File size: 17,372 Bytes
0a82b18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
"""
	"XFeat: Accelerated Features for Lightweight Image Matching, CVPR 2024."
	https://www.verlab.dcc.ufmg.br/descriptors/xfeat_cvpr24/

    Camera pose metrics adapted from LoFTR https://github.com/zju3dv/LoFTR/blob/master/src/utils/metrics.py
    The main difference is the use of poselib instead of OpenCV's vanilla RANSAC for E_mat, which is more stable and MUCH and faster.

"""

import argparse
import numpy as np
import os
import cv2
from tqdm import tqdm
import json
import multiprocessing as mp

# Disable scientific notation
np.set_printoptions(suppress=True)

def intrinsics_to_camera(K):
    px, py = K[0, 2], K[1, 2]
    fx, fy = K[0, 0], K[1, 1]
    return {
        "model": "PINHOLE",
        "width": int(2 * px),
        "height": int(2 * py),
        "params": [fx, fy, px, py],
    }

def angle_error_vec(v1, v2):
    n = np.linalg.norm(v1) * np.linalg.norm(v2)
    return np.rad2deg(np.arccos(np.clip(np.dot(v1, v2) / n, -1.0, 1.0)))

def angle_error_mat(R1, R2):
    cos = (np.trace(np.dot(R1.T, R2)) - 1) / 2
    cos = np.clip(cos, -1., 1.)  # numercial errors can make it out of bounds
    return np.rad2deg(np.abs(np.arccos(cos)))

def compute_pose_error(T_0to1, R, t):
    R_gt = T_0to1[:3, :3]
    t_gt = T_0to1[:3, 3]
    error_t = angle_error_vec(t, t_gt)
    error_t = np.minimum(error_t, 180 - error_t)  # ambiguity of E estimation
    error_R = angle_error_mat(R, R_gt)
    return error_t, error_R

def estimate_pose(kpts0, kpts1, K0, K1, thresh, conf=0.99999, type='poselib'):
    if len(kpts0) < 5:
        return None
    if type == 'poselib':
        import poselib
        (pose,details) = poselib.estimate_relative_pose(
            kpts0.tolist(), 
            kpts1.tolist(),
            intrinsics_to_camera(K0),
            intrinsics_to_camera(K1),
            ransac_opt={
                'max_iterations': 10000, # default 100000
                'success_prob': conf, # default 0.99999
                'max_epipolar_error': thresh, # default 1.0
            },
            bundle_opt={  # all defaults
                },
            )
        ret = (pose.R, pose.t, details['inliers'])

    elif type == 'opencv':
        f_mean = np.mean([K0[0, 0], K1[1, 1], K0[0, 0], K1[1, 1]])
        norm_thresh = thresh / f_mean

        kpts0 = (kpts0 - K0[[0, 1], [2, 2]][None]) / K0[[0, 1], [0, 1]][None]
        kpts1 = (kpts1 - K1[[0, 1], [2, 2]][None]) / K1[[0, 1], [0, 1]][None]

        E, mask = cv2.findEssentialMat(
            kpts0, kpts1, np.eye(3), threshold=norm_thresh, prob=conf,
            method=cv2.RANSAC)

        assert E is not None

        best_num_inliers = 0
        ret = None
        for _E in np.split(E, len(E) / 3):
            n, R, t, _ = cv2.recoverPose(
                _E, kpts0, kpts1, np.eye(3), 1e9, mask=mask)
            if n > best_num_inliers:
                best_num_inliers = n
                ret = (R, t[:, 0], mask.ravel() > 0)
    else:
        raise NotImplementedError

    return ret

def estimate_pose_parallel(args):
    return estimate_pose(*args)

def pose_auc(errors, thresholds):
    sort_idx = np.argsort(errors)
    errors = np.array(errors.copy())[sort_idx]
    recall = (np.arange(len(errors)) + 1) / len(errors)
    errors = np.r_[0., errors]
    recall = np.r_[0., recall]
    aucs = []
    for t in thresholds:
        last_index = np.searchsorted(errors, t)
        r = np.r_[recall[:last_index], recall[last_index-1]]
        e = np.r_[errors[:last_index], t]
        aucs.append(np.trapz(r, x=e)/t)
    return aucs

def pose_accuracy(errors, thresholds):
    return [np.mean(errors < t) * 100 for t in thresholds]

def get_relative_transform(pose0, pose1):
    R0 = pose0[..., :3, :3] # Bx3x3
    t0 = pose0[..., :3, [3]] # Bx3x1

