], K1[1, 1], K0[0, 0], K1[1, 1]])
norm_thresh = thresh / f_mean
kpts0 = (kpts0 - K0[[0, 1], [2, 2]][None]) / K0[[0, 1], [0, 1]][None]
kpts1 = (kpts1 - K1[[0, 1], [2, 2]][None]) / K1[[0, 1], [0, 1]][None]
E, mask = cv2.findEssentialMat(
kpts0, kpts1, np.eye(3), threshold=norm_thresh, prob=conf,
method=cv2.RANSAC)
assert E is not None
best_num_inliers = 0
ret = None
for _E in np.split(E, len(E) / 3):
n, R, t, _ = cv2.recoverPose(
_E, kpts0, kpts1, np.eye(3), 1e9, mask=mask)
if n > best_num_inliers:
best_num_inliers = n
ret = (R, t[:, 0], mask.ravel() > 0)
else:
raise NotImplementedError
return ret
def estimate_pose_parallel(args):
return estimate_pose(*args)
def pose_auc(errors, thresholds):
sort_idx = np.argsort(errors)
errors = np.array(errors.copy())[sort_idx]
recall = (np.arange(len(errors)) + 1) / len(errors)
errors = np.r_[0., errors]
recall = np.r_[0., recall]
aucs = []
for t in thresholds:
last_index = np.searchsorted(errors, t)
r = np.r_[recall[:last_index], recall[last_index-1]]
e = np.r_[errors[:last_index], t]
aucs.append(np.trapz(r, x=e)/t)
return aucs
def pose_accuracy(errors, thresholds):
return [np.mean(errors < t) * 100 for t in thresholds]
def get_relative_transform(pose0, pose1):
R0 = pose0[..., :3, :3] # Bx3x3
t0 = pose0[..., :3, [3]] # Bx3x1
R1 = pose1[..., :3, :3] # Bx3x3
t1 = pose1[..., :3, [3]] # Bx3x1
R_0to1 = R1.transpose(-1, -2) @ R0 # Bx3x3
t_0to1 = R1.transpose(-1, -2) @ (t0 - t1) # Bx3x1
T_0to1 = np.concatenate([R_0to1, t_0to1], axis=-1) # Bx3x4
return T_0to1
class Scannet1500:
default_config = {
'scannet_path': os.path.abspath(os.path.join(os.path.dirname(__file__), '../../data/ScanNet/scannet_test_1500')),
'gt_path': os.path.abspath(os.path.join(os.path.dirname(__file__), '../../data/ScanNet/test.npz')),
'pose_estimator': 'poselib', # poselib, opencv
'cache_images': True,
'ransac_thresholds': [0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0],
'pose_thresholds': [5, 10, 20],
'max_pairs': -1,
'output': './output/scannet/',
'n_workers': 8,
}
def __init__(self, config={}) -> None:
self.config = {**self.default_config, **config}
if not os.path.exists(self.config['scannet_path']):
raise RuntimeError(
f"Dataset {self.config['scannet_path']} does not exist! \n \
> If you didn't download the dataset, use the downloader tool: python3 -m modules.dataset.download -h")
self.pairs = self.read_gt()
os.makedirs(self.config['output'], exist_ok=True)
if self.config['n_workers'] == -1:
self.config['n_workers'] = mp.cpu_count()
self.image_cache = {}
if self.config['cache_images']:
self.load_images()
def load_images(self):
for pair in tqdm(self.pairs, desc='Caching images'):
if pair['image0'] not in self.image_cache:
self.image_cache[pair['image0']] = cv2.imread(pair['image0'])
if pair['image1'] not in self.image_cache:
self.image_cache[pair['image1']] = cv2.imread(pair['image1'])
def read_image(self, path):
if self.config['cache_images']:
return self.image_cache[path]
else:
return cv2.imread(path)
def read_gt(self):
pairs = []
gt_poses = np.load(self.config['gt_path'])
names = gt_poses['name']
for i in range(len(names)):
scene_id = names[i, 0]
scene_idx = names[i, 1]
scene = f'scene{scene_id:04d}_{scene_idx:02d}'
image0 = str(int(names[i, 2]))
image1 = str(int(names[i, 3]))
K0 = np.loadtxt(
os.path.join(self.config['scannet_path'], 'scannet_test_1500', scene, 'intrinsic/intrinsic_color.txt')
)
K1 = K0
pose_0 = np.loadtxt(
os.path.join(self.config['scannet_path'], 'scannet_test_1500', scene, 'pose', image0 + '.txt')
)
pose_1 = np.loadtxt(
os.path.join(self.config['scannet_path'], 'scannet_test_1500', scene, 'pose', image1 + '.txt')
)
T_0to1 = get_relative_transform(pose_0, pose_1)
pairs.append({
'image0': os.path.join(self.config['scannet_path'], 'scannet_test_1500', scene, 'color', image0 + '.jpg'),
'image1': os.path.join(self.config['scannet_path'], 'scannet_test_1500', scene, 'color', image1 + '.jpg'),
