Serhiy Stetskovych commited on
Commit
77d64d5
·
1 Parent(s): 7bc1992

Remove files

Browse files
Modules/__init__.py DELETED
@@ -1 +0,0 @@
1
-
 
 
Modules/diffusion/__init__.py DELETED
@@ -1 +0,0 @@
1
-
 
 
Modules/diffusion/diffusion.py DELETED
@@ -1,94 +0,0 @@
1
- from math import pi
2
- from random import randint
3
- from typing import Any, Optional, Sequence, Tuple, Union
4
-
5
- import torch
6
- from einops import rearrange
7
- from torch import Tensor, nn
8
- from tqdm import tqdm
9
-
10
- from .utils import *
11
- from .sampler import *
12
-
13
- """
14
- Diffusion Classes (generic for 1d data)
15
- """
16
-
17
-
18
- class Model1d(nn.Module):
19
- def __init__(self, unet_type: str = "base", **kwargs):
20
- super().__init__()
21
- diffusion_kwargs, kwargs = groupby("diffusion_", kwargs)
22
- self.unet = None
23
- self.diffusion = None
24
-
25
- def forward(self, x: Tensor, **kwargs) -> Tensor:
26
- return self.diffusion(x, **kwargs)
27
-
28
- def sample(self, *args, **kwargs) -> Tensor:
29
- return self.diffusion.sample(*args, **kwargs)
30
-
31
-
32
- """
33
- Audio Diffusion Classes (specific for 1d audio data)
34
- """
35
-
36
-
37
- def get_default_model_kwargs():
38
- return dict(
39
- channels=128,
40
- patch_size=16,
41
- multipliers=[1, 2, 4, 4, 4, 4, 4],
42
- factors=[4, 4, 4, 2, 2, 2],
43
- num_blocks=[2, 2, 2, 2, 2, 2],
44
- attentions=[0, 0, 0, 1, 1, 1, 1],
45
- attention_heads=8,
46
- attention_features=64,
47
- attention_multiplier=2,
48
- attention_use_rel_pos=False,
49
- diffusion_type="v",
50
- diffusion_sigma_distribution=UniformDistribution(),
51
- )
52
-
53
-
54
- def get_default_sampling_kwargs():
55
- return dict(sigma_schedule=LinearSchedule(), sampler=VSampler(), clamp=True)
56
-
57
-
58
- class AudioDiffusionModel(Model1d):
59
- def __init__(self, **kwargs):
60
- super().__init__(**{**get_default_model_kwargs(), **kwargs})
61
-
62
- def sample(self, *args, **kwargs):
63
- return super().sample(*args, **{**get_default_sampling_kwargs(), **kwargs})
64
-
65
-
66
- class AudioDiffusionConditional(Model1d):
67
- def __init__(
68
- self,
69
- embedding_features: int,
70
- embedding_max_length: int,
71
- embedding_mask_proba: float = 0.1,
72
- **kwargs,
73
- ):
74
- self.embedding_mask_proba = embedding_mask_proba
75
- default_kwargs = dict(
76
- **get_default_model_kwargs(),
77
- unet_type="cfg",
78
- context_embedding_features=embedding_features,
79
- context_embedding_max_length=embedding_max_length,
80
- )
81
- super().__init__(**{**default_kwargs, **kwargs})
82
-
83
- def forward(self, *args, **kwargs):
84
- default_kwargs = dict(embedding_mask_proba=self.embedding_mask_proba)
85
- return super().forward(*args, **{**default_kwargs, **kwargs})
86
-
87
- def sample(self, *args, **kwargs):
88
- default_kwargs = dict(
89
- **get_default_sampling_kwargs(),
90
- embedding_scale=5.0,
91
- )
92
- return super().sample(*args, **{**default_kwargs, **kwargs})
93
-
94
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Modules/diffusion/modules.py DELETED
@@ -1,693 +0,0 @@
1
- from math import floor, log, pi
2
- from typing import Any, List, Optional, Sequence, Tuple, Union
3
-
4
- from .utils import *
5
-
6
- import torch
7
- import torch.nn as nn
8
- from einops import rearrange, reduce, repeat
9
- from einops.layers.torch import Rearrange
10
- from einops_exts import rearrange_many
11
- from torch import Tensor, einsum
12
-
13
-
14
- """
15
- Utils
16
- """
17
-
18
- class AdaLayerNorm(nn.Module):
19
- def __init__(self, style_dim, channels, eps=1e-5):
20
- super().__init__()
21
- self.channels = channels
22
- self.eps = eps
23
-
24
- self.fc = nn.Linear(style_dim, channels*2)
25
-
26
- def forward(self, x, s):
27
- x = x.transpose(-1, -2)
28
- x = x.transpose(1, -1)
29
-
30
- h = self.fc(s)
31
- h = h.view(h.size(0), h.size(1), 1)
32
- gamma, beta = torch.chunk(h, chunks=2, dim=1)
33
- gamma, beta = gamma.transpose(1, -1), beta.transpose(1, -1)
34
-
35
-
36
- x = F.layer_norm(x, (self.channels,), eps=self.eps)
37
- x = (1 + gamma) * x + beta
38
- return x.transpose(1, -1).transpose(-1, -2)
39
-
40
- class StyleTransformer1d(nn.Module):
41
- def __init__(
42
- self,
43
- num_layers: int,
44
- channels: int,
45
- num_heads: int,
46
- head_features: int,
47
- multiplier: int,
48
- use_context_time: bool = True,
49
- use_rel_pos: bool = False,
50
- context_features_multiplier: int = 1,
51
- rel_pos_num_buckets: Optional[int] = None,
52
- rel_pos_max_distance: Optional[int] = None,
53
- context_features: Optional[int] = None,
54
- context_embedding_features: Optional[int] = None,
55
- embedding_max_length: int = 512,
56
- ):
57
- super().__init__()
58
-
59
- self.blocks = nn.ModuleList(
60
- [
61
- StyleTransformerBlock(
62
- features=channels + context_embedding_features,
63
- head_features=head_features,
64
- num_heads=num_heads,
65
- multiplier=multiplier,
66
- style_dim=context_features,
67
- use_rel_pos=use_rel_pos,
68
- rel_pos_num_buckets=rel_pos_num_buckets,
69
- rel_pos_max_distance=rel_pos_max_distance,
70
- )
71
- for i in range(num_layers)
72
- ]
73
- )
74
-
75
- self.to_out = nn.Sequential(
76
- Rearrange("b t c -> b c t"),
77
- nn.Conv1d(
78
- in_channels=channels + context_embedding_features,
79
- out_channels=channels,
80
- kernel_size=1,
81
- ),
82
- )
83
-
84
- use_context_features = exists(context_features)
85
- self.use_context_features = use_context_features
86
- self.use_context_time = use_context_time
87
-
88
- if use_context_time or use_context_features:
89
- context_mapping_features = channels + context_embedding_features
90
-
91
- self.to_mapping = nn.Sequential(
92
- nn.Linear(context_mapping_features, context_mapping_features),
93
- nn.GELU(),
94
- nn.Linear(context_mapping_features, context_mapping_features),
95
- nn.GELU(),
96
- )
97
-
98
- if use_context_time:
99
- assert exists(context_mapping_features)
100
- self.to_time = nn.Sequential(
101
- TimePositionalEmbedding(
102
- dim=channels, out_features=context_mapping_features
103
- ),
104
- nn.GELU(),
105
- )
106
-
107
- if use_context_features:
108
- assert exists(context_features) and exists(context_mapping_features)
109
- self.to_features = nn.Sequential(
110
- nn.Linear(
111
- in_features=context_features, out_features=context_mapping_features
112
- ),
113
- nn.GELU(),
114
- )
115
-
116
- self.fixed_embedding = FixedEmbedding(
117
- max_length=embedding_max_length, features=context_embedding_features
118
- )
119
-
120
-
121
- def get_mapping(
122
- self, time: Optional[Tensor] = None, features: Optional[Tensor] = None
123
- ) -> Optional[Tensor]:
124
- """Combines context time features and features into mapping"""
125
- items, mapping = [], None
126
- # Compute time features
127
- if self.use_context_time:
128
- assert_message = "use_context_time=True but no time features provided"
129
- assert exists(time), assert_message
130
- items += [self.to_time(time)]
131
- # Compute features
132
- if self.use_context_features:
133
- assert_message = "context_features exists but no features provided"
134
- assert exists(features), assert_message
135
- items += [self.to_features(features)]
136
-
137
- # Compute joint mapping
138
- if self.use_context_time or self.use_context_features:
139
- mapping = reduce(torch.stack(items), "n b m -> b m", "sum")
140
- mapping = self.to_mapping(mapping)
141
-
142
- return mapping
143
-
144
- def run(self, x, time, embedding, features):
145
-
146
- mapping = self.get_mapping(time, features)
147
- x = torch.cat([x.expand(-1, embedding.size(1), -1), embedding], axis=-1)
148
- mapping = mapping.unsqueeze(1).expand(-1, embedding.size(1), -1)
149
-
150
- for block in self.blocks:
151
- x = x + mapping
152
- x = block(x, features)
153
-
154
- x = x.mean(axis=1).unsqueeze(1)
155
- x = self.to_out(x)
156
- x = x.transpose(-1, -2)
157
-
158
- return x
159
-
160
- def forward(self, x: Tensor,
161
- time: Tensor,
162
- embedding_mask_proba: float = 0.0,
163
- embedding: Optional[Tensor] = None,
164
- features: Optional[Tensor] = None,
165
- embedding_scale: float = 1.0) -> Tensor:
166
-
167
- b, device = embedding.shape[0], embedding.device
168
- fixed_embedding = self.fixed_embedding(embedding)
169
- if embedding_mask_proba > 0.0:
170
- # Randomly mask embedding
171
- batch_mask = rand_bool(
172
- shape=(b, 1, 1), proba=embedding_mask_proba, device=device
173
- )
174
- embedding = torch.where(batch_mask, fixed_embedding, embedding)
175
-
176
- if embedding_scale != 1.0:
177
- # Compute both normal and fixed embedding outputs
178
- out = self.run(x, time, embedding=embedding, features=features)
179
- out_masked = self.run(x, time, embedding=fixed_embedding, features=features)
180
- # Scale conditional output using classifier-free guidance
181
- return out_masked + (out - out_masked) * embedding_scale
182
- else:
183
- return self.run(x, time, embedding=embedding, features=features)
184
-
185
- return x
186
-
187
-
188
- class StyleTransformerBlock(nn.Module):
189
- def __init__(
190
- self,
191
- features: int,
192
- num_heads: int,
193
- head_features: int,
194
- style_dim: int,
195
- multiplier: int,
196
- use_rel_pos: bool,
197
- rel_pos_num_buckets: Optional[int] = None,
198
- rel_pos_max_distance: Optional[int] = None,
199
- context_features: Optional[int] = None,
200
- ):
201
- super().__init__()
202
-
203
- self.use_cross_attention = exists(context_features) and context_features > 0
204
-
205
- self.attention = StyleAttention(
206
- features=features,
207
- style_dim=style_dim,
208
- num_heads=num_heads,
209
- head_features=head_features,
210
- use_rel_pos=use_rel_pos,
211
- rel_pos_num_buckets=rel_pos_num_buckets,
212
- rel_pos_max_distance=rel_pos_max_distance,
213
- )
214
-
215
- if self.use_cross_attention:
216
- self.cross_attention = StyleAttention(
217
- features=features,
218
- style_dim=style_dim,
219
- num_heads=num_heads,
220
- head_features=head_features,
221
- context_features=context_features,
222
- use_rel_pos=use_rel_pos,
223
- rel_pos_num_buckets=rel_pos_num_buckets,
224
- rel_pos_max_distance=rel_pos_max_distance,
225
- )
226
-
227
- self.feed_forward = FeedForward(features=features, multiplier=multiplier)
228
-
229
- def forward(self, x: Tensor, s: Tensor, *, context: Optional[Tensor] = None) -> Tensor:
230
- x = self.attention(x, s) + x
231
- if self.use_cross_attention:
232
- x = self.cross_attention(x, s, context=context) + x
233
- x = self.feed_forward(x) + x
234
- return x
235
-
236
- class StyleAttention(nn.Module):
237
- def __init__(
238
- self,
239
- features: int,
240
- *,
241
- style_dim: int,
242
- head_features: int,
243
- num_heads: int,
244
- context_features: Optional[int] = None,
245
- use_rel_pos: bool,
246
- rel_pos_num_buckets: Optional[int] = None,
247
- rel_pos_max_distance: Optional[int] = None,
248
- ):
249
- super().__init__()
250
- self.context_features = context_features
251
- mid_features = head_features * num_heads
252
- context_features = default(context_features, features)
253
-
254
- self.norm = AdaLayerNorm(style_dim, features)
255
- self.norm_context = AdaLayerNorm(style_dim, context_features)
256
- self.to_q = nn.Linear(
257
- in_features=features, out_features=mid_features, bias=False
258
- )
259
- self.to_kv = nn.Linear(
260
- in_features=context_features, out_features=mid_features * 2, bias=False
261
- )
262
- self.attention = AttentionBase(
263
- features,
264
- num_heads=num_heads,
265
- head_features=head_features,
266
- use_rel_pos=use_rel_pos,
267
- rel_pos_num_buckets=rel_pos_num_buckets,
268
- rel_pos_max_distance=rel_pos_max_distance,
269
- )
270
-
271
- def forward(self, x: Tensor, s: Tensor, *, context: Optional[Tensor] = None) -> Tensor:
272
- assert_message = "You must provide a context when using context_features"
273
- assert not self.context_features or exists(context), assert_message
274
- # Use context if provided
275
- context = default(context, x)
276
- # Normalize then compute q from input and k,v from context
277
- x, context = self.norm(x, s), self.norm_context(context, s)
278
-
279
- q, k, v = (self.to_q(x), *torch.chunk(self.to_kv(context), chunks=2, dim=-1))
280
- # Compute and return attention
281
- return self.attention(q, k, v)
282
-
283
- class Transformer1d(nn.Module):
284
- def __init__(
285
- self,
286
- num_layers: int,
287
- channels: int,
288
- num_heads: int,
289
- head_features: int,
290
- multiplier: int,
291
- use_context_time: bool = True,
292
- use_rel_pos: bool = False,
293
- context_features_multiplier: int = 1,
294
- rel_pos_num_buckets: Optional[int] = None,
295
- rel_pos_max_distance: Optional[int] = None,
296
- context_features: Optional[int] = None,
297
- context_embedding_features: Optional[int] = None,
298
- embedding_max_length: int = 512,
299
- ):
300
- super().__init__()
301
-
302
- self.blocks = nn.ModuleList(
303
- [
304
- TransformerBlock(
305
- features=channels + context_embedding_features,
306
- head_features=head_features,
307
- num_heads=num_heads,
308
- multiplier=multiplier,
309
- use_rel_pos=use_rel_pos,
310
- rel_pos_num_buckets=rel_pos_num_buckets,
311
- rel_pos_max_distance=rel_pos_max_distance,
312
- )
313
- for i in range(num_layers)
314
- ]
315
- )
316
-
317
- self.to_out = nn.Sequential(
318
- Rearrange("b t c -> b c t"),
319
- nn.Conv1d(
320
- in_channels=channels + context_embedding_features,
321
- out_channels=channels,
322
- kernel_size=1,
323
- ),
324
- )
325
-
326
- use_context_features = exists(context_features)
327
- self.use_context_features = use_context_features
328
- self.use_context_time = use_context_time
329
-
330
- if use_context_time or use_context_features:
331
- context_mapping_features = channels + context_embedding_features
332
-
333
- self.to_mapping = nn.Sequential(
334
- nn.Linear(context_mapping_features, context_mapping_features),
335
- nn.GELU(),
336
- nn.Linear(context_mapping_features, context_mapping_features),
337
- nn.GELU(),
338
- )
339
-
340
- if use_context_time:
341
- assert exists(context_mapping_features)
342
- self.to_time = nn.Sequential(
343
- TimePositionalEmbedding(
344
- dim=channels, out_features=context_mapping_features
345
- ),
346