    R1 = pose1[..., :3, :3] # Bx3x3
    t1 = pose1[..., :3, [3]] # Bx3x1
    
    R_0to1 = R1.transpose(-1, -2) @ R0 # Bx3x3
    t_0to1 = R1.transpose(-1, -2) @ (t0 - t1) # Bx3x1
    T_0to1 = np.concatenate([R_0to1, t_0to1], axis=-1) # Bx3x4

    return T_0to1

class Scannet1500:
    default_config = {
        'scannet_path': os.path.abspath(os.path.join(os.path.dirname(__file__), '../../data/ScanNet/scannet_test_1500')),
        'gt_path': os.path.abspath(os.path.join(os.path.dirname(__file__), '../../data/ScanNet/test.npz')),
        'pose_estimator': 'poselib', # poselib, opencv
        'cache_images': True,
        'ransac_thresholds': [0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0],
        'pose_thresholds': [5, 10, 20],
        'max_pairs': -1,
        'output': './output/scannet/',
        'n_workers': 8,
    }

    def __init__(self, config={}) -> None:
        self.config = {**self.default_config, **config}
        if not os.path.exists(self.config['scannet_path']):
            raise RuntimeError(
                f"Dataset {self.config['scannet_path']} does not exist! \n \
                  > If you didn't download the dataset, use the downloader tool: python3 -m modules.dataset.download -h")
        
        self.pairs = self.read_gt()

        os.makedirs(self.config['output'], exist_ok=True)

        if self.config['n_workers'] == -1:
            self.config['n_workers'] = mp.cpu_count()

        self.image_cache = {}
        if self.config['cache_images']:
            self.load_images()

    def load_images(self):
        for pair in tqdm(self.pairs, desc='Caching images'):
            if pair['image0'] not in self.image_cache:
                self.image_cache[pair['image0']] = cv2.imread(pair['image0'])
            if pair['image1'] not in self.image_cache:
                self.image_cache[pair['image1']] = cv2.imread(pair['image1'])

    def read_image(self, path):
        if self.config['cache_images']:
            return self.image_cache[path]
        else:
            return cv2.imread(path)

    def read_gt(self):
        pairs = []
        gt_poses = np.load(self.config['gt_path'])
        names = gt_poses['name']
        
        for i in range(len(names)):
                scene_id = names[i, 0]
                scene_idx = names[i, 1]
                scene = f'scene{scene_id:04d}_{scene_idx:02d}'
            
                image0 = str(int(names[i, 2]))
                image1 = str(int(names[i, 3]))
                
                K0 = np.loadtxt(
                    os.path.join(self.config['scannet_path'], 'scannet_test_1500', scene,  'intrinsic/intrinsic_color.txt')
                )
                K1 = K0

                pose_0 = np.loadtxt(
                    os.path.join(self.config['scannet_path'], 'scannet_test_1500', scene, 'pose', image0 + '.txt')
                )
                pose_1 = np.loadtxt(
                    os.path.join(self.config['scannet_path'], 'scannet_test_1500', scene, 'pose', image1 + '.txt')
                )
                T_0to1 = get_relative_transform(pose_0, pose_1)
                
                pairs.append({
                    'image0': os.path.join(self.config['scannet_path'], 'scannet_test_1500', scene, 'color', image0 + '.jpg'),
                    'image1': os.path.join(self.config['scannet_path'], 'scannet_test_1500', scene, 'color', image1 + '.jpg'),
                    'K0': K0,
                    'K1': K1,
                    'T_0to1': T_0to1,
                })

        return pairs

    def extract_and_save_matches(self, matcher_fn, name='', force=False):
        all_matches = []
        if name == '':
            name = matcher_fn.__name__

        fname = os.path.join(self.config['output'], f'{name}_matches.npz')
        if not force and os.path.exists(fname):
            return np.load(fname, allow_pickle=True)['all_matches']

        for pair in tqdm(self.pairs, desc='Extracting matches'):
            image0 = self.read_image(pair['image0'])
            image1 = self.read_image(pair['image1'])
            mkpts0, mkpts1 = matcher_fn(image0, image1)

