File size: 9,027 Bytes
92f0e98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
import torch, argparse, sys, os, numpy
from .sampler import FixedRandomSubsetSampler, FixedSubsetSampler
from torch.utils.data import DataLoader
from torchvision import transforms
from . import pbar
from . import zdataset
from . import segmenter
from . import frechet_distance
from . import parallelfolder


NUM_OBJECTS=336

def main():
    parser = argparse.ArgumentParser(description='Net dissect utility',
            prog='python -m %s.fsd' % __package__)
    parser.add_argument('true_dir')
    parser.add_argument('gen_dir')
    parser.add_argument('--size', type=int, default=10000)
    parser.add_argument('--cachedir', default=None)
    parser.add_argument('--histout', default=None)
    parser.add_argument('--maxscale', type=float, default=50)
    parser.add_argument('--labelcount', type=int, default=30)
    parser.add_argument('--dpi', type=float, default=100)
    if len(sys.argv) == 1:
        parser.print_usage(sys.stderr)
        sys.exit(1)
    args = parser.parse_args()
    true_dir, gen_dir = args.true_dir, args.gen_dir
    seed1, seed2 = [1, 1 if true_dir != gen_dir else 2]
    true_tally, gen_tally = [
            cached_tally_directory(d, size=args.size, cachedir=args.cachedir,
                seed=seed)
            for d, seed in [(true_dir, seed1), (gen_dir, seed2)]]
    fsd, meandiff, covdiff = frechet_distance.sample_frechet_distance(
            true_tally * 100, gen_tally * 100, return_components=True)
    print('fsd: %f; meandiff: %f; covdiff: %f' % (fsd, meandiff, covdiff))
    if args.histout is not None:
        diff_figure(true_tally * 100, gen_tally * 100,
                labelcount=args.labelcount,
                maxscale=args.maxscale,
                dpi=args.dpi
                ).savefig(args.histout)

def cached_tally_directory(directory, size=10000, cachedir=None, seed=1,
        download_from=None):
    basename = ('%s_segtally_%d.npy' % (directory, size)).replace('/', '_')
    if seed != 1:
        basename = '%d_%s' % (seed, basename)
    if cachedir is not None:
        filename = os.path.join(cachedir, basename.replace('/', '_'))
    else:
        filename = basename
    if not os.path.isfile(filename) and download_from:
        from urllib.request import urlretrieve
        from urllib.parse import urljoin
        with pbar.reporthook() as hook:
            urlretrieve(urljoin(download_from, basename), filename,
                    reporthook=hook)
    if os.path.isfile(filename):
        return numpy.load(filename)
    os.makedirs(cachedir, exist_ok=True)
    result = tally_directory(directory, size, seed=seed)
    numpy.save(filename, result)
    return result

def tally_directory(directory, size=10000, seed=1):
    dataset = parallelfolder.ParallelImageFolders(
                [directory],
                transform=transforms.Compose([
                    transforms.Resize(256),
                    transforms.CenterCrop(256),
                    transforms.ToTensor(),
                    transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
                    ]))
    loader = DataLoader(dataset,
                        sampler=FixedRandomSubsetSampler(dataset, end=size,
                            seed=seed),
                        batch_size=10, pin_memory=True)
    upp = segmenter.UnifiedParsingSegmenter()
    labelnames, catnames = upp.get_label_and_category_names()
    result = numpy.zeros((size, NUM_OBJECTS), dtype=numpy.float)
    batch_result = torch.zeros(loader.batch_size, NUM_OBJECTS,
            dtype=torch.float).cuda()
    with torch.no_grad():
        batch_index = 0
        for [batch] in pbar(loader):
            seg_result = upp.segment_batch(batch.cuda())
            for i in range(len(batch)):
                batch_result[i] = (
                    seg_result[i,0].view(-1).bincount(
                        minlength=NUM_OBJECTS).float()
                    / (seg_result.shape[2] * seg_result.shape[3])
                )
            result[batch_index:batch_index+len(batch)] = (
                    batch_result.cpu().numpy())
            batch_index += len(batch)
    return result

def tally_dataset_objects(dataset, size=10000):
    loader = DataLoader(dataset,
                        sampler=FixedRandomSubsetSampler(dataset, end=size),
                        batch_size=10, pin_memory=True)
    upp = segmenter.UnifiedParsingSegmenter()
    labelnames, catnames = upp.get_label_and_category_names()
    result = numpy.zeros((size, NUM_OBJECTS), dtype=numpy.float)
    batch_result = torch.zeros(loader.batch_size, NUM_OBJECTS,
            dtype=torch.float).cuda()
    with torch.no_grad():
        batch_index = 0
        for [batch] in pbar(loader):
            seg_result = upp.segment_batch(batch.cuda())
            for i in range(len(batch)):
                batch_result[i] = (
                    seg_result[i,0].view(-1).bincount(
                        minlength=NUM_OBJECTS).float()
                    / (seg_result.shape[2] * seg_result.shape[3])
                )
            result[batch_index:batch_index+len(batch)] = (
                    batch_result.cpu().numpy())
            batch_index += len(batch)
    return result

