File size: 1,492 Bytes
6a922b2
 
 
 
 
 
 
 
f4545ae
 
6a922b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import gradio as gr
import torch
import torchvision.transforms as transforms
from PIL import Image

# Load the trained model
model_path = "cifar_net.pth"
model = torch.load(model_path, map_location=torch.device('cpu'))
model = YourModelClass()  # Replace YourModelClass with the appropriate model class
model.load_state_dict(state_dict)
model.eval()

# Define class labels for CIFAR-10
classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck')

def classify_image(image):
    transform = transforms.Compose([
        transforms.ToTensor(),
        transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))
    ])

    # Preprocess the input image
    image = transform(image).unsqueeze(0)

    # Perform inference with the model
    outputs = model(image)
    _, predicted = torch.max(outputs, 1)
    predicted_class = classes[predicted.item()]

    return predicted_class

def classify_images(images):
    return [classify_image(image) for image in images]

inputs_image = gr.inputs.Image(label="Input Image", type="pil")
outputs_image = gr.outputs.Label(label="Predicted Class")
interface_image = gr.Interface(
    fn=classify_images,
    inputs=inputs_image,
    outputs=outputs_image,
    title="CIFAR-10 Image Classifier",
    description="Classify images into one of the CIFAR-10 classes.",
    examples=[
        ['image_0.jpg'], 
        ['image_1.jpg']
    ],
    allow_flagging=False
)

if __name__ == "__main__":
    interface_image.launch()