            all_matches.append({
                'image0': pair['image0'],
                'image1': pair['image1'],
                'mkpts0': mkpts0,
                'mkpts1': mkpts1,
            })
        
        np.savez(fname, all_matches=all_matches)
        
        return all_matches

    def run_benchmark(self, matcher_fn, name='', force=False):
        if name == '':
            name = matcher_fn.__name__

        all_matches = self.extract_and_save_matches(matcher_fn, name=name, force=force)

        aucs_by_thresh = {}
        accs_by_thresh = {}
        for ransac_thresh in self.config['ransac_thresholds']:

            fname = os.path.join(self.config['output'], f'{name}_{self.config["pose_estimator"]}_{ransac_thresh}.txt')
            # check if exists and has the right number of lines
            if not force and os.path.exists(fname) and len(open(fname, 'r').readlines()) == len(self.pairs):
                errors = []
                with open(fname, 'r') as f:
                    lines = f.readlines()
                    for line in lines:
                        line = line.replace('\n', '')
                        err_t, err_R = line.split(' ')
                        errors.append([float(err_t), float(err_R)])
            # redo the benchmark
            else:
                errors = []
                pairs = self.pairs
                errors_file = open(fname, 'w')

                # do the benchmark in parallel
                if self.config['n_workers'] != 1:

                    pool = mp.Pool(self.config['n_workers'])
                    pool_args = [ (all_matches[pair_idx]['mkpts0'], all_matches[pair_idx]['mkpts1'], pair['K0'], pair['K1'], ransac_thresh) for pair_idx, pair in enumerate(pairs) ]
                    results = list(tqdm(pool.imap(estimate_pose_parallel, pool_args), total=len(pool_args), desc=f'Running benchmark for th={ransac_thresh}', leave=False))
                    pool.close()
                    

                    for pair_idx, ret in enumerate(results):
                        if ret is None:
                            err_t, err_R = np.inf, np.inf
                        else:
                            R, t, inliers = ret
                            pair = pairs[pair_idx]
                            err_t, err_R = compute_pose_error(pair['T_0to1'], R, t)
                        errors_file.write(f'{err_t} {err_R}\n')
                        errors.append([err_t, err_R])
                # do the benchmark in serial
                else:
                    for pair_idx, pair in tqdm(enumerate(pairs), desc=f'Running benchmark for th={ransac_thresh}', leave=False, total=len(pairs)):
                        mkpts0 = all_matches[pair_idx]['mkpts0']
                        mkpts1 = all_matches[pair_idx]['mkpts1']
                        ret = estimate_pose(mkpts0, mkpts1, pair['K0'], pair['K1'], ransac_thresh)
                        if ret is None:
                            err_t, err_R = np.inf, np.inf
                        else:
                            R, t, inliers = ret
                            err_t, err_R = compute_pose_error(pair['T_0to1'], R, t)
                        errors_file.write(f'{err_t} {err_R}\n')
                        errors_file.flush()
                        errors.append([err_t, err_R])

                errors_file.close()

            # compute AUCs
            errors = np.array(errors)
            errors = errors.max(axis=1) 
            aucs = pose_auc(errors, self.config['pose_thresholds'])
            accs = pose_accuracy(errors, self.config['pose_thresholds'])
            aucs = {k: v*100 for k, v in zip(self.config['pose_thresholds'], aucs)}
            accs = {k: v for k, v in zip(self.config['pose_thresholds'], accs)}
            aucs_by_thresh[ransac_thresh] = aucs
            accs_by_thresh[ransac_thresh] = accs

            # dump summary for this method
            summary = {
                'name': name,
                'aucs_by_thresh': aucs_by_thresh,
                'accs_by_thresh': accs_by_thresh,
            }
            json.dump(summary, open(os.path.join(self.config['output'], f'{name}_{self.config["pose_estimator"]}_summary.json'), 'w'), indent=2)

        return aucs_by_thresh

def get_xfeat():
    from modules.xfeat import XFeat
    xfeat = XFeat()
    return xfeat.match_xfeat

def get_xfeat_star():
    from modules.xfeat import XFeat
    xfeat = XFeat(top_k=10_000)
    return xfeat.match_xfeat_star

def get_alike():
    from third_party import alike_wrapper as alike
    return alike.match_alike

def print_fancy(d):
    print(json.dumps(d, indent=2))

def parse():
    parser = argparse.ArgumentParser()
    
