File size: 9,098 Bytes
0a82b18 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 |
"""
"XFeat: Accelerated Features for Lightweight Image Matching, CVPR 2024."
https://www.verlab.dcc.ufmg.br/descriptors/xfeat_cvpr24/
Camera pose metrics adapted from LoFTR https://github.com/zju3dv/LoFTR/blob/master/src/utils/metrics.py
The main difference is the use of poselib instead of OpenCV's vanilla RANSAC for E_mat, which is more stable and MUCH and faster.
"""
import argparse, glob, sys, os, time
import torch
from torch.utils.data import Dataset, DataLoader
import cv2
import numpy as np
import poselib
import json
import copy
import tqdm
# Disable scientific notation
np.set_printoptions(suppress=True)
class MegaDepth1500(Dataset):
"""
Streamlined MegaDepth-1500 dataloader. The camera poses & metadata are stored in a formatted json for facilitating
the download of the dataset and to keep the setup as simple as possible.
"""
def __init__(self, json_file, root_dir):
# Load the info & calibration from the JSON
with open(json_file, 'r') as f:
self.data = json.load(f)
self.root_dir = root_dir
if not os.path.exists(self.root_dir):
raise RuntimeError(
f"Dataset {self.root_dir} does not exist! \n \
> If you didn't download the dataset, use the downloader tool: python3 -m modules.dataset.download -h")
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
data = copy.deepcopy(self.data[idx])
h1, w1 = data['size0_hw']
h2, w2 = data['size1_hw']
# Here we resize the images to max_dim = 1200, as described in the paper, and adjust the image such that it is divisible by 32
# following the protocol of the LoFTR's Dataloader (intrinsics are corrected accordingly).
# For adapting this with different resolution, you would need to re-scale intrinsics below.
image0 = cv2.resize( cv2.imread(f"{self.root_dir}/{data['pair_names'][0]}"),
(w1, h1))
image1 = cv2.resize( cv2.imread(f"{self.root_dir}/{data['pair_names'][1]}"),
(w2, h2))
data['image0'] = torch.tensor(image0.astype(np.float32)/255).permute(2,0,1)
data['image1'] = torch.tensor(image1.astype(np.float32)/255).permute(2,0,1)
for k,v in data.items():
if k not in ('dataset_name', 'scene_id', 'pair_id', 'pair_names', 'size0_hw', 'size1_hw', 'image0', 'image1'):
data[k] = torch.tensor(np.array(v, dtype=np.float32))
return data
################################# Metrics #####################################
def relative_pose_error(T_0to1, R, t, ignore_gt_t_thr=0.0):
# angle error between 2 vectors
t_gt = T_0to1[:3, 3]
n = np.linalg.norm(t) * np.linalg.norm(t_gt)
t_err = np.rad2deg(np.arccos(np.clip(np.dot(t, t_gt) / n, -1.0, 1.0)))
t_err = np.minimum(t_err, 180 - t_err) # handle E ambiguity
if np.linalg.norm(t_gt) < ignore_gt_t_thr: # pure rotation is challenging
t_err = 0
# angle error between 2 rotation matrices
R_gt = T_0to1[:3, :3]
cos = (np.trace(np.dot(R.T, R_gt)) - 1) / 2
cos = np.clip(cos, -1., 1.) # handle numercial errors
R_err = np.rad2deg(np.abs(np.arccos(cos)))
return t_err, R_err
def intrinsics_to_camera(K):
px, py = K[0, 2], K[1, 2]
fx, fy = K[0, 0], K[1, 1]
return {
"model": "PINHOLE",
"width": int(2 * px),
"height": int(2 * py),
"params": [fx, fy, px, py],
}
def estimate_pose_poselib(kpts0, kpts1, K0, K1, thresh, conf=0.99999):
M, info = poselib.estimate_relative_pose(
kpts0, kpts1,
intrinsics_to_camera(K0),
intrinsics_to_camera(K1),
{"max_epipolar_error": thresh,
"success_prob": conf,
"min_iterations": 20,
"max_iterations": 1_000},
)
R, t, inl = M.R, M.t, info["inliers"]
inl = np.array(inl)
ret = (R, t, inl)
return ret, (kpts0, kpts1)
def tensor2bgr(t):
return (t.cpu()[0].permute(1,2,0).numpy()*255).astype(np.uint8)
def compute_pose_error(pair):
"""
Input:
pair (dict):{
"pts0": ndrray(N,2)
"pts1": ndrray(N,2)
"K0": ndrray(3,3)
"K1": ndrray(3,3)
"T_0to1": ndrray(4,4)
}
Update:
pair (dict):{
"R_err" List[float]: [N]
"t_err" List[float]: [N]
"inliers" List[np.ndarray]: [N]
