File size: 9,098 Bytes
0a82b18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
"""
	"XFeat: Accelerated Features for Lightweight Image Matching, CVPR 2024."
	https://www.verlab.dcc.ufmg.br/descriptors/xfeat_cvpr24/

    Camera pose metrics adapted from LoFTR https://github.com/zju3dv/LoFTR/blob/master/src/utils/metrics.py
    The main difference is the use of poselib instead of OpenCV's vanilla RANSAC for E_mat, which is more stable and MUCH and faster.
"""

import argparse, glob, sys, os, time
import torch
from torch.utils.data import Dataset, DataLoader
import cv2
import numpy as np
import poselib
import json
import copy

import tqdm

# Disable scientific notation
np.set_printoptions(suppress=True)

class MegaDepth1500(Dataset):
    """
        Streamlined MegaDepth-1500 dataloader. The camera poses & metadata are stored in a formatted json for facilitating 
        the download of the dataset and to keep the setup as simple as possible.
    """
    def __init__(self, json_file, root_dir):
        # Load the info & calibration from the JSON
        with open(json_file, 'r') as f:
            self.data = json.load(f)

        self.root_dir = root_dir

        if not os.path.exists(self.root_dir):
            raise RuntimeError(
            f"Dataset {self.root_dir} does not exist! \n \
              > If you didn't download the dataset, use the downloader tool: python3 -m modules.dataset.download -h")

    def __len__(self):
        return len(self.data)

    def __getitem__(self, idx):
        data = copy.deepcopy(self.data[idx])

        h1, w1 = data['size0_hw']
        h2, w2 = data['size1_hw']

        # Here we resize the images to max_dim = 1200, as described in the paper, and adjust the image such that it is divisible by 32
        # following the protocol of the LoFTR's Dataloader (intrinsics are corrected accordingly). 
        # For adapting this with different resolution, you would need to re-scale intrinsics below.
        image0 = cv2.resize( cv2.imread(f"{self.root_dir}/{data['pair_names'][0]}"),
                             (w1, h1))

        image1 = cv2.resize( cv2.imread(f"{self.root_dir}/{data['pair_names'][1]}"),
                             (w2, h2))

        data['image0'] = torch.tensor(image0.astype(np.float32)/255).permute(2,0,1)
        data['image1'] = torch.tensor(image1.astype(np.float32)/255).permute(2,0,1)

        for k,v in data.items():
            if k not in ('dataset_name', 'scene_id', 'pair_id', 'pair_names', 'size0_hw', 'size1_hw', 'image0', 'image1'):
                data[k] = torch.tensor(np.array(v, dtype=np.float32))

        return data


################################# Metrics #####################################

def relative_pose_error(T_0to1, R, t, ignore_gt_t_thr=0.0):
    # angle error between 2 vectors
    t_gt = T_0to1[:3, 3]
    n = np.linalg.norm(t) * np.linalg.norm(t_gt)
    t_err = np.rad2deg(np.arccos(np.clip(np.dot(t, t_gt) / n, -1.0, 1.0)))
    t_err = np.minimum(t_err, 180 - t_err)  # handle E ambiguity
    if np.linalg.norm(t_gt) < ignore_gt_t_thr:  # pure rotation is challenging
        t_err = 0

    # angle error between 2 rotation matrices
    R_gt = T_0to1[:3, :3]
    cos = (np.trace(np.dot(R.T, R_gt)) - 1) / 2
    cos = np.clip(cos, -1., 1.)  # handle numercial errors
    R_err = np.rad2deg(np.abs(np.arccos(cos)))

    return t_err, R_err


def intrinsics_to_camera(K):
    px, py = K[0, 2], K[1, 2]
    fx, fy = K[0, 0], K[1, 1]
    return {
        "model": "PINHOLE",
        "width": int(2 * px),
        "height": int(2 * py),
        "params": [fx, fy, px, py],
    }

def estimate_pose_poselib(kpts0, kpts1, K0, K1, thresh, conf=0.99999):
    M, info = poselib.estimate_relative_pose(
        kpts0, kpts1,
        intrinsics_to_camera(K0),
        intrinsics_to_camera(K1),
        {"max_epipolar_error": thresh,
         "success_prob": conf,
         "min_iterations": 20,
         "max_iterations": 1_000},
    )

    R, t, inl = M.R, M.t, info["inliers"]
    inl = np.array(inl)
    ret = (R, t, inl)

    return ret, (kpts0, kpts1)


def tensor2bgr(t):
    return (t.cpu()[0].permute(1,2,0).numpy()*255).astype(np.uint8)


def compute_pose_error(pair):
    """ 
    Input:
        pair (dict):{
            "pts0": ndrray(N,2)
            "pts1": ndrray(N,2)
            "K0": ndrray(3,3)
            "K1": ndrray(3,3)
            "T_0to1": ndrray(4,4)