'K0': K0,
'K1': K1,
'T_0to1': T_0to1,
})
return pairs
def extract_and_save_matches(self, matcher_fn, name='', force=False):
all_matches = []
if name == '':
name = matcher_fn.__name__
fname = os.path.join(self.config['output'], f'{name}_matches.npz')
if not force and os.path.exists(fname):
return np.load(fname, allow_pickle=True)['all_matches']
for pair in tqdm(self.pairs, desc='Extracting matches'):
image0 = self.read_image(pair['image0'])
image1 = self.read_image(pair['image1'])
mkpts0, mkpts1 = matcher_fn(image0, image1)
all_matches.append({
'image0': pair['image0'],
'image1': pair['image1'],
'mkpts0': mkpts0,
'mkpts1': mkpts1,
})
np.savez(fname, all_matches=all_matches)
return all_matches
def run_benchmark(self, matcher_fn, name='', force=False):
if name == '':
name = matcher_fn.__name__
all_matches = self.extract_and_save_matches(matcher_fn, name=name, force=force)
aucs_by_thresh = {}
accs_by_thresh = {}
for ransac_thresh in self.config['ransac_thresholds']:
fname = os.path.join(self.config['output'], f'{name}_{self.config["pose_estimator"]}_{ransac_thresh}.txt')
# check if exists and has the right number of lines
if not force and os.path.exists(fname) and len(open(fname, 'r').readlines()) == len(self.pairs):
errors = []
with open(fname, 'r') as f:
lines = f.readlines()
for line in lines:
line = line.replace('\n', '')
err_t, err_R = line.split(' ')
errors.append([float(err_t), float(err_R)])
# redo the benchmark
else:
errors = []
pairs = self.pairs
errors_file = open(fname, 'w')
# do the benchmark in parallel
if self.config['n_workers'] != 1:
pool = mp.Pool(self.config['n_workers'])
pool_args = [ (all_matches[pair_idx]['mkpts0'], all_matches[pair_idx]['mkpts1'], pair['K0'], pair['K1'], ransac_thresh) for pair_idx, pair in enumerate(pairs) ]
results = list(tqdm(pool.imap(estimate_pose_parallel, pool_args), total=len(pool_args), desc=f'Running benchmark for th={ransac_thresh}', leave=False))
pool.close()
for pair_idx, ret in enumerate(results):
if ret is None:
err_t, err_R = np.inf, np.inf
else:
R, t, inliers = ret
pair = pairs[pair_idx]
err_t, err_R = compute_pose_error(pair['T_0to1'], R, t)
errors_file.write(f'{err_t} {err_R}\n')
errors.append([err_t, err_R])
# do the benchmark in serial
else:
for pair_idx, pair in tqdm(enumerate(pairs), desc=f'Running benchmark for th={ransac_thresh}', leave=False, total=len(pairs)):
mkpts0 = all_matches[pair_idx]['mkpts0']
mkpts1 = all_matches[pair_idx]['mkpts1']
ret = estimate_pose(mkpts0, mkpts1, pair['K0'], pair['K1'], ransac_thresh)
if ret is None:
err_t, err_R = np.inf, np.inf
else:
R, t, inliers = ret
err_t, err_R = compute_pose_error(pair['T_0to1'], R, t)
errors_file.write(f'{err_t} {err_R}\n')
errors_file.flush()
errors.append([err_t, err_R])
errors_file.close()
# compute AUCs
errors = np.array(errors)
errors = errors.max(axis=1)
aucs = pose_auc(errors, self.config['pose_thresholds'])
accs = pose_accuracy(errors, self.config['pose_thresholds'])
aucs = {k: v*100 for k, v in zip(self.config['pose_thresholds'], aucs)}
accs = {k: v for k, v in zip(self.config['pose_thresholds'], accs)}
aucs_by_thresh[ransac_thresh] = aucs
accs_by_thresh[ransac_thresh] = accs
# dump summary for this method
summary = {
'name': name,
'aucs_by_thresh': aucs_by_thresh,
'accs_by_thresh': accs_by_thresh,
}
json.dump(summary, open(os.path.join(self.config['output'], f'{name}_{self.config["pose_estimator"]}_summary.json'), 'w'), indent=2)
return aucs_by_thresh
def get_xfeat():
from modules.xfeat import XFeat
xfeat = XFeat()
return xfeat.match_xfeat
def get_xfeat_star():
from modules.xfeat import XFeat
xfeat = XFeat(top_k=10_000)
return xfeat.match_xfeat_star
def get_alike():
from third_party import alike_wrapper as alike
return alike.match_alike
def print_fancy(d):
print(json.dumps(d, indent=2))
def parse():