- nn.GELU(),
347
- )
348
-
349
- if use_context_features:
350
- assert exists(context_features) and exists(context_mapping_features)
351
- self.to_features = nn.Sequential(
352
- nn.Linear(
353
- in_features=context_features, out_features=context_mapping_features
354
- ),
355
- nn.GELU(),
356
- )
357
-
358
- self.fixed_embedding = FixedEmbedding(
359
- max_length=embedding_max_length, features=context_embedding_features
360
- )
361
-
362
-
363
- def get_mapping(
364
- self, time: Optional[Tensor] = None, features: Optional[Tensor] = None
365
- ) -> Optional[Tensor]:
366
- """Combines context time features and features into mapping"""
367
- items, mapping = [], None
368
- # Compute time features
369
- if self.use_context_time:
370
- assert_message = "use_context_time=True but no time features provided"
371
- assert exists(time), assert_message
372
- items += [self.to_time(time)]
373
- # Compute features
374
- if self.use_context_features:
375
- assert_message = "context_features exists but no features provided"
376
- assert exists(features), assert_message
377
- items += [self.to_features(features)]
378
-
379
- # Compute joint mapping
380
- if self.use_context_time or self.use_context_features:
381
- mapping = reduce(torch.stack(items), "n b m -> b m", "sum")
382
- mapping = self.to_mapping(mapping)
383
-
384
- return mapping
385
-
386
- def run(self, x, time, embedding, features):
387
-
388
- mapping = self.get_mapping(time, features)
389
- x = torch.cat([x.expand(-1, embedding.size(1), -1), embedding], axis=-1)
390
- mapping = mapping.unsqueeze(1).expand(-1, embedding.size(1), -1)
391
-
392
- for block in self.blocks:
393
- x = x + mapping
394
- x = block(x)
395
-
396
- x = x.mean(axis=1).unsqueeze(1)
397
- x = self.to_out(x)
398
- x = x.transpose(-1, -2)
399
-
400
- return x
401
-
402
- def forward(self, x: Tensor,
403
- time: Tensor,
404
- embedding_mask_proba: float = 0.0,
405
- embedding: Optional[Tensor] = None,
406
- features: Optional[Tensor] = None,
407
- embedding_scale: float = 1.0) -> Tensor:
408
-
409
- b, device = embedding.shape[0], embedding.device
410
- fixed_embedding = self.fixed_embedding(embedding)
411
- if embedding_mask_proba > 0.0:
412
- # Randomly mask embedding
413
- batch_mask = rand_bool(
414
- shape=(b, 1, 1), proba=embedding_mask_proba, device=device
415
- )
416
- embedding = torch.where(batch_mask, fixed_embedding, embedding)
417
-
418
- if embedding_scale != 1.0:
419
- # Compute both normal and fixed embedding outputs
420
- out = self.run(x, time, embedding=embedding, features=features)
421
- out_masked = self.run(x, time, embedding=fixed_embedding, features=features)
422
- # Scale conditional output using classifier-free guidance
423
- return out_masked + (out - out_masked) * embedding_scale
424
- else:
425
- return self.run(x, time, embedding=embedding, features=features)
426
-
427
- return x
428
-
429
-
430
- """
431
- Attention Components
432
- """
433
-
434
-
435
- class RelativePositionBias(nn.Module):
436
- def __init__(self, num_buckets: int, max_distance: int, num_heads: int):
437
- super().__init__()
438
- self.num_buckets = num_buckets
439
- self.max_distance = max_distance
440
- self.num_heads = num_heads
441
- self.relative_attention_bias = nn.Embedding(num_buckets, num_heads)
442
-
443
- @staticmethod
444
- def _relative_position_bucket(
445
- relative_position: Tensor, num_buckets: int, max_distance: int
446
- ):
447
- num_buckets //= 2
448
- ret = (relative_position >= 0).to(torch.long) * num_buckets
449
- n = torch.abs(relative_position)
450
-
451
- max_exact = num_buckets // 2
452
- is_small = n < max_exact
453
-
454
- val_if_large = (
455
- max_exact
456
- + (
457
- torch.log(n.float() / max_exact)
458
- / log(max_distance / max_exact)
459
- * (num_buckets - max_exact)
460
- ).long()
461
- )
462
- val_if_large = torch.min(
463
- val_if_large, torch.full_like(val_if_large, num_buckets - 1)
464
- )
465
-
466
- ret += torch.where(is_small, n, val_if_large)
467
- return ret
468
-
469
- def forward(self, num_queries: int, num_keys: int) -> Tensor:
470
- i, j, device = num_queries, num_keys, self.relative_attention_bias.weight.device
471
- q_pos = torch.arange(j - i, j, dtype=torch.long, device=device)
472
- k_pos = torch.arange(j, dtype=torch.long, device=device)
473
- rel_pos = rearrange(k_pos, "j -> 1 j") - rearrange(q_pos, "i -> i 1")
474
-
475
- relative_position_bucket = self._relative_position_bucket(
476
- rel_pos, num_buckets=self.num_buckets, max_distance=self.max_distance
477
- )
478
-
479
- bias = self.relative_attention_bias(relative_position_bucket)
480
- bias = rearrange(bias, "m n h -> 1 h m n")
481
- return bias
482
-
483
-
484
- def FeedForward(features: int, multiplier: int) -> nn.Module:
485
- mid_features = features * multiplier
486
- return nn.Sequential(
487
- nn.Linear(in_features=features, out_features=mid_features),
488
- nn.GELU(),
489
- nn.Linear(in_features=mid_features, out_features=features),
490
- )
491
-
492
-
493
- class AttentionBase(nn.Module):
494
- def __init__(
495
- self,
496
- features: int,
497
- *,
498
- head_features: int,
499
- num_heads: int,
500
- use_rel_pos: bool,
501
- out_features: Optional[int] = None,
502
- rel_pos_num_buckets: Optional[int] = None,
503
- rel_pos_max_distance: Optional[int] = None,
504
- ):
505
- super().__init__()
506
- self.scale = head_features ** -0.5
507
- self.num_heads = num_heads
508
- self.use_rel_pos = use_rel_pos
509
- mid_features = head_features * num_heads
510
-
511
- if use_rel_pos:
512
- assert exists(rel_pos_num_buckets) and exists(rel_pos_max_distance)
513
- self.rel_pos = RelativePositionBias(
514
- num_buckets=rel_pos_num_buckets,
515
- max_distance=rel_pos_max_distance,
516
- num_heads=num_heads,
517
- )
518
- if out_features is None:
519
- out_features = features
520
-
521
- self.to_out = nn.Linear(in_features=mid_features, out_features=out_features)
522
-
523
- def forward(self, q: Tensor, k: Tensor, v: Tensor) -> Tensor:
524
- # Split heads
525
- q, k, v = rearrange_many((q, k, v), "b n (h d) -> b h n d", h=self.num_heads)
526
- # Compute similarity matrix
527
- sim = einsum("... n d, ... m d -> ... n m", q, k)
528
- sim = (sim + self.rel_pos(*sim.shape[-2:])) if self.use_rel_pos else sim
529
- sim = sim * self.scale
530
- # Get attention matrix with softmax
531
- attn = sim.softmax(dim=-1)
532
- # Compute values
533
- out = einsum("... n m, ... m d -> ... n d", attn, v)
534
- out = rearrange(out, "b h n d -> b n (h d)")
535
- return self.to_out(out)
536
-
537
-
538
- class Attention(nn.Module):
539
- def __init__(
540
- self,
541
- features: int,
542
- *,
543
- head_features: int,
544
- num_heads: int,
545
- out_features: Optional[int] = None,
546
- context_features: Optional[int] = None,
547
- use_rel_pos: bool,
548
- rel_pos_num_buckets: Optional[int] = None,
549
- rel_pos_max_distance: Optional[int] = None,
550
- ):
551
- super().__init__()
552
- self.context_features = context_features
553
- mid_features = head_features * num_heads
554
- context_features = default(context_features, features)
555
-
556
- self.norm = nn.LayerNorm(features)
557
- self.norm_context = nn.LayerNorm(context_features)
558
- self.to_q = nn.Linear(
559
- in_features=features, out_features=mid_features, bias=False
560
- )
561
- self.to_kv = nn.Linear(
562
- in_features=context_features, out_features=mid_features * 2, bias=False
563
- )
564
-
565
- self.attention = AttentionBase(
566
- features,
567
- out_features=out_features,
568
- num_heads=num_heads,
569
- head_features=head_features,
570
- use_rel_pos=use_rel_pos,
571
- rel_pos_num_buckets=rel_pos_num_buckets,
572
- rel_pos_max_distance=rel_pos_max_distance,
573
- )
574
-
575
- def forward(self, x: Tensor, *, context: Optional[Tensor] = None) -> Tensor:
576
- assert_message = "You must provide a context when using context_features"
577
- assert not self.context_features or exists(context), assert_message
578
- # Use context if provided
579
- context = default(context, x)
580
- # Normalize then compute q from input and k,v from context
581
- x, context = self.norm(x), self.norm_context(context)
582
- q, k, v = (self.to_q(x), *torch.chunk(self.to_kv(context), chunks=2, dim=-1))
583
- # Compute and return attention
584
- return self.attention(q, k, v)
585
-
586
-
587
- """
588
- Transformer Blocks
589
- """
590
-
591
-
592
- class TransformerBlock(nn.Module):
593
- def __init__(
594
- self,
595
- features: int,
596
- num_heads: int,
597
- head_features: int,
598
- multiplier: int,
599
- use_rel_pos: bool,
600
- rel_pos_num_buckets: Optional[int] = None,
601
- rel_pos_max_distance: Optional[int] = None,
602
- context_features: Optional[int] = None,
603
- ):
604
- super().__init__()
605
-
606
- self.use_cross_attention = exists(context_features) and context_features > 0
607
-
608
- self.attention = Attention(
609
- features=features,
610
- num_heads=num_heads,
611
- head_features=head_features,
612
- use_rel_pos=use_rel_pos,
613
- rel_pos_num_buckets=rel_pos_num_buckets,
614
- rel_pos_max_distance=rel_pos_max_distance,
615
- )
616
-
617
- if self.use_cross_attention:
618
- self.cross_attention = Attention(
619
- features=features,
620
- num_heads=num_heads,
621
- head_features=head_features,
622
- context_features=context_features,
623
- use_rel_pos=use_rel_pos,
624
- rel_pos_num_buckets=rel_pos_num_buckets,
625
- rel_pos_max_distance=rel_pos_max_distance,
626
- )
627
-
628
- self.feed_forward = FeedForward(features=features, multiplier=multiplier)
629
-
630
- def forward(self, x: Tensor, *, context: Optional[Tensor] = None) -> Tensor:
631
- x = self.attention(x) + x
632
- if self.use_cross_attention:
633
- x = self.cross_attention(x, context=context) + x
634
- x = self.feed_forward(x) + x
635
- return x
636
-
637
-
638
-
639
- """
640
- Time Embeddings
641
- """
642
-
643
-
644
- class SinusoidalEmbedding(nn.Module):
645
- def __init__(self, dim: int):
646
- super().__init__()
647
- self.dim = dim
648
-
649
- def forward(self, x: Tensor) -> Tensor:
650
- device, half_dim = x.device, self.dim // 2
651
- emb = torch.tensor(log(10000) / (half_dim - 1), device=device)
652
- emb = torch.exp(torch.arange(half_dim, device=device) * -emb)
653
- emb = rearrange(x, "i -> i 1") * rearrange(emb, "j -> 1 j")
654
- return torch.cat((emb.sin(), emb.cos()), dim=-1)
655
-
656
-
657
- class LearnedPositionalEmbedding(nn.Module):
658
- """Used for continuous time"""
659
-
660
- def __init__(self, dim: int):
661
- super().__init__()
662
- assert (dim % 2) == 0
663
- half_dim = dim // 2
664
- self.weights = nn.Parameter(torch.randn(half_dim))
665
-
666
- def forward(self, x: Tensor) -> Tensor:
667
- x = rearrange(x, "b -> b 1")
668
- freqs = x * rearrange(self.weights, "d -> 1 d") * 2 * pi
669
- fouriered = torch.cat((freqs.sin(), freqs.cos()), dim=-1)
670
- fouriered = torch.cat((x, fouriered), dim=-1)
671
- return fouriered
672
-
673
-
674
- def TimePositionalEmbedding(dim: int, out_features: int) -> nn.Module:
675
- return nn.Sequential(
676
- LearnedPositionalEmbedding(dim),
677
- nn.Linear(in_features=dim + 1, out_features=out_features),
678
- )
679
-
680
- class FixedEmbedding(nn.Module):
681
- def __init__(self, max_length: int, features: int):
682
- super().__init__()
683
- self.max_length = max_length
684
- self.embedding = nn.Embedding(max_length, features)
685
-
686
- def forward(self, x: Tensor) -> Tensor:
687
- batch_size, length, device = *x.shape[0:2], x.device
688
- assert_message = "Input sequence length must be <= max_length"
689
- assert length <= self.max_length, assert_message
690
- position = torch.arange(length, device=device)
691
- fixed_embedding = self.embedding(position)
692
- fixed_embedding = repeat(fixed_embedding, "n d -> b n d", b=batch_size)
693
- return fixed_embedding
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Modules/diffusion/sampler.py DELETED
@@ -1,691 +0,0 @@
1
- from math import atan, cos, pi, sin, sqrt
2
- from typing import Any, Callable, List, Optional, Tuple, Type
3
-
4
- import torch
5
- import torch.nn as nn
6
- import torch.nn.functional as F
7
- from einops import rearrange, reduce
8
- from torch import Tensor
9
-
10
- from .utils import *
11
-
12
- """
13
- Diffusion Training
14
- """
15
-
16
- """ Distributions """
17
-
18
-
19
- class Distribution:
20
- def __call__(self, num_samples: int, device: torch.device):
21
- raise NotImplementedError()
22
-
23
-
24
- class LogNormalDistribution(Distribution):
25
- def __init__(self, mean: float, std: float):
26
- self.mean = mean
27
- self.std = std
28
-
29
- def __call__(
30
- self, num_samples: int, device: torch.device = torch.device("cpu")
31
- ) -> Tensor:
32
- normal = self.mean + self.std * torch.randn((num_samples,), device=device)
33
- return normal.exp()
34
-
35
-
36
- class UniformDistribution(Distribution):
37
- def __call__(self, num_samples: int, device: torch.device = torch.device("cpu")):
38
- return torch.rand(num_samples, device=device)
39
-
40
-
41
- class VKDistribution(Distribution):
42
- def __init__(
43
- self,
44
- min_value: float = 0.0,
45
- max_value: float = float("inf"),
46
- sigma_data: float = 1.0,
47
- ):
48
- self.min_value = min_value
49
- self.max_value = max_value
50
- self.sigma_data = sigma_data
51
-
52
- def __call__(
53
- self, num_samples: int, device: torch.device = torch.device("cpu")
54
- ) -> Tensor:
55
- sigma_data = self.sigma_data
56
- min_cdf = atan(self.min_value / sigma_data) * 2 / pi
57
- max_cdf = atan(self.max_value / sigma_data) * 2 / pi
58
- u = (max_cdf - min_cdf) * torch.randn((num_samples,), device=device) + min_cdf
59
- return torch.tan(u * pi / 2) * sigma_data
60
-
61
-
62
- """ Diffusion Classes """
63
-
64
-
65
- def pad_dims(x: Tensor, ndim: int) -> Tensor:
66
- # Pads additional ndims to the right of the tensor
67
- return x.view(*x.shape, *((1,) * ndim))
68
-
69
-
70
- def clip(x: Tensor, dynamic_threshold: float = 0.0):
71
- if dynamic_threshold == 0.0:
72
- return x.clamp(-1.0, 1.0)
73
- else:
74
- # Dynamic thresholding
75
- # Find dynamic threshold quantile for each batch
76
- x_flat = rearrange(x, "b ... -> b (...)")