}
"""
pixel_thr = 1.0 if 'ransac_thr' not in pair else pair['ransac_thr']
conf = 0.99999
pair.update({'R_err': np.inf, 't_err': np.inf, 'inliers': []})
pts0 = pair['pts0']
pts1 = pair['pts1']
K0 = pair['K0'].cpu().numpy()[0]
K1 = pair['K1'].cpu().numpy()[0]
T_0to1 = pair['T_0to1'].cpu().numpy()[0]
ret, corrs = estimate_pose_poselib(pts0, pts1, K0, K1, pixel_thr, conf=conf)
if ret is not None:
R, t, inliers = ret
t_err, R_err = relative_pose_error(T_0to1, R, t, ignore_gt_t_thr=0.0)
pair['R_err'] = R_err
pair['t_err'] = t_err
def error_auc(errors, thresholds=[5, 10, 20]):
"""
Args:
errors (list): [N,]
thresholds (list)
"""
errors = [0] + sorted(list(errors))
recall = list(np.linspace(0, 1, len(errors)))
aucs = []
for thr in thresholds:
last_index = np.searchsorted(errors, thr)
y = recall[:last_index] + [recall[last_index-1]]
x = errors[:last_index] + [thr]
aucs.append(np.trapz(y, x) / thr)
return {f'auc@{t}': auc for t, auc in zip(thresholds, aucs)}
def compute_maa(pairs, thresholds=[5, 10, 20]):
print("auc / mAcc on %d pairs" % (len(pairs)))
errors = []
for p in pairs:
et = p['t_err']
er = p['R_err']
errors.append(max(et, er))
d_err_auc = error_auc(errors)
for k,v in d_err_auc.items():
print(k, ': ', '%.1f'%(v*100))
errors = np.array(errors)
for t in thresholds:
acc = (errors <= t).sum() / len(errors)
print("mAcc@%d: %.1f "%(t, acc*100))
@torch.inference_mode()
def run_pose_benchmark(matcher_fn, loader, ransac_thr=2.5):
"""
Run relative pose estimation benchmark using a specified matcher function and data loader.
Parameters
----------
matcher_fn : callable
The matching function to be evaluated for pose estimation. It should accept two np.array RGB images (H,W,3)
and return mkpts_0, mkpts_1 which are np.array(N,2) matching coordinates.
loader : iterable
Data loader that provides batches of data. Each batch should contain two images, along
with their groundtruth camera poses.
ransac_thr : float, optional, default=2.5
The RANSAC threshold for considering a point as an inlier in pixels.
"""
pairs = []
cnt = 0
for d in tqdm.tqdm(loader):
d_error = {}
src_pts, dst_pts = matcher_fn(tensor2bgr(d['image0']), tensor2bgr(d['image1']))
#delete images to avoid OOM, happens in low mem machines
del d['image0']
del d['image1']
#rescale kpts
src_pts = src_pts * d['scale0'].numpy()
dst_pts = dst_pts * d['scale1'].numpy()
d.update({"pts0":src_pts, "pts1": dst_pts,'ransac_thr': ransac_thr})
compute_pose_error(d)
pairs.append(d)
cnt+=1
compute_maa(pairs)
def parse_args():
parser = argparse.ArgumentParser(description="Run pose benchmark with matcher")
parser.add_argument('--dataset-dir', type=str, required=True,
help="Path to MegaDepth dataset root")
parser.add_argument('--matcher', type=str, choices=['xfeat', 'xfeat-star', 'alike'], default='xfeat',
help="Matcher to use (xfeat or alike)")
parser.add_argument('--ransac-thr', type=float, default=2.5,
help="RANSAC threshold value in pixels (default: 2.5)")
return parser.parse_args()
if __name__ == '__main__':
args = parse_args()
dataset = MegaDepth1500( json_file = './assets/megadepth_1500.json',
root_dir = args.dataset_dir + "/megadepth_test_1500")
loader = DataLoader(dataset, batch_size=1, shuffle=False)
if args.matcher == 'xfeat':
print("Running benchmark for XFeat..")
from modules.xfeat import XFeat
xfeat = XFeat()
run_pose_benchmark(matcher_fn = xfeat.match_xfeat, loader = loader, ransac_thr = args.ransac_thr)
elif args.matcher == 'xfeat-star':
from modules.xfeat import XFeat
print("Running benchmark for XFeat*..")
xfeat = XFeat(top_k = 10_000)
run_pose_benchmark(matcher_fn = xfeat.match_xfeat_star, loader = loader, ransac_thr = args.ransac_thr)
elif args.matcher == 'alike':
from third_party import alike_wrapper as alike
print("Running benchmark for ALIKE..")
run_pose_benchmark(matcher_fn = alike.match_alike, loader = loader, ransac_thr = args.ransac_thr)
|