Update app.py
Browse files
app.py
CHANGED
@@ -1,73 +1,24 @@
|
|
1 |
import torch
|
2 |
import gradio as gr
|
3 |
from transformers import pipeline
|
4 |
-
import logging
|
5 |
-
|
6 |
-
# Set up logging
|
7 |
-
logging.basicConfig(level=logging.INFO)
|
8 |
|
9 |
# Use a pipeline as a high-level helper
|
10 |
device = 0 if torch.cuda.is_available() else -1
|
11 |
-
text_summary = pipeline("summarization", model="
|
12 |
-
|
13 |
-
# Function for summarization with enhancements
|
14 |
-
def summary(input, summary_type="medium"):
|
15 |
-
# Check for empty input
|
16 |
-
if not input.strip():
|
17 |
-
return "Error: Please provide some text to summarize."
|
18 |
-
|
19 |
-
# Calculate input length
|
20 |
-
input_length = len(input.split())
|
21 |
-
logging.info(f"Input length: {input_length} words")
|
22 |
-
|
23 |
-
# Handle input that's too short
|
24 |
-
if input_length < 10:
|
25 |
-
return "Error: Input is too short. Please provide at least 10 words."
|
26 |
|
27 |
-
|
28 |
-
|
29 |
-
return "Warning: Input exceeds the model's limit of 512 tokens. Please shorten the input text."
|
30 |
-
|
31 |
-
# Adjust max/min lengths based on the summary type
|
32 |
-
if summary_type == "short":
|
33 |
-
max_output_tokens = max(10, input_length // 4)
|
34 |
-
elif summary_type == "medium":
|
35 |
-
max_output_tokens = max(20, input_length // 2)
|
36 |
-
elif summary_type == "long":
|
37 |
-
max_output_tokens = max(30, (3 * input_length) // 4)
|
38 |
-
min_output_tokens = max(10, input_length // 6)
|
39 |
-
|
40 |
-
# Generate summary
|
41 |
-
output = text_summary(input, max_length=max_output_tokens, min_length=min_output_tokens, truncation=True)
|
42 |
return output[0]['summary_text']
|
43 |
|
44 |
-
# Function to save the output summary to a file
|
45 |
-
def save_summary(summary_text):
|
46 |
-
"""Save the summarized text to a file."""
|
47 |
-
with open("summary_output.txt", "w") as file:
|
48 |
-
file.write(summary_text)
|
49 |
-
return "Summary saved to 'summary_output.txt'."
|
50 |
-
|
51 |
-
# Gradio interface setup
|
52 |
gr.close_all()
|
53 |
|
54 |
# Create the Gradio interface
|
55 |
demo = gr.Interface(
|
56 |
fn=summary,
|
57 |
-
inputs=[
|
58 |
-
|
59 |
-
gr.Dropdown(["short", "medium", "long"], label="SUMMARY LENGTH", value="medium")
|
60 |
-
],
|
61 |
-
outputs=[
|
62 |
-
gr.Textbox(label="SUMMARIZED TEXT", lines=10, placeholder="Your summarized text will appear here."),
|
63 |
-
gr.Button("Save Summary", click=save_summary)
|
64 |
-
],
|
65 |
title="PAVISHINI @ GenAI Project 1: Text Summarizer",
|
66 |
-
description=
|
67 |
-
"This application summarizes input text. "
|
68 |
-
"The output length can be short, medium, or long based on your selection."
|
69 |
-
),
|
70 |
-
live=True
|
71 |
)
|
72 |
|
73 |
demo.launch()
|
|
|
1 |
import torch
|
2 |
import gradio as gr
|
3 |
from transformers import pipeline
|
|
|
|
|
|
|
|
|
4 |
|
5 |
# Use a pipeline as a high-level helper
|
6 |
device = 0 if torch.cuda.is_available() else -1
|
7 |
+
text_summary = pipeline("summarization", model="Falconsai/text_summarization",device=device,torch_dtype=torch.bfloat16)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
+
def summary(input):
|
10 |
+
output = text_summary(input)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
return output[0]['summary_text']
|
12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
gr.close_all()
|
14 |
|
15 |
# Create the Gradio interface
|
16 |
demo = gr.Interface(
|
17 |
fn=summary,
|
18 |
+
inputs=[gr.Textbox(label="INPUT THE PASSAGE TO SUMMARIZE", lines=10)],
|
19 |
+
outputs=[gr.Textbox(label="SUMMARIZED TEXT", lines=4)],
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
title="PAVISHINI @ GenAI Project 1: Text Summarizer",
|
21 |
+
description="This application is used to summarize the text"
|
|
|
|
|
|
|
|
|
22 |
)
|
23 |
|
24 |
demo.launch()
|