77
- scale = torch.quantile(x_flat.abs(), dynamic_threshold, dim=-1)
78
- # Clamp to a min of 1.0
79
- scale.clamp_(min=1.0)
80
- # Clamp all values and scale
81
- scale = pad_dims(scale, ndim=x.ndim - scale.ndim)
82
- x = x.clamp(-scale, scale) / scale
83
- return x
84
-
85
-
86
- def to_batch(
87
- batch_size: int,
88
- device: torch.device,
89
- x: Optional[float] = None,
90
- xs: Optional[Tensor] = None,
91
- ) -> Tensor:
92
- assert exists(x) ^ exists(xs), "Either x or xs must be provided"
93
- # If x provided use the same for all batch items
94
- if exists(x):
95
- xs = torch.full(size=(batch_size,), fill_value=x).to(device)
96
- assert exists(xs)
97
- return xs
98
-
99
-
100
- class Diffusion(nn.Module):
101
-
102
- alias: str = ""
103
-
104
- """Base diffusion class"""
105
-
106
- def denoise_fn(
107
- self,
108
- x_noisy: Tensor,
109
- sigmas: Optional[Tensor] = None,
110
- sigma: Optional[float] = None,
111
- **kwargs,
112
- ) -> Tensor:
113
- raise NotImplementedError("Diffusion class missing denoise_fn")
114
-
115
- def forward(self, x: Tensor, noise: Tensor = None, **kwargs) -> Tensor:
116
- raise NotImplementedError("Diffusion class missing forward function")
117
-
118
-
119
- class VDiffusion(Diffusion):
120
-
121
- alias = "v"
122
-
123
- def __init__(self, net: nn.Module, *, sigma_distribution: Distribution):
124
- super().__init__()
125
- self.net = net
126
- self.sigma_distribution = sigma_distribution
127
-
128
- def get_alpha_beta(self, sigmas: Tensor) -> Tuple[Tensor, Tensor]:
129
- angle = sigmas * pi / 2
130
- alpha = torch.cos(angle)
131
- beta = torch.sin(angle)
132
- return alpha, beta
133
-
134
- def denoise_fn(
135
- self,
136
- x_noisy: Tensor,
137
- sigmas: Optional[Tensor] = None,
138
- sigma: Optional[float] = None,
139
- **kwargs,
140
- ) -> Tensor:
141
- batch_size, device = x_noisy.shape[0], x_noisy.device
142
- sigmas = to_batch(x=sigma, xs=sigmas, batch_size=batch_size, device=device)
143
- return self.net(x_noisy, sigmas, **kwargs)
144
-
145
- def forward(self, x: Tensor, noise: Tensor = None, **kwargs) -> Tensor:
146
- batch_size, device = x.shape[0], x.device
147
-
148
- # Sample amount of noise to add for each batch element
149
- sigmas = self.sigma_distribution(num_samples=batch_size, device=device)
150
- sigmas_padded = rearrange(sigmas, "b -> b 1 1")
151
-
152
- # Get noise
153
- noise = default(noise, lambda: torch.randn_like(x))
154
-
155
- # Combine input and noise weighted by half-circle
156
- alpha, beta = self.get_alpha_beta(sigmas_padded)
157
- x_noisy = x * alpha + noise * beta
158
- x_target = noise * alpha - x * beta
159
-
160
- # Denoise and return loss
161
- x_denoised = self.denoise_fn(x_noisy, sigmas, **kwargs)
162
- return F.mse_loss(x_denoised, x_target)
163
-
164
-
165
- class KDiffusion(Diffusion):
166
- """Elucidated Diffusion (Karras et al. 2022): https://arxiv.org/abs/2206.00364"""
167
-
168
- alias = "k"
169
-
170
- def __init__(
171
- self,
172
- net: nn.Module,
173
- *,
174
- sigma_distribution: Distribution,
175
- sigma_data: float, # data distribution standard deviation
176
- dynamic_threshold: float = 0.0,
177
- ):
178
- super().__init__()
179
- self.net = net
180
- self.sigma_data = sigma_data
181
- self.sigma_distribution = sigma_distribution
182
- self.dynamic_threshold = dynamic_threshold
183
-
184
- def get_scale_weights(self, sigmas: Tensor) -> Tuple[Tensor, ...]:
185
- sigma_data = self.sigma_data
186
- c_noise = torch.log(sigmas) * 0.25
187
- sigmas = rearrange(sigmas, "b -> b 1 1")
188
- c_skip = (sigma_data ** 2) / (sigmas ** 2 + sigma_data ** 2)
189
- c_out = sigmas * sigma_data * (sigma_data ** 2 + sigmas ** 2) ** -0.5
190
- c_in = (sigmas ** 2 + sigma_data ** 2) ** -0.5
191
- return c_skip, c_out, c_in, c_noise
192
-
193
- def denoise_fn(
194
- self,
195
- x_noisy: Tensor,
196
- sigmas: Optional[Tensor] = None,
197
- sigma: Optional[float] = None,
198
- **kwargs,
199
- ) -> Tensor:
200
- batch_size, device = x_noisy.shape[0], x_noisy.device
201
- sigmas = to_batch(x=sigma, xs=sigmas, batch_size=batch_size, device=device)
202
-
203
- # Predict network output and add skip connection
204
- c_skip, c_out, c_in, c_noise = self.get_scale_weights(sigmas)
205
- x_pred = self.net(c_in * x_noisy, c_noise, **kwargs)
206
- x_denoised = c_skip * x_noisy + c_out * x_pred
207
-
208
- return x_denoised
209
-
210
- def loss_weight(self, sigmas: Tensor) -> Tensor:
211
- # Computes weight depending on data distribution
212
- return (sigmas ** 2 + self.sigma_data ** 2) * (sigmas * self.sigma_data) ** -2
213
-
214
- def forward(self, x: Tensor, noise: Tensor = None, **kwargs) -> Tensor:
215
- batch_size, device = x.shape[0], x.device
216
- from einops import rearrange, reduce
217
-
218
- # Sample amount of noise to add for each batch element
219
- sigmas = self.sigma_distribution(num_samples=batch_size, device=device)
220
- sigmas_padded = rearrange(sigmas, "b -> b 1 1")
221
-
222
- # Add noise to input
223
- noise = default(noise, lambda: torch.randn_like(x))
224
- x_noisy = x + sigmas_padded * noise
225
-
226
- # Compute denoised values
227
- x_denoised = self.denoise_fn(x_noisy, sigmas=sigmas, **kwargs)
228
-
229
- # Compute weighted loss
230
- losses = F.mse_loss(x_denoised, x, reduction="none")
231
- losses = reduce(losses, "b ... -> b", "mean")
232
- losses = losses * self.loss_weight(sigmas)
233
- loss = losses.mean()
234
- return loss
235
-
236
-
237
- class VKDiffusion(Diffusion):
238
-
239
- alias = "vk"
240
-
241
- def __init__(self, net: nn.Module, *, sigma_distribution: Distribution):
242
- super().__init__()
243
- self.net = net
244
- self.sigma_distribution = sigma_distribution
245
-
246
- def get_scale_weights(self, sigmas: Tensor) -> Tuple[Tensor, ...]:
247
- sigma_data = 1.0
248
- sigmas = rearrange(sigmas, "b -> b 1 1")
249
- c_skip = (sigma_data ** 2) / (sigmas ** 2 + sigma_data ** 2)
250
- c_out = -sigmas * sigma_data * (sigma_data ** 2 + sigmas ** 2) ** -0.5
251
- c_in = (sigmas ** 2 + sigma_data ** 2) ** -0.5
252
- return c_skip, c_out, c_in
253
-
254
- def sigma_to_t(self, sigmas: Tensor) -> Tensor:
255
- return sigmas.atan() / pi * 2
256
-
257
- def t_to_sigma(self, t: Tensor) -> Tensor:
258
- return (t * pi / 2).tan()
259
-
260
- def denoise_fn(
261
- self,
262
- x_noisy: Tensor,
263
- sigmas: Optional[Tensor] = None,
264
- sigma: Optional[float] = None,
265
- **kwargs,
266
- ) -> Tensor:
267
- batch_size, device = x_noisy.shape[0], x_noisy.device
268
- sigmas = to_batch(x=sigma, xs=sigmas, batch_size=batch_size, device=device)
269
-
270
- # Predict network output and add skip connection
271
- c_skip, c_out, c_in = self.get_scale_weights(sigmas)
272
- x_pred = self.net(c_in * x_noisy, self.sigma_to_t(sigmas), **kwargs)
273
- x_denoised = c_skip * x_noisy + c_out * x_pred
274
- return x_denoised
275
-
276
- def forward(self, x: Tensor, noise: Tensor = None, **kwargs) -> Tensor:
277
- batch_size, device = x.shape[0], x.device
278
-
279
- # Sample amount of noise to add for each batch element
280
- sigmas = self.sigma_distribution(num_samples=batch_size, device=device)
281
- sigmas_padded = rearrange(sigmas, "b -> b 1 1")
282
-
283
- # Add noise to input
284
- noise = default(noise, lambda: torch.randn_like(x))
285
- x_noisy = x + sigmas_padded * noise
286
-
287
- # Compute model output
288
- c_skip, c_out, c_in = self.get_scale_weights(sigmas)
289
- x_pred = self.net(c_in * x_noisy, self.sigma_to_t(sigmas), **kwargs)
290
-
291
- # Compute v-objective target
292
- v_target = (x - c_skip * x_noisy) / (c_out + 1e-7)
293
-
294
- # Compute loss
295
- loss = F.mse_loss(x_pred, v_target)
296
- return loss
297
-
298
-
299
- """
300
- Diffusion Sampling
301
- """
302
-
303
- """ Schedules """
304
-
305
-
306
- class Schedule(nn.Module):
307
- """Interface used by different sampling schedules"""
308
-
309
- def forward(self, num_steps: int, device: torch.device) -> Tensor:
310
- raise NotImplementedError()
311
-
312
-
313
- class LinearSchedule(Schedule):
314
- def forward(self, num_steps: int, device: Any) -> Tensor:
315
- sigmas = torch.linspace(1, 0, num_steps + 1)[:-1]
316
- return sigmas
317
-
318
-
319
- class KarrasSchedule(Schedule):
320
- """https://arxiv.org/abs/2206.00364 equation 5"""
321
-
322
- def __init__(self, sigma_min: float, sigma_max: float, rho: float = 7.0):
323
- super().__init__()
324
- self.sigma_min = sigma_min
325
- self.sigma_max = sigma_max
326
- self.rho = rho
327
-
328
- def forward(self, num_steps: int, device: Any) -> Tensor:
329
- rho_inv = 1.0 / self.rho
330
- steps = torch.arange(num_steps, device=device, dtype=torch.float32)
331
- sigmas = (
332
- self.sigma_max ** rho_inv
333
- + (steps / (num_steps - 1))
334
- * (self.sigma_min ** rho_inv - self.sigma_max ** rho_inv)
335
- ) ** self.rho
336
- sigmas = F.pad(sigmas, pad=(0, 1), value=0.0)
337
- return sigmas
338
-
339
-
340
- """ Samplers """
341
-
342
-
343
- class Sampler(nn.Module):
344
-
345
- diffusion_types: List[Type[Diffusion]] = []
346
-
347
- def forward(
348
- self, noise: Tensor, fn: Callable, sigmas: Tensor, num_steps: int
349
- ) -> Tensor:
350
- raise NotImplementedError()
351
-
352
- def inpaint(
353
- self,
354
- source: Tensor,
355
- mask: Tensor,
356
- fn: Callable,
357
- sigmas: Tensor,
358
- num_steps: int,
359
- num_resamples: int,
360
- ) -> Tensor:
361
- raise NotImplementedError("Inpainting not available with current sampler")
362
-
363
-
364
- class VSampler(Sampler):
365
-
366
- diffusion_types = [VDiffusion]
367
-
368
- def get_alpha_beta(self, sigma: float) -> Tuple[float, float]:
369
- angle = sigma * pi / 2
370
- alpha = cos(angle)
371
- beta = sin(angle)
372
- return alpha, beta
373
-
374
- def forward(
375
- self, noise: Tensor, fn: Callable, sigmas: Tensor, num_steps: int
376
- ) -> Tensor:
377
- x = sigmas[0] * noise
378
- alpha, beta = self.get_alpha_beta(sigmas[0].item())
379
-
380
- for i in range(num_steps - 1):
381
- is_last = i == num_steps - 1
382
-
383
- x_denoised = fn(x, sigma=sigmas[i])
384
- x_pred = x * alpha - x_denoised * beta
385
- x_eps = x * beta + x_denoised * alpha
386
-
387
- if not is_last:
388
- alpha, beta = self.get_alpha_beta(sigmas[i + 1].item())
389
- x = x_pred * alpha + x_eps * beta
390
-
391
- return x_pred
392
-
393
-
394
- class KarrasSampler(Sampler):
395
- """https://arxiv.org/abs/2206.00364 algorithm 1"""
396
-
397
- diffusion_types = [KDiffusion, VKDiffusion]
398
-
399
- def __init__(
400
- self,
401
- s_tmin: float = 0,
402
- s_tmax: float = float("inf"),
403
- s_churn: float = 0.0,
404
- s_noise: float = 1.0,
405
- ):
406
- super().__init__()
407
- self.s_tmin = s_tmin
408
- self.s_tmax = s_tmax
409
- self.s_noise = s_noise
410
- self.s_churn = s_churn
411
-
412
- def step(
413
- self, x: Tensor, fn: Callable, sigma: float, sigma_next: float, gamma: float
414
- ) -> Tensor:
415
- """Algorithm 2 (step)"""
416
- # Select temporarily increased noise level
417
- sigma_hat = sigma + gamma * sigma
418
- # Add noise to move from sigma to sigma_hat
419
- epsilon = self.s_noise * torch.randn_like(x)
420
- x_hat = x + sqrt(sigma_hat ** 2 - sigma ** 2) * epsilon
421
- # Evaluate ∂x/∂sigma at sigma_hat
422
- d = (x_hat - fn(x_hat, sigma=sigma_hat)) / sigma_hat
423
- # Take euler step from sigma_hat to sigma_next
424
- x_next = x_hat + (sigma_next - sigma_hat) * d
425
- # Second order correction
426
- if sigma_next != 0:
427
- model_out_next = fn(x_next, sigma=sigma_next)
428
- d_prime = (x_next - model_out_next) / sigma_next
429
- x_next = x_hat + 0.5 * (sigma - sigma_hat) * (d + d_prime)
430
- return x_next
431
-
432
- def forward(
433
- self, noise: Tensor, fn: Callable, sigmas: Tensor, num_steps: int
434
- ) -> Tensor:
435
- x = sigmas[0] * noise
436
- # Compute gammas
437
- gammas = torch.where(
438
- (sigmas >= self.s_tmin) & (sigmas <= self.s_tmax),
439
- min(self.s_churn / num_steps, sqrt(2) - 1),
440
- 0.0,
441
- )
442
- # Denoise to sample
443
- for i in range(num_steps - 1):
444
- x = self.step(
445
- x, fn=fn, sigma=sigmas[i], sigma_next=sigmas[i + 1], gamma=gammas[i] # type: ignore # noqa
446
- )
447
-
448
- return x
449
-
450
-
451
- class AEulerSampler(Sampler):
452
-
453
- diffusion_types = [KDiffusion, VKDiffusion]
454
-
455
- def get_sigmas(self, sigma: float, sigma_next: float) -> Tuple[float, float]:
456
- sigma_up = sqrt(sigma_next ** 2 * (sigma ** 2 - sigma_next ** 2) / sigma ** 2)
457
- sigma_down = sqrt(sigma_next ** 2 - sigma_up ** 2)
458
- return sigma_up, sigma_down
459
-
460
- def step(self, x: Tensor, fn: Callable, sigma: float, sigma_next: float) -> Tensor:
461
- # Sigma steps
462
- sigma_up, sigma_down = self.get_sigmas(sigma, sigma_next)
463
- # Derivative at sigma (∂x/∂sigma)
464
- d = (x - fn(x, sigma=sigma)) / sigma
465
- # Euler method
466
- x_next = x + d * (sigma_down - sigma)
467
- # Add randomness
468
- x_next = x_next + torch.randn_like(x) * sigma_up
469
- return x_next
470
-
471
- def forward(
472
- self, noise: Tensor, fn: Callable, sigmas: Tensor, num_steps: int
473
- ) -> Tensor:
474
- x = sigmas[0] * noise
475
- # Denoise to sample
476
- for i in range(num_steps - 1):
477
- x = self.step(x, fn=fn, sigma=sigmas[i], sigma_next=sigmas[i + 1]) # type: ignore # noqa
478
- return x
479
-
480
-
481
- class ADPM2Sampler(Sampler):
482
- """https://www.desmos.com/calculator/jbxjlqd9mb"""
483
-
484
- diffusion_types = [KDiffusion, VKDiffusion]
485
-
486
- def __init__(self, rho: float = 1.0):
487
- super().__init__()
488
- self.rho = rho
489
-
490
- def get_sigmas(self, sigma: float, sigma_next: float) -> Tuple[float, float, float]:
491
- r = self.rho
492
- sigma_up = sqrt(sigma_next ** 2 * (sigma ** 2 - sigma_next ** 2) / sigma ** 2)
493
- sigma_down = sqrt(sigma_next ** 2 - sigma_up ** 2)
494
- sigma_mid = ((sigma ** (1 / r) + sigma_down ** (1 / r)) / 2) ** r
495
- return sigma_up, sigma_down, sigma_mid
496
-
497
- def step(self, x: Tensor, fn: Callable, sigma: float, sigma_next: float) -> Tensor:
498
- # Sigma steps
499
- sigma_up, sigma_down, sigma_mid = self.get_sigmas(sigma, sigma_next)
500
- # Derivative at sigma (∂x/∂sigma)
501
- d = (x - fn(x, sigma=sigma)) / sigma
502
- # Denoise to midpoint
503