parser = argparse.ArgumentParser()
parser.add_argument("--scannet_path", type=str, required=True, help="Path to the Scannet 1500 dataset")
parser.add_argument("--output", type=str, default="./output/scannet/", help="Path to the output directory")
parser.add_argument("--max_pairs", type=int, default=-1, help="Maximum number of pairs to run the benchmark on")
parser.add_argument("--force", action='store_true', help="Force running the benchmark again")
parser.add_argument("--pose_estimator", type=str, default='poselib', help="Which pose estimator to use: poselib, opencv", choices=['poselib', 'opencv'])
parser.add_argument("--show", action='store_true', help="Show the matches")
parser.add_argument("--accuracy", action='store_true', help="Show the accuracy instead of AUC")
parser.add_argument("--filter", type=str, nargs='+', help="Filter the results by the given names")
return parser.parse_args()
if __name__ == "__main__":
args = parse()
if not args.show:
scannet = Scannet1500({
'scannet_path': args.scannet_path,
'gt_path': args.scannet_path + "/test.npz",
'cache_images': False,
'output': args.output,
'max_pairs': args.max_pairs,
'pose_estimator': args.pose_estimator,
'ransac_thresholds': [0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0],
'n_workers': 8,
})
functions = {
'xfeat': get_xfeat(),
'xfeat_star': get_xfeat_star(),
'alike': get_alike(),
}
# save all results to a file
all_results = {}
for name, fn in functions.items():
print(name)
result = scannet.run_benchmark(matcher_fn = fn, name=name, force=args.force)
all_results[name] = result
json.dump(all_results, open(os.path.join(args.output, 'summary.json'), 'w'), indent=2)
if args.show:
import glob
import pandas as pd
dataset_name = 'scannet'
all_summary_files = glob.glob(os.path.join(args.output, "**_summary.json"), recursive=True)
if args.filter:
all_summary_files = [f for f in all_summary_files if any([fil in f for fil in args.filter])]
dfs = []
names = []
estimators = []
metric_key = 'aucs_by_thresh'
if args.accuracy:
metric_key = 'accuracies_by_thresh'
for summary in all_summary_files:
summary_data = json.load(open(summary, 'r'))
if metric_key not in summary_data:
continue
aucs_by_thresh = summary_data[metric_key]
estimator = 'poselib'
if 'opencv' in summary:
estimator = 'opencv'
#make sure everything is float
for thresh in aucs_by_thresh:
for k in aucs_by_thresh[thresh]:
if isinstance(aucs_by_thresh[thresh][k], str):
aucs_by_thresh[thresh][k] = float(aucs_by_thresh[thresh][k].replace(' ', ''))
# find best threshold based on the 5, 10, 20 mAP and everything is float
df = pd.DataFrame(aucs_by_thresh).T.astype(float)
df['mean'] = df.mean(axis=1)
# create a string column called estimator
cols = df.columns.tolist()
dfs.append(df)
names.append(summary_data['name'])
estimators.append(estimator)
# use each col as the main col to determine the best threshold
# for col in cols:
col = 'mean'
final_df = pd.DataFrame()
# add cols
final_df['name'] = names
final_df['best_thresh'] = ''
final_df['estimator'] = estimators
final_df[cols] = -1.0
for df, name, estimator in zip(dfs, names, estimators):
best_thresh = df[col].idxmax()
best_results = df.loc[best_thresh]
# now update the best_thresh based on the estimator
final_df.loc[(final_df['name'] == name) & (final_df['estimator'] == estimator), 'best_thresh'] = best_thresh
for _col in cols:
final_df.loc[(final_df['name'] == name) & (final_df['estimator'] == estimator), _col] = best_results[_col]
# sort by mean
final_df = final_df.sort_values(by=['mean'])
# reset index
final_df = final_df.reset_index(drop=True)
# drop estimator column
final_df = final_df.drop(columns=['estimator'])
# set max float precision to 1
final_df = final_df.round(1)
print(f"Dataset: {dataset_name}")
print(f"Sorting by {col}")
print(final_df)
print()
final_df.to_csv(os.path.join(args.output, f"{dataset_name}_{col}.csv"), index=False)
|