        }
    Update:
        pair (dict):{
            "R_err" List[float]: [N]
            "t_err" List[float]: [N]
            "inliers" List[np.ndarray]: [N]
        }
    """
    pixel_thr = 1.0 if 'ransac_thr' not in pair else pair['ransac_thr']
    conf = 0.99999
    pair.update({'R_err':  np.inf, 't_err': np.inf, 'inliers': []})

    pts0 = pair['pts0']
    pts1 = pair['pts1']
    K0 = pair['K0'].cpu().numpy()[0]
    K1 = pair['K1'].cpu().numpy()[0]
    T_0to1 = pair['T_0to1'].cpu().numpy()[0]

    ret, corrs = estimate_pose_poselib(pts0, pts1, K0, K1, pixel_thr, conf=conf)

    if ret is not None:
        R, t, inliers = ret

        t_err, R_err = relative_pose_error(T_0to1, R, t, ignore_gt_t_thr=0.0)

        pair['R_err'] = R_err
        pair['t_err'] = t_err


def error_auc(errors, thresholds=[5, 10, 20]):
    """
    Args:
        errors (list): [N,]
        thresholds (list)
    """
    errors = [0] + sorted(list(errors))
    recall = list(np.linspace(0, 1, len(errors)))

    aucs = []

    for thr in thresholds:
        last_index = np.searchsorted(errors, thr)
        y = recall[:last_index] + [recall[last_index-1]]
        x = errors[:last_index] + [thr]
        aucs.append(np.trapz(y, x) / thr)

    return {f'auc@{t}': auc for t, auc in zip(thresholds, aucs)}

def compute_maa(pairs, thresholds=[5, 10, 20]):
    print("auc / mAcc on %d pairs" % (len(pairs)))
    errors = []

    for p in pairs:
        et = p['t_err']
        er = p['R_err']
        errors.append(max(et, er))

    d_err_auc = error_auc(errors)

    for k,v in d_err_auc.items():
        print(k, ': ', '%.1f'%(v*100))

    errors = np.array(errors)

    for t in thresholds:
        acc = (errors <= t).sum() / len(errors)
        print("mAcc@%d: %.1f "%(t, acc*100))
    

@torch.inference_mode()
def run_pose_benchmark(matcher_fn, loader, ransac_thr=2.5):
    """
        Run relative pose estimation benchmark using a specified matcher function and data loader.

        Parameters
        ----------
        matcher_fn : callable
            The matching function to be evaluated for pose estimation. It should accept two np.array RGB images (H,W,3)
            and return mkpts_0, mkpts_1 which are np.array(N,2) matching coordinates.
        
        loader : iterable
            Data loader that provides batches of data. Each batch should contain two images, along 
            with their groundtruth camera poses.
        
        ransac_thr : float, optional, default=2.5
            The RANSAC threshold for considering a point as an inlier in pixels.
    """


    pairs = []
    cnt = 0
    for d in tqdm.tqdm(loader):
        d_error = {}
        src_pts, dst_pts = matcher_fn(tensor2bgr(d['image0']), tensor2bgr(d['image1']))

        #delete images to avoid OOM, happens in low mem machines
        del d['image0']
        del d['image1']

        #rescale kpts
        src_pts = src_pts * d['scale0'].numpy()
        dst_pts = dst_pts * d['scale1'].numpy()
        d.update({"pts0":src_pts, "pts1": dst_pts,'ransac_thr': ransac_thr})
        compute_pose_error(d)
        pairs.append(d)
        cnt+=1

    compute_maa(pairs)

def parse_args():
    parser = argparse.ArgumentParser(description="Run pose benchmark with matcher")
    parser.add_argument('--dataset-dir', type=str, required=True,
                        help="Path to MegaDepth dataset root")
    parser.add_argument('--matcher', type=str, choices=['xfeat', 'xfeat-star', 'alike'], default='xfeat',
                        help="Matcher to use (xfeat or alike)")
    parser.add_argument('--ransac-thr', type=float, default=2.5,
                        help="RANSAC threshold value in pixels (default: 2.5)")
    return parser.parse_args()


if __name__ == '__main__':

    args = parse_args()

    dataset = MegaDepth1500( json_file = './assets/megadepth_1500.json',
                             root_dir =  args.dataset_dir + "/megadepth_test_1500")

    loader = DataLoader(dataset, batch_size=1, shuffle=False)

    if args.matcher == 'xfeat':
        print("Running benchmark for XFeat..")
        from modules.xfeat import XFeat
        xfeat = XFeat()
        run_pose_benchmark(matcher_fn = xfeat.match_xfeat, loader = loader, ransac_thr = args.ransac_thr)

    elif args.matcher == 'xfeat-star':
        from modules.xfeat import XFeat
        print("Running benchmark for XFeat*..")
        xfeat = XFeat(top_k = 10_000)
        run_pose_benchmark(matcher_fn = xfeat.match_xfeat_star, loader = loader, ransac_thr = args.ransac_thr)

    elif args.matcher == 'alike':
        from third_party import alike_wrapper as alike
        print("Running benchmark for ALIKE..")
        run_pose_benchmark(matcher_fn = alike.match_alike, loader = loader, ransac_thr = args.ransac_thr)