Update app.py
Browse files
app.py
CHANGED
|
@@ -5,47 +5,32 @@ from PIL import Image
|
|
| 5 |
|
| 6 |
# Load the trained model
|
| 7 |
model_path = "cifar_net.pth"
|
| 8 |
-
|
| 9 |
-
model =
|
| 10 |
-
model.load_state_dict(state_dict)
|
| 11 |
model.eval()
|
| 12 |
|
| 13 |
-
#
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
fn=classify_images,
|
| 39 |
-
inputs=inputs_image,
|
| 40 |
-
outputs=outputs_image,
|
| 41 |
-
title="CIFAR-10 Image Classifier",
|
| 42 |
-
description="Classify images into one of the CIFAR-10 classes.",
|
| 43 |
-
examples=[
|
| 44 |
-
['image_0.jpg'],
|
| 45 |
-
['image_1.jpg']
|
| 46 |
-
],
|
| 47 |
-
allow_flagging=False
|
| 48 |
-
)
|
| 49 |
-
|
| 50 |
-
if __name__ == "__main__":
|
| 51 |
-
interface_image.launch()
|
|
|
|
| 5 |
|
| 6 |
# Load the trained model
|
| 7 |
model_path = "cifar_net.pth"
|
| 8 |
+
|
| 9 |
+
model = torch.load(model_path)
|
|
|
|
| 10 |
model.eval()
|
| 11 |
|
| 12 |
+
# Prepare the image for prediction
|
| 13 |
+
image_path = 'download.jpg'
|
| 14 |
+
image = Image.open(image_path)
|
| 15 |
+
|
| 16 |
+
# Transform the image to match CIFAR-10 format
|
| 17 |
+
transform = transforms.Compose([
|
| 18 |
+
transforms.Resize((32, 32)),
|
| 19 |
+
transforms.ToTensor(),
|
| 20 |
+
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) # Normalize with CIFAR-10 mean and std
|
| 21 |
+
])
|
| 22 |
+
input_image = transform(image).unsqueeze(0)
|
| 23 |
+
|
| 24 |
+
# Make predictions
|
| 25 |
+
with torch.no_grad():
|
| 26 |
+
outputs = model(input_image)
|
| 27 |
+
|
| 28 |
+
# Retrieve the predicted class label
|
| 29 |
+
_, predicted = torch.max(outputs, 1)
|
| 30 |
+
class_index = predicted.item()
|
| 31 |
+
|
| 32 |
+
# Load the CIFAR-10 class labels
|
| 33 |
+
classes = ['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck']
|
| 34 |
+
|
| 35 |
+
# Print the predicted class label
|
| 36 |
+
print('Predicted class label:', classes[class_index])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|