File size: 12,645 Bytes
92f0e98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
import numpy, math
from . import customnet, nethook
from collections import OrderedDict
import torch.nn
import re
def make_over5_resnet(halfsize=False):
# A resnet with the global pooling layer replaced by a single 1x1
# conv layer, to produce a 512x8x8 featuremap. Also adds a leaky
# ReLU to better resemble the distribution of r produced by the GAN.
resnet_depth = 18
# Make an encoder model.
def change_out(layers):
numch = 512 if resnet_depth < 50 else 2048
ind = [i for i, (n, l) in enumerate(layers) if n == 'layer4'][0] + 1
layers[ind:] = [('layer5',
torch.nn.Sequential(OrderedDict([
('conv5', torch.nn.Conv2d(numch, 512, kernel_size=1)),
('relu5', torch.nn.LeakyReLU(
inplace=True, negative_slope=0.2))
])))]
return layers
encoder = customnet.CustomResNet(
resnet_depth, modify_sequence=change_out, halfsize=halfsize)
return encoder
class HybridLayerNormEncoder(torch.nn.Sequential):
def __init__(self, halfsize=False):
sequence = [
('resnet', make_over5_resnet(halfsize=halfsize)),
('inv4', LayerNormEncoder(512, 512)),
('inv3', LayerNormEncoder(512, 512, stride=2)),
('inv2', LayerNormEncoder(512, 512, skip_conv3=True)),
('inv1', Layer1toZNormEncoder())
]
super().__init__(OrderedDict(sequence))
class LayerNormEncoder(torch.nn.Sequential):
def __init__(self, chan_in, chan_out=None, stride=1,
skip_conv3=False, skip_pnorm=False):
if chan_out is None:
chan_out = chan_in
sequence = []
if not skip_pnorm:
sequence.append(('pnorm', PixelNormLayer()))
sequence.extend([
('conv1', torch.nn.Conv2d(chan_in, chan_out,
kernel_size=3, padding=1)),
('bn1', torch.nn.BatchNorm2d(chan_out)),
('relu1', torch.nn.LeakyReLU(inplace=True, negative_slope=0.2)),
('conv2', torch.nn.Conv2d(chan_out, chan_out,
kernel_size=3, padding=1)),
('bn2', torch.nn.BatchNorm2d(chan_out)),
('relu2', torch.nn.LeakyReLU(inplace=True, negative_slope=0.2)),
])
if not skip_conv3:
sequence.append(
('conv3', torch.nn.Conv2d(chan_out, chan_out,
kernel_size=1, padding=0, stride=stride)))
super().__init__(OrderedDict(sequence))
with torch.no_grad():
for n, p in self.named_parameters():
if n.endswith('.bias'):
p.zero_()
elif not n.startswith('bn'):
torch.nn.init.kaiming_normal_(p)
class Layer1toZNormEncoder(torch.nn.Sequential):
def __init__(self):
super().__init__(OrderedDict([
('pnorm', PixelNormLayer()),
('conv1', torch.nn.Conv2d(512, 512, kernel_size=4, padding=0)),
('bn1', torch.nn.BatchNorm2d(512)),
('relu1', torch.nn.LeakyReLU(inplace=True, negative_slope=0.2)),
('conv2', torch.nn.Conv2d(512, 512, kernel_size=1, padding=0)),
('pnormout', PixelNormLayer())
]))
with torch.no_grad():
for n, p in self.named_parameters():
if n.endswith('.bias'):
p.zero_()
elif not n.startswith('bn'):
torch.nn.init.kaiming_normal_(p)
class ResidualGenerator(nethook.InstrumentedModel):
'''
'''
def __init__(self, generator, z, residual_layers):
'''
ResidualGenerator(generator, z, ['z', 'layer1', 'layer2'])
Returns a model that computes generator(z), but which has
additional internal parameters dz, d1, d2, etc, that
adjust the computation so that the output of layerN is
adjusted by dN, for example, if a network normally computes
x = layer4(layer3(layer2(layer1(z)))), then specifying
the innermost three layers will cause this to compute:
x = layer4(d3 + layer3(d2 + layer2(d1 + layer1(dz + z))))
'''
# First temporarily hook the layers of the generator to
# collect initial values (and output shapes) of each layer.
with torch.no_grad(), nethook.InstrumentedModel(generator) as g:
g.retain_layers([n for n in residual_layers if n != 'z'])
init_out = g(z)
init_layers = g.retained_features()
init_layers['z'] = z
# Then, permanently hook the layers of the generator to add
# residual adjustments dz, d1, d2, etc at each layer.
super().__init__(generator)
for k, v in init_layers.items():
# layer3.conv1 -> 3_conv1, shortened name.
name = k.replace('layer', '', 1).replace('.', '_')
# 3_conv1 -> self.init_3_conv1, buffer with unperturbed value
self.register_buffer('init_%s' % name, v.clone())
# Add parameter 'dz', etc for any variable listed in residuals
if k in residual_layers:
# 3_conv1 -> self.d3_conv1, parameter initialized to 0
dname = 'd' + name
setattr(self, dname, torch.nn.Parameter(torch.zeros_like(v)))
# Change model to add self.d[name] after computing layer k.
if k != 'z':
self.edit_layer(k, add_adjustment, attr=dname)
def forward(self):
return super().forward(self.init_z + getattr(self, 'dz', 0))
class FixedGANPriorGenerator(nethook.InstrumentedModel):
'''
Combines the ideas of ResidualGenerator and GANPriorRUNetGenerator.