- x_mid = x + d * (sigma_mid - sigma)
504
- # Derivative at sigma_mid (∂x_mid/∂sigma_mid)
505
- d_mid = (x_mid - fn(x_mid, sigma=sigma_mid)) / sigma_mid
506
- # Denoise to next
507
- x = x + d_mid * (sigma_down - sigma)
508
- # Add randomness
509
- x_next = x + torch.randn_like(x) * sigma_up
510
- return x_next
511
-
512
- def forward(
513
- self, noise: Tensor, fn: Callable, sigmas: Tensor, num_steps: int
514
- ) -> Tensor:
515
- x = sigmas[0] * noise
516
- # Denoise to sample
517
- for i in range(num_steps - 1):
518
- x = self.step(x, fn=fn, sigma=sigmas[i], sigma_next=sigmas[i + 1]) # type: ignore # noqa
519
- return x
520
-
521
- def inpaint(
522
- self,
523
- source: Tensor,
524
- mask: Tensor,
525
- fn: Callable,
526
- sigmas: Tensor,
527
- num_steps: int,
528
- num_resamples: int,
529
- ) -> Tensor:
530
- x = sigmas[0] * torch.randn_like(source)
531
-
532
- for i in range(num_steps - 1):
533
- # Noise source to current noise level
534
- source_noisy = source + sigmas[i] * torch.randn_like(source)
535
- for r in range(num_resamples):
536
- # Merge noisy source and current then denoise
537
- x = source_noisy * mask + x * ~mask
538
- x = self.step(x, fn=fn, sigma=sigmas[i], sigma_next=sigmas[i + 1]) # type: ignore # noqa
539
- # Renoise if not last resample step
540
- if r < num_resamples - 1:
541
- sigma = sqrt(sigmas[i] ** 2 - sigmas[i + 1] ** 2)
542
- x = x + sigma * torch.randn_like(x)
543
-
544
- return source * mask + x * ~mask
545
-
546
-
547
- """ Main Classes """
548
-
549
-
550
- class DiffusionSampler(nn.Module):
551
- def __init__(
552
- self,
553
- diffusion: Diffusion,
554
- *,
555
- sampler: Sampler,
556
- sigma_schedule: Schedule,
557
- num_steps: Optional[int] = None,
558
- clamp: bool = True,
559
- ):
560
- super().__init__()
561
- self.denoise_fn = diffusion.denoise_fn
562
- self.sampler = sampler
563
- self.sigma_schedule = sigma_schedule
564
- self.num_steps = num_steps
565
- self.clamp = clamp
566
-
567
- # Check sampler is compatible with diffusion type
568
- sampler_class = sampler.__class__.__name__
569
- diffusion_class = diffusion.__class__.__name__
570
- message = f"{sampler_class} incompatible with {diffusion_class}"
571
- assert diffusion.alias in [t.alias for t in sampler.diffusion_types], message
572
-
573
- def forward(
574
- self, noise: Tensor, num_steps: Optional[int] = None, **kwargs
575
- ) -> Tensor:
576
- device = noise.device
577
- num_steps = default(num_steps, self.num_steps) # type: ignore
578
- assert exists(num_steps), "Parameter `num_steps` must be provided"
579
- # Compute sigmas using schedule
580
- sigmas = self.sigma_schedule(num_steps, device)
581
- # Append additional kwargs to denoise function (used e.g. for conditional unet)
582
- fn = lambda *a, **ka: self.denoise_fn(*a, **{**ka, **kwargs}) # noqa
583
- # Sample using sampler
584
- x = self.sampler(noise, fn=fn, sigmas=sigmas, num_steps=num_steps)
585
- x = x.clamp(-1.0, 1.0) if self.clamp else x
586
- return x
587
-
588
-
589
- class DiffusionInpainter(nn.Module):
590
- def __init__(
591
- self,
592
- diffusion: Diffusion,
593
- *,
594
- num_steps: int,
595
- num_resamples: int,
596
- sampler: Sampler,
597
- sigma_schedule: Schedule,
598
- ):
599
- super().__init__()
600
- self.denoise_fn = diffusion.denoise_fn
601
- self.num_steps = num_steps
602
- self.num_resamples = num_resamples
603
- self.inpaint_fn = sampler.inpaint
604
- self.sigma_schedule = sigma_schedule
605
-
606
- @torch.no_grad()
607
- def forward(self, inpaint: Tensor, inpaint_mask: Tensor) -> Tensor:
608
- x = self.inpaint_fn(
609
- source=inpaint,
610
- mask=inpaint_mask,
611
- fn=self.denoise_fn,
612
- sigmas=self.sigma_schedule(self.num_steps, inpaint.device),
613
- num_steps=self.num_steps,
614
- num_resamples=self.num_resamples,
615
- )
616
- return x
617
-
618
-
619
- def sequential_mask(like: Tensor, start: int) -> Tensor:
620
- length, device = like.shape[2], like.device
621
- mask = torch.ones_like(like, dtype=torch.bool)
622
- mask[:, :, start:] = torch.zeros((length - start,), device=device)
623
- return mask
624
-
625
-
626
- class SpanBySpanComposer(nn.Module):
627
- def __init__(
628
- self,
629
- inpainter: DiffusionInpainter,
630
- *,
631
- num_spans: int,
632
- ):
633
- super().__init__()
634
- self.inpainter = inpainter
635
- self.num_spans = num_spans
636
-
637
- def forward(self, start: Tensor, keep_start: bool = False) -> Tensor:
638
- half_length = start.shape[2] // 2
639
-
640
- spans = list(start.chunk(chunks=2, dim=-1)) if keep_start else []
641
- # Inpaint second half from first half
642
- inpaint = torch.zeros_like(start)
643
- inpaint[:, :, :half_length] = start[:, :, half_length:]
644
- inpaint_mask = sequential_mask(like=start, start=half_length)
645
-
646
- for i in range(self.num_spans):
647
- # Inpaint second half
648
- span = self.inpainter(inpaint=inpaint, inpaint_mask=inpaint_mask)
649
- # Replace first half with generated second half
650
- second_half = span[:, :, half_length:]
651
- inpaint[:, :, :half_length] = second_half
652
- # Save generated span
653
- spans.append(second_half)
654
-
655
- return torch.cat(spans, dim=2)
656
-
657
-
658
- class XDiffusion(nn.Module):
659
- def __init__(self, type: str, net: nn.Module, **kwargs):
660
- super().__init__()
661
-
662
- diffusion_classes = [VDiffusion, KDiffusion, VKDiffusion]
663
- aliases = [t.alias for t in diffusion_classes] # type: ignore
664
- message = f"type='{type}' must be one of {*aliases,}"
665
- assert type in aliases, message
666
- self.net = net
667
-
668
- for XDiffusion in diffusion_classes:
669
- if XDiffusion.alias == type: # type: ignore
670
- self.diffusion = XDiffusion(net=net, **kwargs)
671
-
672
- def forward(self, *args, **kwargs) -> Tensor:
673
- return self.diffusion(*args, **kwargs)
674
-
675
- def sample(
676
- self,
677
- noise: Tensor,
678
- num_steps: int,
679
- sigma_schedule: Schedule,
680
- sampler: Sampler,
681
- clamp: bool,
682
- **kwargs,
683
- ) -> Tensor:
684
- diffusion_sampler = DiffusionSampler(
685
- diffusion=self.diffusion,
686
- sampler=sampler,
687
- sigma_schedule=sigma_schedule,
688
- num_steps=num_steps,
689
- clamp=clamp,
690
- )
691
- return diffusion_sampler(noise, **kwargs)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Modules/diffusion/utils.py DELETED
@@ -1,82 +0,0 @@
1
- from functools import reduce
2
- from inspect import isfunction
3
- from math import ceil, floor, log2, pi
4
- from typing import Callable, Dict, List, Optional, Sequence, Tuple, TypeVar, Union
5
-
6
- import torch
7
- import torch.nn.functional as F
8
- from einops import rearrange
9
- from torch import Generator, Tensor
10
- from typing_extensions import TypeGuard
11
-
12
- T = TypeVar("T")
13
-
14
-
15
- def exists(val: Optional[T]) -> TypeGuard[T]:
16
- return val is not None
17
-
18
-
19
- def iff(condition: bool, value: T) -> Optional[T]:
20
- return value if condition else None
21
-
22
-
23
- def is_sequence(obj: T) -> TypeGuard[Union[list, tuple]]:
24
- return isinstance(obj, list) or isinstance(obj, tuple)
25
-
26
-
27
- def default(val: Optional[T], d: Union[Callable[..., T], T]) -> T:
28
- if exists(val):
29
- return val
30
- return d() if isfunction(d) else d
31
-
32
-
33
- def to_list(val: Union[T, Sequence[T]]) -> List[T]:
34
- if isinstance(val, tuple):
35
- return list(val)
36
- if isinstance(val, list):
37
- return val
38
- return [val] # type: ignore
39
-
40
-
41
- def prod(vals: Sequence[int]) -> int:
42
- return reduce(lambda x, y: x * y, vals)
43
-
44
-
45
- def closest_power_2(x: float) -> int:
46
- exponent = log2(x)
47
- distance_fn = lambda z: abs(x - 2 ** z) # noqa
48
- exponent_closest = min((floor(exponent), ceil(exponent)), key=distance_fn)
49
- return 2 ** int(exponent_closest)
50
-
51
- def rand_bool(shape, proba, device = None):
52
- if proba == 1:
53
- return torch.ones(shape, device=device, dtype=torch.bool)
54
- elif proba == 0:
55
- return torch.zeros(shape, device=device, dtype=torch.bool)
56
- else:
57
- return torch.bernoulli(torch.full(shape, proba, device=device)).to(torch.bool)
58
-
59
-
60
- """
61
- Kwargs Utils
62
- """
63
-
64
-
65
- def group_dict_by_prefix(prefix: str, d: Dict) -> Tuple[Dict, Dict]:
66
- return_dicts: Tuple[Dict, Dict] = ({}, {})
67
- for key in d.keys():
68
- no_prefix = int(not key.startswith(prefix))
69
- return_dicts[no_prefix][key] = d[key]
70
- return return_dicts
71
-
72
-
73
- def groupby(prefix: str, d: Dict, keep_prefix: bool = False) -> Tuple[Dict, Dict]:
74
- kwargs_with_prefix, kwargs = group_dict_by_prefix(prefix, d)
75
- if keep_prefix:
76
- return kwargs_with_prefix, kwargs
77
- kwargs_no_prefix = {k[len(prefix) :]: v for k, v in kwargs_with_prefix.items()}
78
- return kwargs_no_prefix, kwargs
79
-
80
-
81
- def prefix_dict(prefix: str, d: Dict) -> Dict:
82
- return {prefix + str(k): v for k, v in d.items()}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Modules/discriminators.py DELETED
@@ -1,188 +0,0 @@
1
- import torch
2
- import torch.nn.functional as F
3
- import torch.nn as nn
4
- from torch.nn import Conv1d, AvgPool1d, Conv2d
5
- from torch.nn.utils import weight_norm, spectral_norm
6
-
7
- from .utils import get_padding
8
-
9
- LRELU_SLOPE = 0.1
10
-
11
- def stft(x, fft_size, hop_size, win_length, window):
12
- """Perform STFT and convert to magnitude spectrogram.
13
- Args:
14
- x (Tensor): Input signal tensor (B, T).
15
- fft_size (int): FFT size.
16
- hop_size (int): Hop size.
17
- win_length (int): Window length.
18
- window (str): Window function type.
19
- Returns:
20
- Tensor: Magnitude spectrogram (B, #frames, fft_size // 2 + 1).
21
- """
22
- x_stft = torch.stft(x, fft_size, hop_size, win_length, window,
23
- return_complex=True)
24
- real = x_stft[..., 0]
25
- imag = x_stft[..., 1]
26
-
27
- return torch.abs(x_stft).transpose(2, 1)
28
-
29
- class SpecDiscriminator(nn.Module):
30
- """docstring for Discriminator."""
31
-
32
- def __init__(self, fft_size=1024, shift_size=120, win_length=600, window="hann_window", use_spectral_norm=False):
33
- super(SpecDiscriminator, self).__init__()
34
- norm_f = weight_norm if use_spectral_norm == False else spectral_norm
35
- self.fft_size = fft_size
36
- self.shift_size = shift_size
37
- self.win_length = win_length
38
- self.window = getattr(torch, window)(win_length)
39
- self.discriminators = nn.ModuleList([
40
- norm_f(nn.Conv2d(1, 32, kernel_size=(3, 9), padding=(1, 4))),
41
- norm_f(nn.Conv2d(32, 32, kernel_size=(3, 9), stride=(1,2), padding=(1, 4))),
42
- norm_f(nn.Conv2d(32, 32, kernel_size=(3, 9), stride=(1,2), padding=(1, 4))),
43
- norm_f(nn.Conv2d(32, 32, kernel_size=(3, 9), stride=(1,2), padding=(1, 4))),
44
- norm_f(nn.Conv2d(32, 32, kernel_size=(3, 3), stride=(1,1), padding=(1, 1))),
45
- ])
46
-
47
- self.out = norm_f(nn.Conv2d(32, 1, 3, 1, 1))
48
-
49
- def forward(self, y):
50
-
51
- fmap = []
52
- y = y.squeeze(1)
53
- y = stft(y, self.fft_size, self.shift_size, self.win_length, self.window.to(y.get_device()))
54
- y = y.unsqueeze(1)
55
- for i, d in enumerate(self.discriminators):
56
- y = d(y)
57
- y = F.leaky_relu(y, LRELU_SLOPE)
58
- fmap.append(y)
59
-
60
- y = self.out(y)
61
- fmap.append(y)
62
-
63
- return torch.flatten(y, 1, -1), fmap
64
-
65
- class MultiResSpecDiscriminator(torch.nn.Module):
66
-
67
- def __init__(self,
68
- fft_sizes=[1024, 2048, 512],
69
- hop_sizes=[120, 240, 50],
70
- win_lengths=[600, 1200, 240],
71
- window="hann_window"):
72
-
73
- super(MultiResSpecDiscriminator, self).__init__()
74
- self.discriminators = nn.ModuleList([
75
- SpecDiscriminator(fft_sizes[0], hop_sizes[0], win_lengths[0], window),
76
- SpecDiscriminator(fft_sizes[1], hop_sizes[1], win_lengths[1], window),
77
- SpecDiscriminator(fft_sizes[2], hop_sizes[2], win_lengths[2], window)
78
- ])
79
-
80
- def forward(self, y, y_hat):
81
- y_d_rs = []
82
- y_d_gs = []
83
- fmap_rs = []
84
- fmap_gs = []
85
- for i, d in enumerate(self.discriminators):
86
- y_d_r, fmap_r = d(y)
87
- y_d_g, fmap_g = d(y_hat)
88
- y_d_rs.append(y_d_r)
89
- fmap_rs.append(fmap_r)
90
- y_d_gs.append(y_d_g)
91
- fmap_gs.append(fmap_g)
92
-
93
- return y_d_rs, y_d_gs, fmap_rs, fmap_gs
94
-
95
-
96
- class DiscriminatorP(torch.nn.Module):
97
- def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
98
- super(DiscriminatorP, self).__init__()
99
- self.period = period
100
- norm_f = weight_norm if use_spectral_norm == False else spectral_norm
101
- self.convs = nn.ModuleList([
102
- norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
103
- norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
104
- norm_f(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
105
- norm_f(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
106
- norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(2, 0))),
107
- ])
108
- self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
109
-
110
- def forward(self, x):
111
- fmap = []
112
-
113
- # 1d to 2d
114
- b, c, t = x.shape
115
- if t % self.period != 0: # pad first
116
- n_pad = self.period - (t % self.period)
117
- x = F.pad(x, (0, n_pad), "reflect")
118
- t = t + n_pad
119
- x = x.view(b, c, t // self.period, self.period)
120
-
121
- for l in self.convs:
122
- x = l(x)
123
- x = F.leaky_relu(x, LRELU_SLOPE)
124
- fmap.append(x)
125
- x = self.conv_post(x)
126
- fmap.append(x)
127
- x = torch.flatten(x, 1, -1)
128
-
129
- return x, fmap
130
-
131
-
132
- class MultiPeriodDiscriminator(torch.nn.Module):
133
- def __init__(self):
134
- super(MultiPeriodDiscriminator, self).__init__()
135
- self.discriminators = nn.ModuleList([
136
- DiscriminatorP(2),
137
- DiscriminatorP(3),
138
- DiscriminatorP(5),
139
- DiscriminatorP(7),
140
- DiscriminatorP(11),
141
- ])
142
-
143
- def forward(self, y, y_hat):
144
- y_d_rs = []
145
- y_d_gs = []
146
- fmap_rs = []
147
- fmap_gs = []
148
- for i, d in enumerate(self.discriminators):
149
- y_d_r, fmap_r = d(y)
150
- y_d_g, fmap_g = d(y_hat)
151
- y_d_rs.append(y_d_r)
152
- fmap_rs.append(fmap_r)
153
- y_d_gs.append(y_d_g)
154
- fmap_gs.append(fmap_g)
155
-
156
- return y_d_rs, y_d_gs, fmap_rs, fmap_gs
157
-
158
- class WavLMDiscriminator(nn.Module):
159
- """docstring for Discriminator."""
