Spaces:
Sleeping
Sleeping
# Facial expression classifier | |
import os | |
from fastai.vision.all import * | |
import gradio as gr | |
# Emotion | |
learn_emotion = load_learner('emotions_vgg19.pkl') | |
learn_emotion_labels = learn_emotion.dls.vocab | |
# Predict | |
def predict(img): | |
img = PILImage.create(img) | |
pred_emotion, pred_emotion_idx, probs_emotion = learn_emotion.predict(img) | |
predicted_emotion = learn_emotion_labels[pred_emotion_idx] | |
return predicted_emotion | |
# Gradio | |
title = "Facial Emotion Detector" | |
description = gr.Markdown( | |
"""Ever wondered what a person might be feeling looking at their picture? | |
Well, now you can! Try this fun app. Just upload a facial image in JPG or | |
PNG format. You can now see what they might have felt when the picture | |
was taken. | |
**Tip**: Be sure to only include face to get best results. Check some sample images | |
below for inspiration!""").value | |
article = gr.Markdown( | |
"""**DISCLAIMER:** This model does not reveal the actual emotional state of a person. Use and | |
interpret results at your own risk!. | |
**PREMISE:** The idea is to determine an overall emotion of a person | |
based on the pictures. We are restricting pictures to only include close-up facial | |
images. | |
**DATA:** FER2013 dataset consists of 48x48 pixel grayscale images of faces.Images | |
are assigned one of the 7 emotions: Angry, Disgust, Fear, Happy, Sad, Surprise, and Neutral. | |
""").value | |
enable_queue=True | |
examples = ['happy1.jpg', 'happy2.jpg', 'angry1.png', 'angry2.jpg', 'neutral1.jpg', 'neutral2.jpg'] | |
gr.Interface(fn = predict, | |
inputs = gr.Image( image_mode='L'), | |
outputs = [gr.Label(label='Emotion')], #gr.Label(), | |
title = title, | |
examples = examples, | |
description = description, | |
article=article, | |
allow_flagging='never').launch() | |