YetiAI / app.py
patrol114's picture
Update app.py
f4a7d4e verified
raw
history blame
2.84 kB
import gradio as gr
from huggingface_hub import InferenceClient
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
# Initialize the InferenceClient
client = InferenceClient("01-ai/Yi-Coder-9B-Chat")
# Initialize tokenizer and model
model_path = "01-ai/Yi-Coder-9B-Chat" # Make sure this is correct
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(model_path, device_map="auto").eval()
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
use_local_model: bool,
):
messages = [{"role": "system", "content": system_message}]
for user, assistant in history:
if user:
messages.append({"role": "user", "content": user})
if assistant:
messages.append({"role": "assistant", "content": assistant})
messages.append({"role": "user", "content": message})
if use_local_model:
# Use local model
input_ids = tokenizer.encode("".join([m["content"] for m in messages]), return_tensors="pt")
input_ids = input_ids.to(model.device)
with torch.no_grad():
output = model.generate(
input_ids,
max_new_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
do_sample=True,
pad_token_id=tokenizer.eos_token_id,
)
response = tokenizer.decode(output[0], skip_special_tokens=True)
yield response
else:
# Use Hugging Face Inference API
response = ""
for message in client.text_generation(
"".join([m["content"] for m in messages]),
max_new_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
response += message
yield response
# Create Gradio interface
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="Odpowiadasz w Jezyku Polskim jesteś Coder/Developer/Programista tworzysz pełny kod..", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=2048, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
gr.Checkbox(label="Use Local Model", value=False),
],
title="Advanced Chat Interface",
description="Chat with an AI model using either the Hugging Face Inference API or a local model.",
)
if name == "__main__":
demo.launch()