'''
def __init__(self, generator, z, additive=False):
self.additive = additive
# To begin with, we want to glue skip connections into our
# generator. Modify its 'forward' method to accept skip args.
generator = SkipAdjustedSequence(generator)
skip_layers = ['layer8', 'layer10', 'layer12', 'layer14']
# Gather some initial values programmatically with a temporary hook.
with torch.no_grad(), nethook.InstrumentedModel(generator) as g:
g.retain_layers([n for n in (
skip_layers)
if n != 'z'])
init_out = g(z)
init_layers = g.retained_features()
init_layers['z'] = z
# Then, permanently hook the layers of the generator to add
# residual adjustments dz, d1, d2, etc at each layer.
super().__init__(generator)
for k, v in init_layers.items():
# Record all the init_N values for reporting and reference.
name = k.replace('layer', '', 1).replace('.', '_')
self.register_buffer('init_%s' % name, v.clone())
# Now the deep image prior u-net side, melding with pixels.
# Start with a fixed random featuremap
seed = 1
rng = numpy.random.RandomState(seed)
self.register_buffer('noise', torch.from_numpy(
rng.randn(1, 32, 256, 256)).float())
# put through 8 conv layers
self.down14 = UnetDownsample(32, 32, self.init_14.size(1), 4, stride=1,
rng=rng)
self.down12 = UnetDownsample(32, 32, self.init_12.size(1), 4, rng=rng)
self.down10 = UnetDownsample(32, 32, self.init_10.size(1), 4, rng=rng)
self.down8 = UnetDownsample(32, 0, self.init_8.size(1), 4, rng=rng)
# Finally, also retain the editing layer, layer4
self.train(True)
def forward(self, z=None):
# First run the deep-image-prior noise maker.
z14, s14 = self.down14(self.noise)
z12, s12 = self.down12(z14)
z10, s10 = self.down10(z12)
_, s8 = self.down8(z10)
# _, s6 = self.down6(z8)
# _, s4 = self.down4(z6)
if z is None:
z = self.init_z
# Collect together adjustments before running the generator.
if self.additive:
x = super().forward(z,
add_layer8=(s8),
add_layer10=(s10),
add_layer12=(s12),
add_layer14=(s14),
)
else:
x = super().forward(z,
mult_layer8=(1 + s8),
mult_layer10=(1 + s10),
mult_layer12=(1 + s12),
mult_layer14=(1 + s14),
)
return dict(
x=x,
# Note: this is retained before it is multiplied
s8=s8,
s10=s10,
s12=s12,
s14=s14)
class BaselineTunedDirectGenerator(nethook.InstrumentedModel):
'''
Combines the ideas of ResidualGenerator and GANPriorRUNetGenerator.
'''
def __init__(self, generator, z, tune_layers=None):
# To begin with, we want to glue skip connections into our
# generator. Modify its 'forward' method to accept skip args.
generator = SkipAdjustedSequence(generator)
if tune_layers is None:
tune_layers = ['layer8', 'layer10', 'layer12', 'layer14']
# Gather some initial values programmatically with a temporary hook.
with torch.no_grad(), nethook.InstrumentedModel(generator) as g:
g.retain_layers([n for n in (
tune_layers)
if n != 'z'])
init_out = g(z)
init_layers = g.retained_features()
init_layers['z'] = z
# Then, permanently hook the layers of the generator to add
# residual adjustments dz, d1, d2, etc at each layer.
super().__init__(generator)
self.adjustments = []
for k, v in init_layers.items():
# Record all the init_N values for reporting and reference.
name = k.replace('layer', '', 1).replace('.', '_')
dname = 'd%s' % name
self.register_buffer('init_%s' % name, v.clone())
if 'layer' in k:
self.adjustments.append(('mult_%s' % k, dname))
setattr(self, dname, torch.nn.Parameter(torch.zeros_like(v)))
self.train(True)
def forward(self, z=None, **kwargs):
# Collect together adjustments before running the generator.
kwadj = {k: 1 +
kwargs.get(dname, getattr(self, dname)) # Allow kwargs to override
for k, dname in self.adjustments}
if z is None:
z = self.init_z
x = super().forward(z, **kwadj)
kwout = {dname: getattr(self, dname) for k, dname in self.adjustments}
return dict(x=x, **kwout)
class SkipAdjustedSequence(torch.nn.Sequential):
def __init__(self, sequential, share_weights=False):
'''
Creates a subsequence of a pytorch Sequential model, copying over
modules together with parameters for the subsequence. Only
modules from first_layer to last_layer (inclusive) are included.
If share_weights is True, then references the original modules
and their parameters without copying them. Otherwise, by default,
makes a separate brand-new copy.
'''
included_children = OrderedDict()
for name, layer in sequential._modules.items():
included_children[name] = layer if share_weights else (
copy.deepcopy(layer))
if not len(included_children):
raise ValueError('Empty subsequence')
super().__init__(OrderedDict(included_children))
def forward(this, x, **kwargs):
'''
Runs the sequence, except after each step 'layer', adds
any 'add_layer' value from kwargs to the output; similarly
multiplies any 'mult_layer' value from kwargs if present.
'''
seen = set()
for name, layer in this._modules.items():
x = layer(x)
add = kwargs.get('add_' + name, None)
if add is not None:
x = x + add
seen.add('add_' + name)
mult = kwargs.get('mult_' + name, None)
if mult is not None:
x = x * mult
seen.add('mult_' + name)
for name in kwargs.keys():
assert name in seen, '%s not applied' % name
return x
class PixelNormLayer(torch.nn.Module):
def __init__(self):
super(PixelNormLayer, self).__init__()
def forward(self, x):
return x / torch.sqrt(torch.mean(x**2, dim=1, keepdim=True) + 1e-8)
def add_adjustment(x, idecoder, attr):
adjustment = getattr(idecoder, attr)
x = x + adjustment
return x
|