def tally_generated_objects(model, size=10000):
    zds = zdataset.z_dataset_for_model(model, size)
    loader = DataLoader(zds, batch_size=10, pin_memory=True)
    upp = segmenter.UnifiedParsingSegmenter()
    labelnames, catnames = upp.get_label_and_category_names()
    result = numpy.zeros((size, NUM_OBJECTS), dtype=numpy.float)
    batch_result = torch.zeros(loader.batch_size, NUM_OBJECTS,
            dtype=torch.float).cuda()
    with torch.no_grad():
        batch_index = 0
        for [zbatch] in pbar(loader):
            img = model(zbatch.cuda())
            seg_result = upp.segment_batch(img)
            for i in range(len(zbatch)):
                batch_result[i] = (
                    seg_result[i,0].view(-1).bincount(
                        minlength=NUM_OBJECTS).float()
                    / (seg_result.shape[2] * seg_result.shape[3])
                    )
            result[batch_index:batch_index+len(zbatch)] = (
                    batch_result.cpu().numpy())
            batch_index += len(zbatch)
    return result

def diff_figure(ttally, gtally,
              labelcount=30, labelleft=True, dpi=100,
              maxscale=50.0, legend=False):
    from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas
    from matplotlib.figure import Figure
    tresult, gresult = [t.mean(0) for t in [ttally, gtally]]
    upp = segmenter.UnifiedParsingSegmenter()
    labelnames, catnames = upp.get_label_and_category_names()
    x = []
    labels = []
    gen_amount = []
    change_frac = []
    true_amount = []
    for label in numpy.argsort(-tresult):
        if label == 0 or labelnames[label][1] == 'material':
            continue
        if tresult[label] == 0:
            break
        x.append(len(x))
        labels.append(labelnames[label][0].split()[0])
        true_amount.append(tresult[label].item())
        gen_amount.append(gresult[label].item())
        change_frac.append((float(gresult[label] - tresult[label])
                            / tresult[label]))
        if len(x) >= labelcount:
            break
    fig = Figure(dpi=dpi, figsize=(1.4 + 5.0 * labelcount / 30, 4.0))
    FigureCanvas(fig)
    a1, a0 = fig.subplots(2, 1, gridspec_kw = {'height_ratios':[1, 2]})
    a0.bar(x, change_frac, label='relative delta')
    a0.set_xticks(x)
    a0.set_xticklabels(labels, rotation='vertical')
    if labelleft:
        a0.set_ylabel('relative delta\n(gen - train) / train')
    a0.set_xlim(-1.0, len(x))
    a0.set_ylim([-1, 1.1])
    a0.grid(axis='y', antialiased=False, alpha=0.25)
    if legend:
        a0.legend(loc=2)
    prev_high = None
    for ix, cf in enumerate(change_frac):
        if cf > 1.15:
            if prev_high == (ix - 1):
                offset = 0.1
            else:
                offset = 0.0
                prev_high = ix
            a0.text(ix, 1.15 + offset,
                    '%.1f' % cf, horizontalalignment='center', size=6)

    a1.bar(x, true_amount, label='training')
    a1.plot(x, gen_amount, linewidth=3, color='red', label='generated')
    a1.set_yscale('log')
    a1.set_xlim(-1.0, len(x))
    a1.set_ylim(maxscale / 5000, maxscale)
    from matplotlib.ticker import LogLocator
    # a1.yaxis.set_major_locator(LogLocator(subs=(1,)))
    # a1.yaxis.set_minor_locator(LogLocator(subs=(1,), numdecs=10))
    # a1.yaxis.set_minor_locator(LogLocator(subs=(1,2,3,4,5,6,7,8,9)))
    # a1.yaxis.set_minor_locator(yminor_locator)
    if labelleft:
        a1.set_ylabel('mean area\nlog scale')
    if legend:
        a1.legend()
    a1.set_yticks([1e-2, 1e-1, 1.0, 1e+1])
    a1.set_yticks([a * b for a in [1e-2, 1e-1, 1.0, 1e+1] for b in range(1,10)
        if maxscale / 5000 <= a * b <= maxscale],
            True) # minor ticks.
    a1.set_xticks([])
    fig.tight_layout()
    return fig

if __name__ == '__main__':
    main()