Update app.py
Browse files
app.py
CHANGED
@@ -3,37 +3,65 @@ import torch
|
|
3 |
import torchvision.transforms as transforms
|
4 |
from PIL import Image
|
5 |
|
6 |
-
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
-
state_dict = torch.load(model_path)
|
10 |
|
11 |
-
|
12 |
-
|
13 |
-
model.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
-
# Prepare the image for prediction
|
16 |
-
image_path = 'download.jpg'
|
17 |
-
image = Image.open(image_path)
|
18 |
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) # Normalize with CIFAR-10 mean and std
|
24 |
-
])
|
25 |
-
input_image = transform(image).unsqueeze(0)
|
26 |
-
|
27 |
-
# Make predictions
|
28 |
-
with torch.no_grad():
|
29 |
-
outputs = model(input_image)
|
30 |
-
|
31 |
-
# Retrieve the predicted class label
|
32 |
-
_, predicted = torch.max(outputs, 1)
|
33 |
-
class_index = predicted.item()
|
34 |
-
|
35 |
-
# Load the CIFAR-10 class labels
|
36 |
-
classes = ['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck']
|
37 |
-
|
38 |
-
# Print the predicted class label
|
39 |
-
print('Predicted class label:', classes[class_index])
|
|
|
3 |
import torchvision.transforms as transforms
|
4 |
from PIL import Image
|
5 |
|
6 |
+
file_urls = [
|
7 |
+
"https://www.bing.com/images/search?view=detailV2&ccid=YaFiK%2bN6&id=D84622E2396A39F168D279F32AC31F05096187AB&thid=OIP.YaFiK-N6iDdJR6B6DMBHpgHaFj&mediaurl=https%3a%2f%2fwww.practicalcaravan.com%2fwp-content%2fuploads%2f2016%2f03%2f5907569-scaled.jpg&exph=1921&expw=2560&q=audi+a4+car+image&simid=608053806389945942&FORM=IRPRST&ck=7DDB4BC7AA27F8E3EDA4433E669D3CC4&selectedIndex=6&ajaxhist=0&ajaxserp=0","https://www.bing.com/images/search?view=detailV2&ccid=CHONQxwQ&id=B8BCD1A5420658017C772CF149AFB7D24F2F8322&thid=OIP.CHONQxwQrclsFp-VXh4aOQHaFD&mediaurl=https%3a%2f%2fs3-eu-west-1.amazonaws.com%2feurekar-v2%2fuploads%2fimages%2foriginal%2fa4salfront.jpg&exph=1025&expw=1500&q=audi+a4+car+image&simid=608024308599848180&FORM=IRPRST&ck=3A2EA226332024ECB13B2F27682C15CA&selectedIndex=3&ajaxhist=0&ajaxserp=0"
|
8 |
+
]
|
9 |
+
|
10 |
+
def download_file(url, save_name):
|
11 |
+
url = url
|
12 |
+
if not os.path.exists(save_name):
|
13 |
+
file = requests.get(url)
|
14 |
+
open(save_name, 'wb').write(file.content)
|
15 |
+
|
16 |
+
for i, url in enumerate(file_urls):
|
17 |
+
if 'mp4' in file_urls[i]:
|
18 |
+
download_file(
|
19 |
+
file_urls[i],
|
20 |
+
f"video.mp4"
|
21 |
+
)
|
22 |
+
else:
|
23 |
+
download_file(
|
24 |
+
file_urls[i],
|
25 |
+
f"image_{i}.jpg"
|
26 |
+
)
|
27 |
+
|
28 |
+
model = 'cifar_net.pth'
|
29 |
+
path = [['image_0.jpg'], ['image_1.jpg']]
|
30 |
+
video_path = [['video.mp4']]
|
31 |
|
|
|
32 |
|
33 |
+
def show_preds_image(image_path):
|
34 |
+
image = cv2.imread(image_path)
|
35 |
+
outputs = model.predict(source=image_path)
|
36 |
+
results = outputs[0].cpu().numpy()
|
37 |
+
for i, det in enumerate(results.boxes.xyxy):
|
38 |
+
cv2.rectangle(
|
39 |
+
image,
|
40 |
+
(int(det[0]), int(det[1])),
|
41 |
+
(int(det[2]), int(det[3])),
|
42 |
+
color=(0, 0, 255),
|
43 |
+
thickness=2,
|
44 |
+
lineType=cv2.LINE_AA
|
45 |
+
)
|
46 |
+
return cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
47 |
+
|
48 |
+
inputs_image = [
|
49 |
+
gr.components.Image(type="filepath", label="Input Image"),
|
50 |
+
]
|
51 |
+
outputs_image = [
|
52 |
+
gr.components.Image(type="numpy", label="Output Image"),
|
53 |
+
]
|
54 |
+
interface_image = gr.Interface(
|
55 |
+
fn=show_preds_image,
|
56 |
+
inputs=inputs_image,
|
57 |
+
outputs=outputs_image,
|
58 |
+
title="Car detector",
|
59 |
+
examples=path,
|
60 |
+
cache_examples=False,
|
61 |
+
)
|
62 |
|
|
|
|
|
|
|
63 |
|
64 |
+
gr.TabbedInterface(
|
65 |
+
[interface_image],
|
66 |
+
tab_names=['Image inference']
|
67 |
+
).queue().launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|