160
-
161
- def __init__(self, slm_hidden=768,
162
- slm_layers=13,
163
- initial_channel=64,
164
- use_spectral_norm=False):
165
- super(WavLMDiscriminator, self).__init__()
166
- norm_f = weight_norm if use_spectral_norm == False else spectral_norm
167
- self.pre = norm_f(Conv1d(slm_hidden * slm_layers, initial_channel, 1, 1, padding=0))
168
-
169
- self.convs = nn.ModuleList([
170
- norm_f(nn.Conv1d(initial_channel, initial_channel * 2, kernel_size=5, padding=2)),
171
- norm_f(nn.Conv1d(initial_channel * 2, initial_channel * 4, kernel_size=5, padding=2)),
172
- norm_f(nn.Conv1d(initial_channel * 4, initial_channel * 4, 5, 1, padding=2)),
173
- ])
174
-
175
- self.conv_post = norm_f(Conv1d(initial_channel * 4, 1, 3, 1, padding=1))
176
-
177
- def forward(self, x):
178
- x = self.pre(x)
179
-
180
- fmap = []
181
- for l in self.convs:
182
- x = l(x)
183
- x = F.leaky_relu(x, LRELU_SLOPE)
184
- fmap.append(x)
185
- x = self.conv_post(x)
186
- x = torch.flatten(x, 1, -1)
187
-
188
- return x
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Modules/hifigan.py DELETED
@@ -1,477 +0,0 @@
1
- import torch
2
- import torch.nn.functional as F
3
- import torch.nn as nn
4
- from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
5
- from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
6
- from .utils import init_weights, get_padding
7
-
8
- import math
9
- import random
10
- import numpy as np
11
-
12
- LRELU_SLOPE = 0.1
13
-
14
- class AdaIN1d(nn.Module):
15
- def __init__(self, style_dim, num_features):
16
- super().__init__()
17
- self.norm = nn.InstanceNorm1d(num_features, affine=False)
18
- self.fc = nn.Linear(style_dim, num_features*2)
19
-
20
- def forward(self, x, s):
21
- h = self.fc(s)
22
- h = h.view(h.size(0), h.size(1), 1)
23
- gamma, beta = torch.chunk(h, chunks=2, dim=1)
24
- return (1 + gamma) * self.norm(x) + beta
25
-
26
- class AdaINResBlock1(torch.nn.Module):
27
- def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5), style_dim=64):
28
- super(AdaINResBlock1, self).__init__()
29
- self.convs1 = nn.ModuleList([
30
- weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
31
- padding=get_padding(kernel_size, dilation[0]))),
32
- weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
33
- padding=get_padding(kernel_size, dilation[1]))),
34
- weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2],
35
- padding=get_padding(kernel_size, dilation[2])))
36
- ])
37
- self.convs1.apply(init_weights)
38
-
39
- self.convs2 = nn.ModuleList([
40
- weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
41
- padding=get_padding(kernel_size, 1))),
42
- weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
43
- padding=get_padding(kernel_size, 1))),
44
- weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
45
- padding=get_padding(kernel_size, 1)))
46
- ])
47
- self.convs2.apply(init_weights)
48
-
49
- self.adain1 = nn.ModuleList([
50
- AdaIN1d(style_dim, channels),
51
- AdaIN1d(style_dim, channels),
52
- AdaIN1d(style_dim, channels),
53
- ])
54
-
55
- self.adain2 = nn.ModuleList([
56
- AdaIN1d(style_dim, channels),
57
- AdaIN1d(style_dim, channels),
58
- AdaIN1d(style_dim, channels),
59
- ])
60
-
61
- self.alpha1 = nn.ParameterList([nn.Parameter(torch.ones(1, channels, 1)) for i in range(len(self.convs1))])
62
- self.alpha2 = nn.ParameterList([nn.Parameter(torch.ones(1, channels, 1)) for i in range(len(self.convs2))])
63
-
64
-
65
- def forward(self, x, s):
66
- for c1, c2, n1, n2, a1, a2 in zip(self.convs1, self.convs2, self.adain1, self.adain2, self.alpha1, self.alpha2):
67
- xt = n1(x, s)
68
- xt = xt + (1 / a1) * (torch.sin(a1 * xt) ** 2) # Snake1D
69
- xt = c1(xt)
70
- xt = n2(xt, s)
71
- xt = xt + (1 / a2) * (torch.sin(a2 * xt) ** 2) # Snake1D
72
- xt = c2(xt)
73
- x = xt + x
74
- return x
75
-
76
- def remove_weight_norm(self):
77
- for l in self.convs1:
78
- remove_weight_norm(l)
79
- for l in self.convs2:
80
- remove_weight_norm(l)
81
-
82
- class SineGen(torch.nn.Module):
83
- """ Definition of sine generator
84
- SineGen(samp_rate, harmonic_num = 0,
85
- sine_amp = 0.1, noise_std = 0.003,
86
- voiced_threshold = 0,
87
- flag_for_pulse=False)
88
- samp_rate: sampling rate in Hz
89
- harmonic_num: number of harmonic overtones (default 0)
90
- sine_amp: amplitude of sine-wavefrom (default 0.1)
91
- noise_std: std of Gaussian noise (default 0.003)
92
- voiced_thoreshold: F0 threshold for U/V classification (default 0)
93
- flag_for_pulse: this SinGen is used inside PulseGen (default False)
94
- Note: when flag_for_pulse is True, the first time step of a voiced
95
- segment is always sin(np.pi) or cos(0)
96
- """
97
-
98
- def __init__(self, samp_rate, upsample_scale, harmonic_num=0,
99
- sine_amp=0.1, noise_std=0.003,
100
- voiced_threshold=0,
101
- flag_for_pulse=False):
102
- super(SineGen, self).__init__()
103
- self.sine_amp = sine_amp
104
- self.noise_std = noise_std
105
- self.harmonic_num = harmonic_num
106
- self.dim = self.harmonic_num + 1
107
- self.sampling_rate = samp_rate
108
- self.voiced_threshold = voiced_threshold
109
- self.flag_for_pulse = flag_for_pulse
110
- self.upsample_scale = upsample_scale
111
-
112
- def _f02uv(self, f0):
113
- # generate uv signal
114
- uv = (f0 > self.voiced_threshold).type(torch.float32)
115
- return uv
116
-
117
- def _f02sine(self, f0_values):
118
- """ f0_values: (batchsize, length, dim)
119
- where dim indicates fundamental tone and overtones
120
- """
121
- # convert to F0 in rad. The interger part n can be ignored
122
- # because 2 * np.pi * n doesn't affect phase
123
- rad_values = (f0_values / self.sampling_rate) % 1
124
-
125
- # initial phase noise (no noise for fundamental component)
126
- rand_ini = torch.rand(f0_values.shape[0], f0_values.shape[2], \
127
- device=f0_values.device)
128
- rand_ini[:, 0] = 0
129
- rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini
130
-
131
- # instantanouse phase sine[t] = sin(2*pi \sum_i=1 ^{t} rad)
132
- if not self.flag_for_pulse:
133
- # # for normal case
134
-
135
- # # To prevent torch.cumsum numerical overflow,
136
- # # it is necessary to add -1 whenever \sum_k=1^n rad_value_k > 1.
137
- # # Buffer tmp_over_one_idx indicates the time step to add -1.
138
- # # This will not change F0 of sine because (x-1) * 2*pi = x * 2*pi
139
- # tmp_over_one = torch.cumsum(rad_values, 1) % 1
140
- # tmp_over_one_idx = (padDiff(tmp_over_one)) < 0
141
- # cumsum_shift = torch.zeros_like(rad_values)
142
- # cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0
143
-
144
- # phase = torch.cumsum(rad_values, dim=1) * 2 * np.pi
145
- rad_values = torch.nn.functional.interpolate(rad_values.transpose(1, 2),
146
- scale_factor=1/self.upsample_scale,
147
- mode="linear").transpose(1, 2)
148
-
149
- # tmp_over_one = torch.cumsum(rad_values, 1) % 1
150
- # tmp_over_one_idx = (padDiff(tmp_over_one)) < 0
151
- # cumsum_shift = torch.zeros_like(rad_values)
152
- # cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0
153
-
154
- phase = torch.cumsum(rad_values, dim=1) * 2 * np.pi
155
- phase = torch.nn.functional.interpolate(phase.transpose(1, 2) * self.upsample_scale,
156
- scale_factor=self.upsample_scale, mode="linear").transpose(1, 2)
157
- sines = torch.sin(phase)
158
-
159
- else:
160
- # If necessary, make sure that the first time step of every
161
- # voiced segments is sin(pi) or cos(0)
162
- # This is used for pulse-train generation
163
-
164
- # identify the last time step in unvoiced segments
165
- uv = self._f02uv(f0_values)
166
- uv_1 = torch.roll(uv, shifts=-1, dims=1)
167
- uv_1[:, -1, :] = 1
168
- u_loc = (uv < 1) * (uv_1 > 0)
169
-
170
- # get the instantanouse phase
171
- tmp_cumsum = torch.cumsum(rad_values, dim=1)
172
- # different batch needs to be processed differently
173
- for idx in range(f0_values.shape[0]):
174
- temp_sum = tmp_cumsum[idx, u_loc[idx, :, 0], :]
175
- temp_sum[1:, :] = temp_sum[1:, :] - temp_sum[0:-1, :]
176
- # stores the accumulation of i.phase within
177
- # each voiced segments
178
- tmp_cumsum[idx, :, :] = 0
179
- tmp_cumsum[idx, u_loc[idx, :, 0], :] = temp_sum
180
-
181
- # rad_values - tmp_cumsum: remove the accumulation of i.phase
182
- # within the previous voiced segment.
183
- i_phase = torch.cumsum(rad_values - tmp_cumsum, dim=1)
184
-
185
- # get the sines
186
- sines = torch.cos(i_phase * 2 * np.pi)
187
- return sines
188
-
189
- def forward(self, f0):
190
- """ sine_tensor, uv = forward(f0)
191
- input F0: tensor(batchsize=1, length, dim=1)
192
- f0 for unvoiced steps should be 0
193
- output sine_tensor: tensor(batchsize=1, length, dim)
194
- output uv: tensor(batchsize=1, length, 1)
195
- """
196
- f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim,
197
- device=f0.device)
198
- # fundamental component
199
- fn = torch.multiply(f0, torch.FloatTensor([[range(1, self.harmonic_num + 2)]]).to(f0.device))
200
-
201
- # generate sine waveforms
202
- sine_waves = self._f02sine(fn) * self.sine_amp
203
-
204
- # generate uv signal
205
- # uv = torch.ones(f0.shape)
206
- # uv = uv * (f0 > self.voiced_threshold)
207
- uv = self._f02uv(f0)
208
-
209
- # noise: for unvoiced should be similar to sine_amp
210
- # std = self.sine_amp/3 -> max value ~ self.sine_amp
211
- # . for voiced regions is self.noise_std
212
- noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
213
- noise = noise_amp * torch.randn_like(sine_waves)
214
-
215
- # first: set the unvoiced part to 0 by uv
216
- # then: additive noise
217
- sine_waves = sine_waves * uv + noise
218
- return sine_waves, uv, noise
219
-
220
-
221
- class SourceModuleHnNSF(torch.nn.Module):
222
- """ SourceModule for hn-nsf
223
- SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1,
224
- add_noise_std=0.003, voiced_threshod=0)
225
- sampling_rate: sampling_rate in Hz
226
- harmonic_num: number of harmonic above F0 (default: 0)
227
- sine_amp: amplitude of sine source signal (default: 0.1)
228
- add_noise_std: std of additive Gaussian noise (default: 0.003)
229
- note that amplitude of noise in unvoiced is decided
230
- by sine_amp
231
- voiced_threshold: threhold to set U/V given F0 (default: 0)
232
- Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
233
- F0_sampled (batchsize, length, 1)
234
- Sine_source (batchsize, length, 1)
235
- noise_source (batchsize, length 1)
236
- uv (batchsize, length, 1)
237
- """
238
-
239
- def __init__(self, sampling_rate, upsample_scale, harmonic_num=0, sine_amp=0.1,
240
- add_noise_std=0.003, voiced_threshod=0):
241
- super(SourceModuleHnNSF, self).__init__()
242
-
243
- self.sine_amp = sine_amp
244
- self.noise_std = add_noise_std
245
-
246
- # to produce sine waveforms
247
- self.l_sin_gen = SineGen(sampling_rate, upsample_scale, harmonic_num,
248
- sine_amp, add_noise_std, voiced_threshod)
249
-
250
- # to merge source harmonics into a single excitation
251
- self.l_linear = torch.nn.Linear(harmonic_num + 1, 1)
252
- self.l_tanh = torch.nn.Tanh()
253
-
254
- def forward(self, x):
255
- """
256
- Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
257
- F0_sampled (batchsize, length, 1)
258
- Sine_source (batchsize, length, 1)
259
- noise_source (batchsize, length 1)
260
- """
261
- # source for harmonic branch
262
- with torch.no_grad():
263
- sine_wavs, uv, _ = self.l_sin_gen(x)
264
- sine_merge = self.l_tanh(self.l_linear(sine_wavs))
265
-
266
- # source for noise branch, in the same shape as uv
267
- noise = torch.randn_like(uv) * self.sine_amp / 3
268
- return sine_merge, noise, uv
269
- def padDiff(x):
270
- return F.pad(F.pad(x, (0,0,-1,1), 'constant', 0) - x, (0,0,0,-1), 'constant', 0)
271
-
272
- class Generator(torch.nn.Module):
273
- def __init__(self, style_dim, resblock_kernel_sizes, upsample_rates, upsample_initial_channel, resblock_dilation_sizes, upsample_kernel_sizes):
274
- super(Generator, self).__init__()
275
- self.num_kernels = len(resblock_kernel_sizes)
276
- self.num_upsamples = len(upsample_rates)
277
- resblock = AdaINResBlock1
278
-
279
- self.m_source = SourceModuleHnNSF(
280
- sampling_rate=24000,
281
- upsample_scale=np.prod(upsample_rates),
282
- harmonic_num=8, voiced_threshod=10)
283
-
284
- self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(upsample_rates))
285
- self.noise_convs = nn.ModuleList()
286
- self.ups = nn.ModuleList()
287
- self.noise_res = nn.ModuleList()
288
-
289
- for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
290
- c_cur = upsample_initial_channel // (2 ** (i + 1))
291
-
292
- self.ups.append(weight_norm(ConvTranspose1d(upsample_initial_channel//(2**i),
293
- upsample_initial_channel//(2**(i+1)),
294
- k, u, padding=(u//2 + u%2), output_padding=u%2)))
295
-
296
- if i + 1 < len(upsample_rates): #
297
- stride_f0 = np.prod(upsample_rates[i + 1:])
298
- self.noise_convs.append(Conv1d(
299
- 1, c_cur, kernel_size=stride_f0 * 2, stride=stride_f0, padding=(stride_f0+1) // 2))
300
- self.noise_res.append(resblock(c_cur, 7, [1,3,5], style_dim))
301
- else:
302
- self.noise_convs.append(Conv1d(1, c_cur, kernel_size=1))
303
- self.noise_res.append(resblock(c_cur, 11, [1,3,5], style_dim))
304
-
305
- self.resblocks = nn.ModuleList()
306
-
307
- self.alphas = nn.ParameterList()
308
- self.alphas.append(nn.Parameter(torch.ones(1, upsample_initial_channel, 1)))
309
-
310
- for i in range(len(self.ups)):
311
- ch = upsample_initial_channel//(2**(i+1))
312
- self.alphas.append(nn.Parameter(torch.ones(1, ch, 1)))
313
-
314
- for j, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)):
315
- self.resblocks.append(resblock(ch, k, d, style_dim))
316
-
317
- self.conv_post = weight_norm(Conv1d(ch, 1, 7, 1, padding=3))
318
- self.ups.apply(init_weights)
319
- self.conv_post.apply(init_weights)
320
-
321
- def forward(self, x, s, f0):
322
-
323
- f0 = self.f0_upsamp(f0[:, None]).transpose(1, 2) # bs,n,t
324
-
325
- har_source, noi_source, uv = self.m_source(f0)
326
- har_source = har_source.transpose(1, 2)
327
-
328
- for i in range(self.num_upsamples):
329
- x = x + (1 / self.alphas[i]) * (torch.sin(self.alphas[i] * x) ** 2)
330
- x_source = self.noise_convs[i](har_source)
331
- x_source = self.noise_res[i](x_source, s)
332
-
333
- x = self.ups[i](x)
334
- x = x + x_source
335
-
336
- xs = None
337
- for j in range(self.num_kernels):
338
- if xs is None:
339
- xs = self.resblocks[i*self.num_kernels+j](x, s)
340
- else:
341
- xs += self.resblocks[i*self.num_kernels+j](x, s)
342
- x = xs / self.num_kernels
343
- x = x + (1 / self.alphas[i+1]) * (torch.sin(self.alphas[i+1] * x) ** 2)
344
- x = self.conv_post(x)
345
- x = torch.tanh(x)
346
-
347
- return x
348
-
349
- def remove_weight_norm(self):
350
- print('Removing weight norm...')
