Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -7,8 +7,13 @@ device = 0 if torch.cuda.is_available() else -1
|
|
7 |
text_summary = pipeline("summarization", model="Falconsai/text_summarization", device=device, torch_dtype=torch.bfloat16)
|
8 |
|
9 |
def summary(input):
|
10 |
-
#
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
12 |
return output[0]['summary_text']
|
13 |
|
14 |
gr.close_all()
|
@@ -24,3 +29,4 @@ demo = gr.Interface(
|
|
24 |
|
25 |
demo.launch()
|
26 |
|
|
|
|
7 |
text_summary = pipeline("summarization", model="Falconsai/text_summarization", device=device, torch_dtype=torch.bfloat16)
|
8 |
|
9 |
def summary(input):
|
10 |
+
# Calculate the number of tokens based on input length
|
11 |
+
input_length = len(input.split())
|
12 |
+
max_output_tokens = max(20, input_length // 2) # Ensure output is less than half of the input
|
13 |
+
min_output_tokens = max(10, input_length // 4) # Ensure a meaningful summary
|
14 |
+
|
15 |
+
# Generate summary with dynamic token limits
|
16 |
+
output = text_summary(input, max_length=max_output_tokens, min_length=min_output_tokens, truncation=True)
|
17 |
return output[0]['summary_text']
|
18 |
|
19 |
gr.close_all()
|
|
|
29 |
|
30 |
demo.launch()
|
31 |
|
32 |
+
|