|
import gradio as gr |
|
|
|
from huggingface_hub import InferenceClient |
|
|
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
|
|
import torch |
|
|
|
|
|
|
|
client = InferenceClient("01-ai/Yi-Coder-9B-Chat") |
|
|
|
|
|
|
|
model_path = "01-ai/Yi-Coder-9B-Chat" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_path) |
|
|
|
model = AutoModelForCausalLM.from_pretrained(model_path, device_map="auto").eval() |
|
|
|
def respond( |
|
|
|
message, |
|
|
|
history: list[tuple[str, str]], |
|
|
|
system_message, |
|
|
|
max_tokens, |
|
|
|
temperature, |
|
|
|
top_p, |
|
|
|
use_local_model: bool, |
|
|
|
): |
|
|
|
messages = [{"role": "system", "content": system_message}] |
|
|
|
for user, assistant in history: |
|
|
|
if user: |
|
|
|
messages.append({"role": "user", "content": user}) |
|
|
|
if assistant: |
|
|
|
messages.append({"role": "assistant", "content": assistant}) |
|
|
|
messages.append({"role": "user", "content": message}) |
|
|
|
if use_local_model: |
|
|
|
|
|
|
|
input_ids = tokenizer.encode("".join([m["content"] for m in messages]), return_tensors="pt") |
|
|
|
input_ids = input_ids.to(model.device) |
|
|
|
|
|
|
|
with torch.no_grad(): |
|
|
|
output = model.generate( |
|
|
|
input_ids, |
|
|
|
max_new_tokens=max_tokens, |
|
|
|
temperature=temperature, |
|
|
|
top_p=top_p, |
|
|
|
do_sample=True, |
|
|
|
pad_token_id=tokenizer.eos_token_id, |
|
|
|
) |
|
|
|
|
|
|
|
response = tokenizer.decode(output[0], skip_special_tokens=True) |
|
|
|
yield response |
|
|
|
else: |
|
|
|
|
|
|
|
response = "" |
|
|
|
for message in client.text_generation( |
|
|
|
"".join([m["content"] for m in messages]), |
|
|
|
max_new_tokens=max_tokens, |
|
|
|
stream=True, |
|
|
|
temperature=temperature, |
|
|
|
top_p=top_p, |
|
|
|
): |
|
|
|
response += message |
|
|
|
yield response |
|
|
|
|
|
|
|
demo = gr.ChatInterface( |
|
|
|
respond, |
|
|
|
additional_inputs=[ |
|
|
|
gr.Textbox(value="Odpowiadasz w Jezyku Polskim jesteś Coder/Developer/Programista tworzysz pełny kod..", label="System message"), |
|
|
|
gr.Slider(minimum=1, maximum=2048, value=2048, step=1, label="Max new tokens"), |
|
|
|
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), |
|
|
|
gr.Slider( |
|
|
|
minimum=0.1, |
|
|
|
maximum=1.0, |
|
|
|
value=0.95, |
|
|
|
step=0.05, |
|
|
|
label="Top-p (nucleus sampling)", |
|
|
|
), |
|
|
|
gr.Checkbox(label="Use Local Model", value=False), |
|
|
|
], |
|
|
|
title="Advanced Chat Interface", |
|
|
|
description="Chat with an AI model using either the Hugging Face Inference API or a local model.", |
|
|
|
) |
|
|
|
if name == "__main__": |
|
|
|
demo.launch() |