351
- for l in self.ups:
352
- remove_weight_norm(l)
353
- for l in self.resblocks:
354
- l.remove_weight_norm()
355
- remove_weight_norm(self.conv_pre)
356
- remove_weight_norm(self.conv_post)
357
-
358
-
359
- class AdainResBlk1d(nn.Module):
360
- def __init__(self, dim_in, dim_out, style_dim=64, actv=nn.LeakyReLU(0.2),
361
- upsample='none', dropout_p=0.0):
362
- super().__init__()
363
- self.actv = actv
364
- self.upsample_type = upsample
365
- self.upsample = UpSample1d(upsample)
366
- self.learned_sc = dim_in != dim_out
367
- self._build_weights(dim_in, dim_out, style_dim)
368
- self.dropout = nn.Dropout(dropout_p)
369
-
370
- if upsample == 'none':
371
- self.pool = nn.Identity()
372
- else:
373
- self.pool = weight_norm(nn.ConvTranspose1d(dim_in, dim_in, kernel_size=3, stride=2, groups=dim_in, padding=1, output_padding=1))
374
-
375
-
376
- def _build_weights(self, dim_in, dim_out, style_dim):
377
- self.conv1 = weight_norm(nn.Conv1d(dim_in, dim_out, 3, 1, 1))
378
- self.conv2 = weight_norm(nn.Conv1d(dim_out, dim_out, 3, 1, 1))
379
- self.norm1 = AdaIN1d(style_dim, dim_in)
380
- self.norm2 = AdaIN1d(style_dim, dim_out)
381
- if self.learned_sc:
382
- self.conv1x1 = weight_norm(nn.Conv1d(dim_in, dim_out, 1, 1, 0, bias=False))
383
-
384
- def _shortcut(self, x):
385
- x = self.upsample(x)
386
- if self.learned_sc:
387
- x = self.conv1x1(x)
388
- return x
389
-
390
- def _residual(self, x, s):
391
- x = self.norm1(x, s)
392
- x = self.actv(x)
393
- x = self.pool(x)
394
- x = self.conv1(self.dropout(x))
395
- x = self.norm2(x, s)
396
- x = self.actv(x)
397
- x = self.conv2(self.dropout(x))
398
- return x
399
-
400
- def forward(self, x, s):
401
- out = self._residual(x, s)
402
- out = (out + self._shortcut(x)) / math.sqrt(2)
403
- return out
404
-
405
- class UpSample1d(nn.Module):
406
- def __init__(self, layer_type):
407
- super().__init__()
408
- self.layer_type = layer_type
409
-
410
- def forward(self, x):
411
- if self.layer_type == 'none':
412
- return x
413
- else:
414
- return F.interpolate(x, scale_factor=2, mode='nearest')
415
-
416
- class Decoder(nn.Module):
417
- def __init__(self, dim_in=512, F0_channel=512, style_dim=64, dim_out=80,
418
- resblock_kernel_sizes = [3,7,11],
419
- upsample_rates = [10,5,3,2],
420
- upsample_initial_channel=512,
421
- resblock_dilation_sizes=[[1,3,5], [1,3,5], [1,3,5]],
422
- upsample_kernel_sizes=[20,10,6,4]):
423
- super().__init__()
424
-
425
- self.decode = nn.ModuleList()
426
-
427
- self.encode = AdainResBlk1d(dim_in + 2, 1024, style_dim)
428
-
429
- self.decode.append(AdainResBlk1d(1024 + 2 + 64, 1024, style_dim))
430
- self.decode.append(AdainResBlk1d(1024 + 2 + 64, 1024, style_dim))
431
- self.decode.append(AdainResBlk1d(1024 + 2 + 64, 1024, style_dim))
432
- self.decode.append(AdainResBlk1d(1024 + 2 + 64, 512, style_dim, upsample=True))
433
-
434
- self.F0_conv = weight_norm(nn.Conv1d(1, 1, kernel_size=3, stride=2, groups=1, padding=1))
435
-
436
- self.N_conv = weight_norm(nn.Conv1d(1, 1, kernel_size=3, stride=2, groups=1, padding=1))
437
-
438
- self.asr_res = nn.Sequential(
439
- weight_norm(nn.Conv1d(512, 64, kernel_size=1)),
440
- )
441
-
442
-
443
- self.generator = Generator(style_dim, resblock_kernel_sizes, upsample_rates, upsample_initial_channel, resblock_dilation_sizes, upsample_kernel_sizes)
444
-
445
-
446
- def forward(self, asr, F0_curve, N, s):
447
- if self.training:
448
- downlist = [0, 3, 7]
449
- F0_down = downlist[random.randint(0, 2)]
450
- downlist = [0, 3, 7, 15]
451
- N_down = downlist[random.randint(0, 3)]
452
- if F0_down:
453
- F0_curve = nn.functional.conv1d(F0_curve.unsqueeze(1), torch.ones(1, 1, F0_down).to('cuda'), padding=F0_down//2).squeeze(1) / F0_down
454
- if N_down:
455
- N = nn.functional.conv1d(N.unsqueeze(1), torch.ones(1, 1, N_down).to('cuda'), padding=N_down//2).squeeze(1) / N_down
456
-
457
-
458
- F0 = self.F0_conv(F0_curve.unsqueeze(1))
459
- N = self.N_conv(N.unsqueeze(1))
460
-
461
- x = torch.cat([asr, F0, N], axis=1)
462
- x = self.encode(x, s)
463
-
464
- asr_res = self.asr_res(asr)
465
-
466
- res = True
467
- for block in self.decode:
468
- if res:
469
- x = torch.cat([x, asr_res, F0, N], axis=1)
470
- x = block(x, s)
471
- if block.upsample_type != "none":
472
- res = False
473
-
474
- x = self.generator(x, s, F0_curve)
475
- return x
476
-
477
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Modules/istftnet.py DELETED
@@ -1,530 +0,0 @@
1
- import torch
2
- import torch.nn.functional as F
3
- import torch.nn as nn
4
- from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
5
- from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
6
- from .utils import init_weights, get_padding
7
-
8
- import math
9
- import random
10
- import numpy as np
11
- from scipy.signal import get_window
12
-
13
- LRELU_SLOPE = 0.1
14
-
15
- class AdaIN1d(nn.Module):
16
- def __init__(self, style_dim, num_features):
17
- super().__init__()
18
- self.norm = nn.InstanceNorm1d(num_features, affine=False)
19
- self.fc = nn.Linear(style_dim, num_features*2)
20
-
21
- def forward(self, x, s):
22
- h = self.fc(s)
23
- h = h.view(h.size(0), h.size(1), 1)
24
- gamma, beta = torch.chunk(h, chunks=2, dim=1)
25
- return (1 + gamma) * self.norm(x) + beta
26
-
27
- class AdaINResBlock1(torch.nn.Module):
28
- def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5), style_dim=64):
29
- super(AdaINResBlock1, self).__init__()
30
- self.convs1 = nn.ModuleList([
31
- weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
32
- padding=get_padding(kernel_size, dilation[0]))),
33
- weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
34
- padding=get_padding(kernel_size, dilation[1]))),
35
- weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2],
36
- padding=get_padding(kernel_size, dilation[2])))
37
- ])
38
- self.convs1.apply(init_weights)
39
-
40
- self.convs2 = nn.ModuleList([
41
- weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
42
- padding=get_padding(kernel_size, 1))),
43
- weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
44
- padding=get_padding(kernel_size, 1))),
45
- weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
46
- padding=get_padding(kernel_size, 1)))
47
- ])
48
- self.convs2.apply(init_weights)
49
-
50
- self.adain1 = nn.ModuleList([
51
- AdaIN1d(style_dim, channels),
52
- AdaIN1d(style_dim, channels),
53
- AdaIN1d(style_dim, channels),
54
- ])
55
-
56
- self.adain2 = nn.ModuleList([
57
- AdaIN1d(style_dim, channels),
58
- AdaIN1d(style_dim, channels),
59
- AdaIN1d(style_dim, channels),
60
- ])
61
-
62
- self.alpha1 = nn.ParameterList([nn.Parameter(torch.ones(1, channels, 1)) for i in range(len(self.convs1))])
63
- self.alpha2 = nn.ParameterList([nn.Parameter(torch.ones(1, channels, 1)) for i in range(len(self.convs2))])
64
-
65
-
66
- def forward(self, x, s):
67
- for c1, c2, n1, n2, a1, a2 in zip(self.convs1, self.convs2, self.adain1, self.adain2, self.alpha1, self.alpha2):
68
- xt = n1(x, s)
69
- xt = xt + (1 / a1) * (torch.sin(a1 * xt) ** 2) # Snake1D
70
- xt = c1(xt)
71
- xt = n2(xt, s)
72
- xt = xt + (1 / a2) * (torch.sin(a2 * xt) ** 2) # Snake1D
73
- xt = c2(xt)
74
- x = xt + x
75
- return x
76
-
77
- def remove_weight_norm(self):
78
- for l in self.convs1:
79
- remove_weight_norm(l)
80
- for l in self.convs2:
81
- remove_weight_norm(l)
82
-
83
- class TorchSTFT(torch.nn.Module):
84
- def __init__(self, filter_length=800, hop_length=200, win_length=800, window='hann'):
85
- super().__init__()
86
- self.filter_length = filter_length
87
- self.hop_length = hop_length
88
- self.win_length = win_length
89
- self.window = torch.from_numpy(get_window(window, win_length, fftbins=True).astype(np.float32))
90
-
91
- def transform(self, input_data):
92
- forward_transform = torch.stft(
93
- input_data,
94
- self.filter_length, self.hop_length, self.win_length, window=self.window.to(input_data.device),
95
- return_complex=True)
96
-
97
- return torch.abs(forward_transform), torch.angle(forward_transform)
98
-
99
- def inverse(self, magnitude, phase):
100
- inverse_transform = torch.istft(
101
- magnitude * torch.exp(phase * 1j),
102
- self.filter_length, self.hop_length, self.win_length, window=self.window.to(magnitude.device))
103
-
104
- return inverse_transform.unsqueeze(-2) # unsqueeze to stay consistent with conv_transpose1d implementation
105
-
106
- def forward(self, input_data):
107
- self.magnitude, self.phase = self.transform(input_data)
108
- reconstruction = self.inverse(self.magnitude, self.phase)
109
- return reconstruction
110
-
111
- class SineGen(torch.nn.Module):
112
- """ Definition of sine generator
113
- SineGen(samp_rate, harmonic_num = 0,
114
- sine_amp = 0.1, noise_std = 0.003,
115
- voiced_threshold = 0,
116
- flag_for_pulse=False)
117
- samp_rate: sampling rate in Hz
118
- harmonic_num: number of harmonic overtones (default 0)
119
- sine_amp: amplitude of sine-wavefrom (default 0.1)
120
- noise_std: std of Gaussian noise (default 0.003)
121
- voiced_thoreshold: F0 threshold for U/V classification (default 0)
122
- flag_for_pulse: this SinGen is used inside PulseGen (default False)
123
- Note: when flag_for_pulse is True, the first time step of a voiced
124
- segment is always sin(np.pi) or cos(0)
125
- """
126
-
127
- def __init__(self, samp_rate, upsample_scale, harmonic_num=0,
128
- sine_amp=0.1, noise_std=0.003,
129
- voiced_threshold=0,
130
- flag_for_pulse=False):
131
- super(SineGen, self).__init__()
132
- self.sine_amp = sine_amp
133
- self.noise_std = noise_std
134
- self.harmonic_num = harmonic_num
135
- self.dim = self.harmonic_num + 1
136
- self.sampling_rate = samp_rate
137
- self.voiced_threshold = voiced_threshold
138
- self.flag_for_pulse = flag_for_pulse
139
- self.upsample_scale = upsample_scale
140
-
141
- def _f02uv(self, f0):
142
- # generate uv signal
143
- uv = (f0 > self.voiced_threshold).type(torch.float32)
144
- return uv
145
-
146
- def _f02sine(self, f0_values):
147
- """ f0_values: (batchsize, length, dim)
148
- where dim indicates fundamental tone and overtones
149
- """
150
- # convert to F0 in rad. The interger part n can be ignored
151
- # because 2 * np.pi * n doesn't affect phase
152
- rad_values = (f0_values / self.sampling_rate) % 1
153
-
154
- # initial phase noise (no noise for fundamental component)
155
- rand_ini = torch.rand(f0_values.shape[0], f0_values.shape[2], \
156
- device=f0_values.device)
157
- rand_ini[:, 0] = 0
158
- rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini
159
-
160
- # instantanouse phase sine[t] = sin(2*pi \sum_i=1 ^{t} rad)
161
- if not self.flag_for_pulse:
162
- # # for normal case
163
-
164
- # # To prevent torch.cumsum numerical overflow,
165
- # # it is necessary to add -1 whenever \sum_k=1^n rad_value_k > 1.
166
- # # Buffer tmp_over_one_idx indicates the time step to add -1.
167
- # # This will not change F0 of sine because (x-1) * 2*pi = x * 2*pi
168
- # tmp_over_one = torch.cumsum(rad_values, 1) % 1
169
- # tmp_over_one_idx = (padDiff(tmp_over_one)) < 0
170
- # cumsum_shift = torch.zeros_like(rad_values)
171
- # cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0
172
-
173
- # phase = torch.cumsum(rad_values, dim=1) * 2 * np.pi
174
- rad_values = torch.nn.functional.interpolate(rad_values.transpose(1, 2),
175
- scale_factor=1/self.upsample_scale,
176
- mode="linear").transpose(1, 2)
177
-
178
- # tmp_over_one = torch.cumsum(rad_values, 1) % 1
179
- # tmp_over_one_idx = (padDiff(tmp_over_one)) < 0
180
- # cumsum_shift = torch.zeros_like(rad_values)
181
- # cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0
182
-
183
- phase = torch.cumsum(rad_values, dim=1) * 2 * np.pi
184
- phase = torch.nn.functional.interpolate(phase.transpose(1, 2) * self.upsample_scale,
185
- scale_factor=self.upsample_scale, mode="linear").transpose(1, 2)
186
- sines = torch.sin(phase)
187
-
188
- else:
189
- # If necessary, make sure that the first time step of every
190
- # voiced segments is sin(pi) or cos(0)
191
- # This is used for pulse-train generation
192
-
193
- # identify the last time step in unvoiced segments
194
- uv = self._f02uv(f0_values)
195
- uv_1 = torch.roll(uv, shifts=-1, dims=1)
196
- uv_1[:, -1, :] = 1
197
- u_loc = (uv < 1) * (uv_1 > 0)
198
-
199
- # get the instantanouse phase
200
- tmp_cumsum = torch.cumsum(rad_values, dim=1)
201
- # different batch needs to be processed differently
202
- for idx in range(f0_values.shape[0]):
203
- temp_sum = tmp_cumsum[idx, u_loc[idx, :, 0], :]
204
- temp_sum[1:, :] = temp_sum[1:, :] - temp_sum[0:-1, :]
205
- # stores the accumulation of i.phase within
206
- # each voiced segments
207
- tmp_cumsum[idx, :, :] = 0
208
- tmp_cumsum[idx, u_loc[idx, :, 0], :] = temp_sum
209
-
210
- # rad_values - tmp_cumsum: remove the accumulation of i.phase
211
- # within the previous voiced segment.
