import torch import gradio as gr from transformers import pipeline # Use a pipeline as a high-level helper device = 0 if torch.cuda.is_available() else -1 text_summary = pipeline("summarization", model="Falconsai/text_summarization", device=device, torch_dtype=torch.bfloat16) def summary(input): # Adjust max_length and min_length for better summarization output = text_summary(input, max_length=200, min_length=50, truncation=True) return output[0]['summary_text'] gr.close_all() # Create the Gradio interface demo = gr.Interface( fn=summary, inputs=[gr.Textbox(label="INPUT THE PASSAGE TO SUMMARIZE", lines=10)], outputs=[gr.Textbox(label="SUMMARIZED TEXT", lines=4)], title="PAVISHINI @ GenAI Project 1: Text Summarizer", description="This application is used to summarize the text" ) demo.launch()