Spaces:
Running
on
Zero
Running
on
Zero
Serhiy Stetskovych
commited on
Commit
·
d5c312e
1
Parent(s):
194e915
Don't use ONNX because ZeroGPU doesn't support it.
Browse files- app.py +2 -1
- requirements.txt +1 -2
- verbalizer.py +26 -94
app.py
CHANGED
@@ -65,7 +65,8 @@ def verbalize(text):
|
|
65 |
parts = split_to_parts(text)
|
66 |
verbalized = ''
|
67 |
for part in parts:
|
68 |
-
|
|
|
69 |
return verbalized
|
70 |
|
71 |
description = f'''
|
|
|
65 |
parts = split_to_parts(text)
|
66 |
verbalized = ''
|
67 |
for part in parts:
|
68 |
+
if part.strip():
|
69 |
+
verbalized += verbalizer.generate_text(part) + ' '
|
70 |
return verbalized
|
71 |
|
72 |
description = f'''
|
requirements.txt
CHANGED
@@ -13,5 +13,4 @@ git+https://github.com/patriotyk/ipa-uk.git
|
|
13 |
git+https://github.com/patriotyk/styletts2-inference@105aed29fa1a7698d08d920986890e9bbd03447c
|
14 |
spaces
|
15 |
numpy<2
|
16 |
-
|
17 |
-
onnxruntime
|
|
|
13 |
git+https://github.com/patriotyk/styletts2-inference@105aed29fa1a7698d08d920986890e9bbd03447c
|
14 |
spaces
|
15 |
numpy<2
|
16 |
+
accelerate>=0.26.0
|
|
verbalizer.py
CHANGED
@@ -1,107 +1,39 @@
|
|
1 |
-
import onnxruntime
|
2 |
-
import numpy as np
|
3 |
-
from transformers import AutoTokenizer
|
4 |
-
from huggingface_hub import hf_hub_download
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
def cache_model_from_hf(repo_id, model_dir="./"):
|
9 |
-
"""Download ONNX models from HuggingFace Hub."""
|
10 |
-
files = ["onnx/encoder_model.onnx", "onnx/decoder_model.onnx", "onnx/decoder_model.onnx_data"]
|
11 |
-
|
12 |
-
for file in files:
|
13 |
-
hf_hub_download(
|
14 |
-
repo_id=repo_id,
|
15 |
-
filename=file,
|
16 |
-
local_dir=model_dir,
|
17 |
-
)
|
18 |
|
|
|
19 |
|
20 |
|
21 |
class Verbalizer():
|
22 |
def __init__(self, device):
|
23 |
-
|
24 |
-
|
25 |
-
print("Loading tokenizer...")
|
26 |
-
self.tokenizer = AutoTokenizer.from_pretrained(verbalizer_model_name)
|
27 |
-
self.tokenizer.src_lang = "uk_UA"
|
28 |
-
self.tokenizer.tgt_lang = "uk_UA"
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
def create_onnx_session(self, model_path, use_gpu=True):
|
36 |
-
"""Create an ONNX inference session."""
|
37 |
-
session_options = onnxruntime.SessionOptions()
|
38 |
-
session_options.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
|
39 |
-
session_options.enable_mem_pattern = True
|
40 |
-
session_options.enable_mem_reuse = True
|
41 |
-
session_options.intra_op_num_threads = 8
|
42 |
-
#session_options.log_severity_level = 1
|
43 |
-
|
44 |
-
cuda_provider_options = {
|
45 |
-
'device_id': 0,
|
46 |
-
'arena_extend_strategy': 'kSameAsRequested',
|
47 |
-
'gpu_mem_limit': 0, # 0 means no limit
|
48 |
-
'cudnn_conv_algo_search': 'DEFAULT',
|
49 |
-
'do_copy_in_default_stream': True,
|
50 |
-
}
|
51 |
-
|
52 |
-
if use_gpu and 'CUDAExecutionProvider' in onnxruntime.get_available_providers():
|
53 |
-
providers = [('CUDAExecutionProvider', cuda_provider_options)]
|
54 |
-
else:
|
55 |
-
providers = ['CPUExecutionProvider']
|
56 |
-
|
57 |
-
session = onnxruntime.InferenceSession(
|
58 |
-
model_path,
|
59 |
-
providers=providers,
|
60 |
-
sess_options=session_options
|
61 |
)
|
62 |
-
|
63 |
-
return session
|
64 |
|
|
|
|
|
|
|
65 |
|
66 |
def generate_text(self, text):
|
67 |
"""Generate text for a single input."""
|
68 |
# Prepare input
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
)
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
# Generate sequence
|
86 |
-
for _ in range(512):
|
87 |
-
# Run decoder
|
88 |
-
decoder_outputs = self.decoder_session.run(
|
89 |
-
output_names=["logits"],
|
90 |
-
input_feed={
|
91 |
-
"input_ids": decoder_input_ids,
|
92 |
-
"encoder_hidden_states": encoder_outputs,
|
93 |
-
"encoder_attention_mask": attention_mask,
|
94 |
-
}
|
95 |
-
)[0]
|
96 |
-
|
97 |
-
# Get next token
|
98 |
-
next_token = decoder_outputs[:, -1:].argmax(axis=-1)
|
99 |
-
decoder_input_ids = np.concatenate([decoder_input_ids, next_token], axis=-1)
|
100 |
-
|
101 |
-
# Check if sequence is complete
|
102 |
-
if self.tokenizer.eos_token_id in decoder_input_ids[0]:
|
103 |
-
break
|
104 |
-
|
105 |
-
# Decode sequence
|
106 |
-
output_text = self.tokenizer.decode(decoder_input_ids[0], skip_special_tokens=True)
|
107 |
-
return output_text
|
|
|
|
|
|
|
|
|
|
|
1 |
|
2 |
+
from transformers import MBartForConditionalGeneration, AutoTokenizer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
+
verbalizer_model_name = "skypro1111/mbart-large-50-verbalization"
|
5 |
|
6 |
|
7 |
class Verbalizer():
|
8 |
def __init__(self, device):
|
9 |
+
self.device = device
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
+
self.model = MBartForConditionalGeneration.from_pretrained(verbalizer_model_name,
|
12 |
+
low_cpu_mem_usage=True,
|
13 |
+
device_map=device,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
)
|
15 |
+
self.model.eval()
|
|
|
16 |
|
17 |
+
self.tokenizer = AutoTokenizer.from_pretrained(verbalizer_model_name)
|
18 |
+
self.tokenizer.src_lang = "uk_XX"
|
19 |
+
self.tokenizer.tgt_lang = "uk_XX"
|
20 |
|
21 |
def generate_text(self, text):
|
22 |
"""Generate text for a single input."""
|
23 |
# Prepare input
|
24 |
+
input_text = "<verbalization>:" + text
|
25 |
+
|
26 |
+
encoded_input = self.tokenizer(
|
27 |
+
input_text,
|
28 |
+
return_tensors="pt",
|
29 |
+
padding=True,
|
30 |
+
truncation=True,
|
31 |
+
max_length=1024,
|
32 |
+
).to(self.device)
|
33 |
+
output_ids = self.model.generate(
|
34 |
+
**encoded_input, max_length=1024, num_beams=5, early_stopping=True
|
35 |
+
)
|
36 |
+
normalized_text = self.tokenizer.decode(output_ids[0], skip_special_tokens=True)
|
37 |
+
|
38 |
+
|
39 |
+
return normalized_text.strip()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|