212
- i_phase = torch.cumsum(rad_values - tmp_cumsum, dim=1)
213
-
214
- # get the sines
215
- sines = torch.cos(i_phase * 2 * np.pi)
216
- return sines
217
-
218
- def forward(self, f0):
219
- """ sine_tensor, uv = forward(f0)
220
- input F0: tensor(batchsize=1, length, dim=1)
221
- f0 for unvoiced steps should be 0
222
- output sine_tensor: tensor(batchsize=1, length, dim)
223
- output uv: tensor(batchsize=1, length, 1)
224
- """
225
- f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim,
226
- device=f0.device)
227
- # fundamental component
228
- fn = torch.multiply(f0, torch.FloatTensor([[range(1, self.harmonic_num + 2)]]).to(f0.device))
229
-
230
- # generate sine waveforms
231
- sine_waves = self._f02sine(fn) * self.sine_amp
232
-
233
- # generate uv signal
234
- # uv = torch.ones(f0.shape)
235
- # uv = uv * (f0 > self.voiced_threshold)
236
- uv = self._f02uv(f0)
237
-
238
- # noise: for unvoiced should be similar to sine_amp
239
- # std = self.sine_amp/3 -> max value ~ self.sine_amp
240
- # . for voiced regions is self.noise_std
241
- noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
242
- noise = noise_amp * torch.randn_like(sine_waves)
243
-
244
- # first: set the unvoiced part to 0 by uv
245
- # then: additive noise
246
- sine_waves = sine_waves * uv + noise
247
- return sine_waves, uv, noise
248
-
249
-
250
- class SourceModuleHnNSF(torch.nn.Module):
251
- """ SourceModule for hn-nsf
252
- SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1,
253
- add_noise_std=0.003, voiced_threshod=0)
254
- sampling_rate: sampling_rate in Hz
255
- harmonic_num: number of harmonic above F0 (default: 0)
256
- sine_amp: amplitude of sine source signal (default: 0.1)
257
- add_noise_std: std of additive Gaussian noise (default: 0.003)
258
- note that amplitude of noise in unvoiced is decided
259
- by sine_amp
260
- voiced_threshold: threhold to set U/V given F0 (default: 0)
261
- Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
262
- F0_sampled (batchsize, length, 1)
263
- Sine_source (batchsize, length, 1)
264
- noise_source (batchsize, length 1)
265
- uv (batchsize, length, 1)
266
- """
267
-
268
- def __init__(self, sampling_rate, upsample_scale, harmonic_num=0, sine_amp=0.1,
269
- add_noise_std=0.003, voiced_threshod=0):
270
- super(SourceModuleHnNSF, self).__init__()
271
-
272
- self.sine_amp = sine_amp
273
- self.noise_std = add_noise_std
274
-
275
- # to produce sine waveforms
276
- self.l_sin_gen = SineGen(sampling_rate, upsample_scale, harmonic_num,
277
- sine_amp, add_noise_std, voiced_threshod)
278
-
279
- # to merge source harmonics into a single excitation
280
- self.l_linear = torch.nn.Linear(harmonic_num + 1, 1)
281
- self.l_tanh = torch.nn.Tanh()
282
-
283
- def forward(self, x):
284
- """
285
- Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
286
- F0_sampled (batchsize, length, 1)
287
- Sine_source (batchsize, length, 1)
288
- noise_source (batchsize, length 1)
289
- """
290
- # source for harmonic branch
291
- with torch.no_grad():
292
- sine_wavs, uv, _ = self.l_sin_gen(x)
293
- sine_merge = self.l_tanh(self.l_linear(sine_wavs))
294
-
295
- # source for noise branch, in the same shape as uv
296
- noise = torch.randn_like(uv) * self.sine_amp / 3
297
- return sine_merge, noise, uv
298
- def padDiff(x):
299
- return F.pad(F.pad(x, (0,0,-1,1), 'constant', 0) - x, (0,0,0,-1), 'constant', 0)
300
-
301
-
302
- class Generator(torch.nn.Module):
303
- def __init__(self, style_dim, resblock_kernel_sizes, upsample_rates, upsample_initial_channel, resblock_dilation_sizes, upsample_kernel_sizes, gen_istft_n_fft, gen_istft_hop_size):
304
- super(Generator, self).__init__()
305
-
306
- self.num_kernels = len(resblock_kernel_sizes)
307
- self.num_upsamples = len(upsample_rates)
308
- resblock = AdaINResBlock1
309
-
310
- self.m_source = SourceModuleHnNSF(
311
- sampling_rate=24000,
312
- upsample_scale=np.prod(upsample_rates) * gen_istft_hop_size,
313
- harmonic_num=8, voiced_threshod=10)
314
- self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(upsample_rates) * gen_istft_hop_size)
315
- self.noise_convs = nn.ModuleList()
316
- self.noise_res = nn.ModuleList()
317
-
318
- self.ups = nn.ModuleList()
319
- for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
320
- self.ups.append(weight_norm(
321
- ConvTranspose1d(upsample_initial_channel//(2**i), upsample_initial_channel//(2**(i+1)),
322
- k, u, padding=(k-u)//2)))
323
-
324
- self.resblocks = nn.ModuleList()
325
- for i in range(len(self.ups)):
326
- ch = upsample_initial_channel//(2**(i+1))
327
- for j, (k, d) in enumerate(zip(resblock_kernel_sizes,resblock_dilation_sizes)):
328
- self.resblocks.append(resblock(ch, k, d, style_dim))
329
-
330
- c_cur = upsample_initial_channel // (2 ** (i + 1))
331
-
332
- if i + 1 < len(upsample_rates): #
333
- stride_f0 = np.prod(upsample_rates[i + 1:])
334
- self.noise_convs.append(Conv1d(
335
- gen_istft_n_fft + 2, c_cur, kernel_size=stride_f0 * 2, stride=stride_f0, padding=(stride_f0+1) // 2))
336
- self.noise_res.append(resblock(c_cur, 7, [1,3,5], style_dim))
337
- else:
338
- self.noise_convs.append(Conv1d(gen_istft_n_fft + 2, c_cur, kernel_size=1))
339
- self.noise_res.append(resblock(c_cur, 11, [1,3,5], style_dim))
340
-
341
-
342
- self.post_n_fft = gen_istft_n_fft
343
- self.conv_post = weight_norm(Conv1d(ch, self.post_n_fft + 2, 7, 1, padding=3))
344
- self.ups.apply(init_weights)
345
- self.conv_post.apply(init_weights)
346
- self.reflection_pad = torch.nn.ReflectionPad1d((1, 0))
347
- self.stft = TorchSTFT(filter_length=gen_istft_n_fft, hop_length=gen_istft_hop_size, win_length=gen_istft_n_fft)
348
-
349
-
350
- def forward(self, x, s, f0):
351
- with torch.no_grad():
352
- f0 = self.f0_upsamp(f0[:, None]).transpose(1, 2) # bs,n,t
353
-
354
- har_source, noi_source, uv = self.m_source(f0)
355
- har_source = har_source.transpose(1, 2).squeeze(1)
356
- har_spec, har_phase = self.stft.transform(har_source)
357
- har = torch.cat([har_spec, har_phase], dim=1)
358
-
359
- for i in range(self.num_upsamples):
360
- x = F.leaky_relu(x, LRELU_SLOPE)
361
- x_source = self.noise_convs[i](har)
362
- x_source = self.noise_res[i](x_source, s)
363
-
364
- x = self.ups[i](x)
365
- if i == self.num_upsamples - 1:
366
- x = self.reflection_pad(x)
367
-
368
- x = x + x_source
369
- xs = None
370
- for j in range(self.num_kernels):
371
- if xs is None:
372
- xs = self.resblocks[i*self.num_kernels+j](x, s)
373
- else:
374
- xs += self.resblocks[i*self.num_kernels+j](x, s)
375
- x = xs / self.num_kernels
376
- x = F.leaky_relu(x)
377
- x = self.conv_post(x)
378
- spec = torch.exp(x[:,:self.post_n_fft // 2 + 1, :])
379
- phase = torch.sin(x[:, self.post_n_fft // 2 + 1:, :])
380
- return self.stft.inverse(spec, phase)
381
-
382
- def fw_phase(self, x, s):
383
- for i in range(self.num_upsamples):
384
- x = F.leaky_relu(x, LRELU_SLOPE)
385
- x = self.ups[i](x)
386
- xs = None
387
- for j in range(self.num_kernels):
388
- if xs is None:
389
- xs = self.resblocks[i*self.num_kernels+j](x, s)
390
- else:
391
- xs += self.resblocks[i*self.num_kernels+j](x, s)
392
- x = xs / self.num_kernels
393
- x = F.leaky_relu(x)
394
- x = self.reflection_pad(x)
395
- x = self.conv_post(x)
396
- spec = torch.exp(x[:,:self.post_n_fft // 2 + 1, :])
397
- phase = torch.sin(x[:, self.post_n_fft // 2 + 1:, :])
398
- return spec, phase
399
-
400
- def remove_weight_norm(self):
401
- print('Removing weight norm...')
402
- for l in self.ups:
403
- remove_weight_norm(l)
404
- for l in self.resblocks:
405
- l.remove_weight_norm()
406
- remove_weight_norm(self.conv_pre)
407
- remove_weight_norm(self.conv_post)
408
-
409
-
410
- class AdainResBlk1d(nn.Module):
411
- def __init__(self, dim_in, dim_out, style_dim=64, actv=nn.LeakyReLU(0.2),
412
- upsample='none', dropout_p=0.0):
413
- super().__init__()
414
- self.actv = actv
415
- self.upsample_type = upsample
416
- self.upsample = UpSample1d(upsample)
417
- self.learned_sc = dim_in != dim_out
418
- self._build_weights(dim_in, dim_out, style_dim)
419
- self.dropout = nn.Dropout(dropout_p)
420
-
421
- if upsample == 'none':
422
- self.pool = nn.Identity()
423
- else:
424
- self.pool = weight_norm(nn.ConvTranspose1d(dim_in, dim_in, kernel_size=3, stride=2, groups=dim_in, padding=1, output_padding=1))
425
-
426
-
427
- def _build_weights(self, dim_in, dim_out, style_dim):
428
- self.conv1 = weight_norm(nn.Conv1d(dim_in, dim_out, 3, 1, 1))
429
- self.conv2 = weight_norm(nn.Conv1d(dim_out, dim_out, 3, 1, 1))
430
- self.norm1 = AdaIN1d(style_dim, dim_in)
431
- self.norm2 = AdaIN1d(style_dim, dim_out)
432
- if self.learned_sc:
433
- self.conv1x1 = weight_norm(nn.Conv1d(dim_in, dim_out, 1, 1, 0, bias=False))
434
-
435
- def _shortcut(self, x):
436
- x = self.upsample(x)
437
- if self.learned_sc:
438
- x = self.conv1x1(x)
439
- return x
440
-
441
- def _residual(self, x, s):
442
- x = self.norm1(x, s)
443
- x = self.actv(x)
444
- x = self.pool(x)
445
- x = self.conv1(self.dropout(x))
446
- x = self.norm2(x, s)
447
- x = self.actv(x)
448
- x = self.conv2(self.dropout(x))
449
- return x
450
-
451
- def forward(self, x, s):
452
- out = self._residual(x, s)
453
- out = (out + self._shortcut(x)) / math.sqrt(2)
454
- return out
455
-
456
- class UpSample1d(nn.Module):
457
- def __init__(self, layer_type):
458
- super().__init__()
459
- self.layer_type = layer_type
460
-
461
- def forward(self, x):
462
- if self.layer_type == 'none':
463
- return x
464
- else:
465
- return F.interpolate(x, scale_factor=2, mode='nearest')
466
-
467
- class Decoder(nn.Module):
468
- def __init__(self, dim_in=512, F0_channel=512, style_dim=64, dim_out=80,
469
- resblock_kernel_sizes = [3,7,11],
470
- upsample_rates = [10, 6],
471
- upsample_initial_channel=512,
472
- resblock_dilation_sizes=[[1,3,5], [1,3,5], [1,3,5]],
473
- upsample_kernel_sizes=[20, 12],
474
- gen_istft_n_fft=20, gen_istft_hop_size=5):
475
- super().__init__()
476
-
477
- self.decode = nn.ModuleList()
478
-
479
- self.encode = AdainResBlk1d(dim_in + 2, 1024, style_dim)
480
-
481
- self.decode.append(AdainResBlk1d(1024 + 2 + 64, 1024, style_dim))
482
- self.decode.append(AdainResBlk1d(1024 + 2 + 64, 1024, style_dim))
483
- self.decode.append(AdainResBlk1d(1024 + 2 + 64, 1024, style_dim))
484
- self.decode.append(AdainResBlk1d(1024 + 2 + 64, 512, style_dim, upsample=True))
485
-
486
- self.F0_conv = weight_norm(nn.Conv1d(1, 1, kernel_size=3, stride=2, groups=1, padding=1))
487
-
488
- self.N_conv = weight_norm(nn.Conv1d(1, 1, kernel_size=3, stride=2, groups=1, padding=1))
489
-
490
- self.asr_res = nn.Sequential(
491
- weight_norm(nn.Conv1d(512, 64, kernel_size=1)),
492
- )
493
-
494
-
495
- self.generator = Generator(style_dim, resblock_kernel_sizes, upsample_rates,
496
- upsample_initial_channel, resblock_dilation_sizes,
497
- upsample_kernel_sizes, gen_istft_n_fft, gen_istft_hop_size)
498
-
499
- def forward(self, asr, F0_curve, N, s):
500
- if self.training:
501
- downlist = [0, 3, 7]
502
- F0_down = downlist[random.randint(0, 2)]
503
- downlist = [0, 3, 7, 15]
504
- N_down = downlist[random.randint(0, 3)]
505
- if F0_down:
506
- F0_curve = nn.functional.conv1d(F0_curve.unsqueeze(1), torch.ones(1, 1, F0_down).to('cuda'), padding=F0_down//2).squeeze(1) / F0_down
507
- if N_down:
508
- N = nn.functional.conv1d(N.unsqueeze(1), torch.ones(1, 1, N_down).to('cuda'), padding=N_down//2).squeeze(1) / N_down
509
-
510
-
511
- F0 = self.F0_conv(F0_curve.unsqueeze(1))
512
- N = self.N_conv(N.unsqueeze(1))
513
-
514
- x = torch.cat([asr, F0, N], axis=1)
515
- x = self.encode(x, s)
516
-
517
- asr_res = self.asr_res(asr)
518
-
519
- res = True
520
- for block in self.decode:
521
- if res:
522
- x = torch.cat([x, asr_res, F0, N], axis=1)
523
- x = block(x, s)
524
- if block.upsample_type != "none":
525
- res = False
526
-
527
- x = self.generator(x, s, F0_curve)
528
- return x
529
-
530
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Modules/slmadv.py DELETED
@@ -1,195 +0,0 @@
1
- import torch
2
- import numpy as np
3
- import torch.nn.functional as F
4
-
5
- class SLMAdversarialLoss(torch.nn.Module):
6
-
7
- def __init__(self, model, wl, sampler, min_len, max_len, batch_percentage=0.5, skip_update=10, sig=1.5):
8
- super(SLMAdversarialLoss, self).__init__()
9
- self.model = model
10
- self.wl = wl
11
- self.sampler = sampler
12
-
13
- self.min_len = min_len
14
- self.max_len = max_len
15
- self.batch_percentage = batch_percentage
16
-
17
- self.sig = sig
18
- self.skip_update = skip_update
19
-
20
- def forward(self, iters, y_rec_gt, y_rec_gt_pred, waves, mel_input_length, ref_text, ref_lengths, use_ind, s_trg, ref_s=None):
21
- text_mask = length_to_mask(ref_lengths).to(ref_text.device)
22
