import torch import gradio as gr from transformers import pipeline # Use a pipeline as a high-level helper device = 0 if torch.cuda.is_available() else -1 text_summary = pipeline("summarization", model="Falconsai/text_summarization", device=device, torch_dtype=torch.bfloat16) def summary(input): # Calculate the number of tokens based on input length input_length = len(input.split()) max_output_tokens = max(20, input_length // 2) # Ensure output is less than half of the input min_output_tokens = max(10, input_length // 4) # Ensure a meaningful summary # Generate summary with dynamic token limits output = text_summary(input, max_length=max_output_tokens, min_length=min_output_tokens, truncation=True) return output[0]['summary_text'] gr.close_all() # Create the Gradio interface demo = gr.Interface( fn=summary, inputs=[gr.Textbox(label="INPUT THE PASSAGE TO SUMMARIZE", lines=10)], outputs=[gr.Textbox(label="SUMMARIZED TEXT", lines=4)], title="PAVISHINI @ GenAI Project 1: Text Summarizer", description="This application is used to summarize the text" ) demo.launch()