    parser.add_argument("--scannet_path", type=str, required=True, help="Path to the Scannet 1500 dataset")
    parser.add_argument("--output", type=str, default="./output/scannet/", help="Path to the output directory")
    parser.add_argument("--max_pairs", type=int, default=-1, help="Maximum number of pairs to run the benchmark on")
    parser.add_argument("--force", action='store_true', help="Force running the benchmark again")
    parser.add_argument("--pose_estimator", type=str, default='poselib', help="Which pose estimator to use: poselib, opencv", choices=['poselib', 'opencv'])
    
    parser.add_argument("--show", action='store_true', help="Show the matches")
    parser.add_argument("--accuracy", action='store_true', help="Show the accuracy instead of AUC")
    parser.add_argument("--filter", type=str, nargs='+', help="Filter the results by the given names")
    
    return parser.parse_args()

if __name__ == "__main__":
    args = parse()

    if not args.show:
        scannet = Scannet1500({
            'scannet_path': args.scannet_path,
            'gt_path': args.scannet_path + "/test.npz",
            'cache_images': False,
            'output': args.output,
            'max_pairs': args.max_pairs,
            'pose_estimator': args.pose_estimator,
            'ransac_thresholds': [0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0],
            'n_workers': 8,
        })

        functions = {
            'xfeat': get_xfeat(),
            'xfeat_star': get_xfeat_star(),
            'alike': get_alike(),
        }

        # save all results to a file
        all_results = {}

        for name, fn in functions.items():
            print(name)
            result = scannet.run_benchmark(matcher_fn = fn, name=name, force=args.force)
            all_results[name] = result

        json.dump(all_results, open(os.path.join(args.output, 'summary.json'), 'w'), indent=2)

    if args.show:
        import glob
        import pandas as pd
        dataset_name = 'scannet'
        all_summary_files = glob.glob(os.path.join(args.output, "**_summary.json"), recursive=True)

        if args.filter:
            all_summary_files = [f for f in all_summary_files if any([fil in f for fil in args.filter])]

        dfs = []
        names = []
        estimators = []
        metric_key = 'aucs_by_thresh'
        if args.accuracy:
            metric_key = 'accuracies_by_thresh'    
        for summary in all_summary_files:
            summary_data = json.load(open(summary, 'r'))
            if metric_key not in summary_data:
                continue
            aucs_by_thresh = summary_data[metric_key]

            estimator = 'poselib'
            if 'opencv' in summary:
                estimator = 'opencv'

            #make sure everything is float
            for thresh in aucs_by_thresh:
                for k in aucs_by_thresh[thresh]:
                    if isinstance(aucs_by_thresh[thresh][k], str):
                        aucs_by_thresh[thresh][k] = float(aucs_by_thresh[thresh][k].replace(' ', ''))

            # find best threshold based on the 5, 10, 20 mAP and everything is float
            df = pd.DataFrame(aucs_by_thresh).T.astype(float)
            df['mean'] = df.mean(axis=1)
            # create a string column called estimator
            cols = df.columns.tolist()
            dfs.append(df)
            names.append(summary_data['name'])
            estimators.append(estimator)

        # use each col as the main col to determine the best threshold
        # for col in cols:
        col = 'mean'

        final_df = pd.DataFrame()
        # add cols
        final_df['name'] = names
        final_df['best_thresh'] = ''
        final_df['estimator'] = estimators
        final_df[cols] = -1.0

        for df, name, estimator in zip(dfs, names, estimators):
            best_thresh = df[col].idxmax()
            best_results = df.loc[best_thresh]

            # now update the best_thresh based on the estimator
            final_df.loc[(final_df['name'] == name) & (final_df['estimator'] == estimator), 'best_thresh'] = best_thresh
            for _col in cols:
                final_df.loc[(final_df['name'] == name) & (final_df['estimator'] == estimator), _col] = best_results[_col]

        # sort by mean
        final_df = final_df.sort_values(by=['mean'])
        # reset index
        final_df = final_df.reset_index(drop=True)

        # drop estimator column
        final_df = final_df.drop(columns=['estimator'])

        # set max float precision to 1
        final_df = final_df.round(1)

        print(f"Dataset: {dataset_name}")
        print(f"Sorting by {col}")
        print(final_df)
        print()

        final_df.to_csv(os.path.join(args.output, f"{dataset_name}_{col}.csv"), index=False)