- bert_dur = self.model.bert(ref_text, attention_mask=(~text_mask).int())
23
- d_en = self.model.bert_encoder(bert_dur).transpose(-1, -2)
24
-
25
- if use_ind and np.random.rand() < 0.5:
26
- s_preds = s_trg
27
- else:
28
- num_steps = np.random.randint(3, 5)
29
- if ref_s is not None:
30
- s_preds = self.sampler(noise = torch.randn_like(s_trg).unsqueeze(1).to(ref_text.device),
31
- embedding=bert_dur,
32
- embedding_scale=1,
33
- features=ref_s, # reference from the same speaker as the embedding
34
- embedding_mask_proba=0.1,
35
- num_steps=num_steps).squeeze(1)
36
- else:
37
- s_preds = self.sampler(noise = torch.randn_like(s_trg).unsqueeze(1).to(ref_text.device),
38
- embedding=bert_dur,
39
- embedding_scale=1,
40
- embedding_mask_proba=0.1,
41
- num_steps=num_steps).squeeze(1)
42
-
43
- s_dur = s_preds[:, 128:]
44
- s = s_preds[:, :128]
45
-
46
- d, _ = self.model.predictor(d_en, s_dur,
47
- ref_lengths,
48
- torch.randn(ref_lengths.shape[0], ref_lengths.max(), 2).to(ref_text.device),
49
- text_mask)
50
-
51
- bib = 0
52
-
53
- output_lengths = []
54
- attn_preds = []
55
-
56
- # differentiable duration modeling
57
- for _s2s_pred, _text_length in zip(d, ref_lengths):
58
-
59
- _s2s_pred_org = _s2s_pred[:_text_length, :]
60
-
61
- _s2s_pred = torch.sigmoid(_s2s_pred_org)
62
- _dur_pred = _s2s_pred.sum(axis=-1)
63
-
64
- l = int(torch.round(_s2s_pred.sum()).item())
65
- t = torch.arange(0, l).expand(l)
66
-
67
- t = torch.arange(0, l).unsqueeze(0).expand((len(_s2s_pred), l)).to(ref_text.device)
68
- loc = torch.cumsum(_dur_pred, dim=0) - _dur_pred / 2
69
-
70
- h = torch.exp(-0.5 * torch.square(t - (l - loc.unsqueeze(-1))) / (self.sig)**2)
71
-
72
- out = torch.nn.functional.conv1d(_s2s_pred_org.unsqueeze(0),
73
- h.unsqueeze(1),
74
- padding=h.shape[-1] - 1, groups=int(_text_length))[..., :l]
75
- attn_preds.append(F.softmax(out.squeeze(), dim=0))
76
-
77
- output_lengths.append(l)
78
-
79
- max_len = max(output_lengths)
80
-
81
- with torch.no_grad():
82
- t_en = self.model.text_encoder(ref_text, ref_lengths, text_mask)
83
-
84
- s2s_attn = torch.zeros(len(ref_lengths), int(ref_lengths.max()), max_len).to(ref_text.device)
85
- for bib in range(len(output_lengths)):
86
- s2s_attn[bib, :ref_lengths[bib], :output_lengths[bib]] = attn_preds[bib]
87
-
88
- asr_pred = t_en @ s2s_attn
89
-
90
- _, p_pred = self.model.predictor(d_en, s_dur,
91
- ref_lengths,
92
- s2s_attn,
93
- text_mask)
94
-
95
- mel_len = max(int(min(output_lengths) / 2 - 1), self.min_len // 2)
96
- mel_len = min(mel_len, self.max_len // 2)
97
-
98
- # get clips
99
-
100
- en = []
101
- p_en = []
102
- sp = []
103
-
104
- F0_fakes = []
105
- N_fakes = []
106
-
107
- wav = []
108
-
109
- for bib in range(len(output_lengths)):
110
- mel_length_pred = output_lengths[bib]
111
- mel_length_gt = int(mel_input_length[bib].item() / 2)
112
- if mel_length_gt <= mel_len or mel_length_pred <= mel_len:
113
- continue
114
-
115
- sp.append(s_preds[bib])
116
-
117
- random_start = np.random.randint(0, mel_length_pred - mel_len)
118
- en.append(asr_pred[bib, :, random_start:random_start+mel_len])
119
- p_en.append(p_pred[bib, :, random_start:random_start+mel_len])
120
-
121
- # get ground truth clips
122
- random_start = np.random.randint(0, mel_length_gt - mel_len)
123
- y = waves[bib][(random_start * 2) * 300:((random_start+mel_len) * 2) * 300]
124
- wav.append(torch.from_numpy(y).to(ref_text.device))
125
-
126
- if len(wav) >= self.batch_percentage * len(waves): # prevent OOM due to longer lengths
127
- break
128
-
129
- if len(sp) <= 1:
130
- return None
131
-
132
- sp = torch.stack(sp)
133
- wav = torch.stack(wav).float()
134
- en = torch.stack(en)
135
- p_en = torch.stack(p_en)
136
-
137
- F0_fake, N_fake = self.model.predictor.F0Ntrain(p_en, sp[:, 128:])
138
- y_pred = self.model.decoder(en, F0_fake, N_fake, sp[:, :128])
139
-
140
- # discriminator loss
141
- if (iters + 1) % self.skip_update == 0:
142
- if np.random.randint(0, 2) == 0:
143
- wav = y_rec_gt_pred
144
- use_rec = True
145
- else:
146
- use_rec = False
147
-
148
- crop_size = min(wav.size(-1), y_pred.size(-1))
149
- if use_rec: # use reconstructed (shorter lengths), do length invariant regularization
150
- if wav.size(-1) > y_pred.size(-1):
151
- real_GP = wav[:, : , :crop_size]
152
- out_crop = self.wl.discriminator_forward(real_GP.detach().squeeze())
153
- out_org = self.wl.discriminator_forward(wav.detach().squeeze())
154
- loss_reg = F.l1_loss(out_crop, out_org[..., :out_crop.size(-1)])
155
-
156
- if np.random.randint(0, 2) == 0:
157
- d_loss = self.wl.discriminator(real_GP.detach().squeeze(), y_pred.detach().squeeze()).mean()
158
- else:
159
- d_loss = self.wl.discriminator(wav.detach().squeeze(), y_pred.detach().squeeze()).mean()
160
- else:
161
- real_GP = y_pred[:, : , :crop_size]
162
- out_crop = self.wl.discriminator_forward(real_GP.detach().squeeze())
163
- out_org = self.wl.discriminator_forward(y_pred.detach().squeeze())
164
- loss_reg = F.l1_loss(out_crop, out_org[..., :out_crop.size(-1)])
165
-
166
- if np.random.randint(0, 2) == 0:
167
- d_loss = self.wl.discriminator(wav.detach().squeeze(), real_GP.detach().squeeze()).mean()
168
- else:
169
- d_loss = self.wl.discriminator(wav.detach().squeeze(), y_pred.detach().squeeze()).mean()
170
-
171
- # regularization (ignore length variation)
172
- d_loss += loss_reg
173
-
174
- out_gt = self.wl.discriminator_forward(y_rec_gt.detach().squeeze())
175
- out_rec = self.wl.discriminator_forward(y_rec_gt_pred.detach().squeeze())
176
-
177
- # regularization (ignore reconstruction artifacts)
178
- d_loss += F.l1_loss(out_gt, out_rec)
179
-
180
- else:
181
- d_loss = self.wl.discriminator(wav.detach().squeeze(), y_pred.detach().squeeze()).mean()
182
- else:
183
- d_loss = 0
184
-
185
- # generator loss
186
- gen_loss = self.wl.generator(y_pred.squeeze())
187
-
188
- gen_loss = gen_loss.mean()
189
-
190
- return d_loss, gen_loss, y_pred.detach().cpu().numpy()
191
-
192
- def length_to_mask(lengths):
193
- mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
194
- mask = torch.gt(mask+1, lengths.unsqueeze(1))
195
- return mask
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Modules/utils.py DELETED
@@ -1,14 +0,0 @@
1
- def init_weights(m, mean=0.0, std=0.01):
2
- classname = m.__class__.__name__
3
- if classname.find("Conv") != -1:
4
- m.weight.data.normal_(mean, std)
5
-
6
-
7
- def apply_weight_norm(m):
8
- classname = m.__class__.__name__
9
- if classname.find("Conv") != -1:
10
- weight_norm(m)
11
-
12
-
13
- def get_padding(kernel_size, dilation=1):
14
- return int((kernel_size*dilation - dilation)/2)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Utils/ASR/__init__.py DELETED
@@ -1 +0,0 @@
1
-
 
 
Utils/ASR/config.yml DELETED
@@ -1,29 +0,0 @@
1
- log_dir: "logs/20201006"
2
- save_freq: 5
3
- device: "cuda"
4
- epochs: 180
5
- batch_size: 64
6
- pretrained_model: ""
7
- train_data: "ASRDataset/train_list.txt"
8
- val_data: "ASRDataset/val_list.txt"
9
-
10
- dataset_params:
11
- data_augmentation: false
12
-
13
- preprocess_parasm:
14
- sr: 24000
15
- spect_params:
16
- n_fft: 2048
17
- win_length: 1200
18
- hop_length: 300
19
- mel_params:
20
- n_mels: 80
21
-
22
- model_params:
23
- input_dim: 80
24
- hidden_dim: 256
25
- n_token: 181
26
- token_embedding_dim: 512
27
-
28
- optimizer_params:
29
- lr: 0.0005
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Utils/ASR/layers.py DELETED
@@ -1,354 +0,0 @@
1
- import math
2
- import torch
3
- from torch import nn
4
- from typing import Optional, Any
5
- from torch import Tensor
6
- import torch.nn.functional as F
7
- import torchaudio
8
- import torchaudio.functional as audio_F
9
-
10
- import random
11
- random.seed(0)
12
-
13
-
14
- def _get_activation_fn(activ):
15
- if activ == 'relu':
16
- return nn.ReLU()
17
- elif activ == 'lrelu':
18
- return nn.LeakyReLU(0.2)
19
- elif activ == 'swish':
20
- return lambda x: x*torch.sigmoid(x)
21
- else:
22
- raise RuntimeError('Unexpected activ type %s, expected [relu, lrelu, swish]' % activ)
23
-
24
- class LinearNorm(torch.nn.Module):
25
- def __init__(self, in_dim, out_dim, bias=True, w_init_gain='linear'):
26
- super(LinearNorm, self).__init__()
27
- self.linear_layer = torch.nn.Linear(in_dim, out_dim, bias=bias)
28
-
29
- torch.nn.init.xavier_uniform_(
30
- self.linear_layer.weight,
31
- gain=torch.nn.init.calculate_gain(w_init_gain))
32
-
33
- def forward(self, x):
34
- return self.linear_layer(x)
35
-
36
-
37
- class ConvNorm(torch.nn.Module):
38
- def __init__(self, in_channels, out_channels, kernel_size=1, stride=1,
39
- padding=None, dilation=1, bias=True, w_init_gain='linear', param=None):
40
- super(ConvNorm, self).__init__()
41
- if padding is None:
42
- assert(kernel_size % 2 == 1)
43
- padding = int(dilation * (kernel_size - 1) / 2)
44
-
45
- self.conv = torch.nn.Conv1d(in_channels, out_channels,
46
- kernel_size=kernel_size, stride=stride,
47
- padding=padding, dilation=dilation,
48
- bias=bias)
49
-
50
- torch.nn.init.xavier_uniform_(
51
- self.conv.weight, gain=torch.nn.init.calculate_gain(w_init_gain, param=param))
52
-
53
- def forward(self, signal):
54
- conv_signal = self.conv(signal)
55
- return conv_signal
56
-
57
- class CausualConv(nn.Module):
58
- def __init__(self, in_channels, out_channels, kernel_size=1, stride=1, padding=1, dilation=1, bias=True, w_init_gain='linear', param=None):
59
- super(CausualConv, self).__init__()
60
- if padding is None:
61
- assert(kernel_size % 2 == 1)
62
- padding = int(dilation * (kernel_size - 1) / 2) * 2
63
- else:
64
- self.padding = padding * 2
65
- self.conv = nn.Conv1d(in_channels, out_channels,
66
- kernel_size=kernel_size, stride=stride,
67
- padding=self.padding,
68
- dilation=dilation,
69
- bias=bias)
70
-
71
- torch.nn.init.xavier_uniform_(
72
- self.conv.weight, gain=torch.nn.init.calculate_gain(w_init_gain, param=param))
73
-
74
- def forward(self, x):
75
- x = self.conv(x)
76
- x = x[:, :, :-self.padding]
77
- return x
78
-
79
- class CausualBlock(nn.Module):
80
- def __init__(self, hidden_dim, n_conv=3, dropout_p=0.2, activ='lrelu'):
81
- super(CausualBlock, self).__init__()
82
- self.blocks = nn.ModuleList([
83
- self._get_conv(hidden_dim, dilation=3**i, activ=activ, dropout_p=dropout_p)
84
- for i in range(n_conv)])
85
-
86
- def forward(self, x):
87
- for block in self.blocks:
88
- res = x
89
- x = block(x)
90
- x += res
91
- return x
92
-
93
- def _get_conv(self, hidden_dim, dilation, activ='lrelu', dropout_p=0.2):
94
- layers = [
95
- CausualConv(hidden_dim, hidden_dim, kernel_size=3, padding=dilation, dilation=dilation),
96
- _get_activation_fn(activ),
97
- nn.BatchNorm1d(hidden_dim),
98
- nn.Dropout(p=dropout_p),
99
- CausualConv(hidden_dim, hidden_dim, kernel_size=3, padding=1, dilation=1),
100
- _get_activation_fn(activ),
101
- nn.Dropout(p=dropout_p)
102
- ]
103
- return nn.Sequential(*layers)
104
-
105
- class ConvBlock(nn.Module):
106
- def __init__(self, hidden_dim, n_conv=3, dropout_p=0.2, activ='relu'):
107
- super().__init__()
108
- self._n_groups = 8
109
- self.blocks = nn.ModuleList([
110
- self._get_conv(hidden_dim, dilation=3**i, activ=activ, dropout_p=dropout_p)
111
- for i in range(n_conv)])
112
-
113
-
114
- def forward(self, x):
115
- for block in self.blocks:
116
- res = x
117
- x = block(x)
118
- x += res
119
- return x
120
-
121
- def _get_conv(self, hidden_dim, dilation, activ='relu', dropout_p=0.2):
122
- layers = [
123
- ConvNorm(hidden_dim, hidden_dim, kernel_size=3, padding=dilation, dilation=dilation),
124
- _get_activation_fn(activ),
125
- nn.GroupNorm(num_groups=self._n_groups, num_channels=hidden_dim),
126
- nn.Dropout(p=dropout_p),
127
- ConvNorm(hidden_dim, hidden_dim, kernel_size=3, padding=1, dilation=1),
128
- _get_activation_fn(activ),
129
- nn.Dropout(p=dropout_p)
130
- ]
131
- return nn.Sequential(*layers)
132
-
133
- class LocationLayer(nn.Module):
134
- def __init__(self, attention_n_filters, attention_kernel_size,
135
- attention_dim):
136
- super(LocationLayer, self).__init__()
137
- padding = int((attention_kernel_size - 1) / 2)
138
- self.location_conv = ConvNorm(2, attention_n_filters,
139
- kernel_size=attention_kernel_size,
140
- padding=padding, bias=False, stride=1,
141
- dilation=1)
142
- self.location_dense = LinearNorm(attention_n_filters, attention_dim,
143
- bias=False, w_init_gain='tanh')
144
-
145
- def forward(self, attention_weights_cat):
146
- processed_attention = self.location_conv(attention_weights_cat)
147
- processed_attention = processed_attention.transpose(1, 2)
148
- processed_attention = self.location_dense(processed_attention)
149
- return processed_attention
150
-
151
-
152
- class Attention(nn.Module):
153
- def __init__(self, attention_rnn_dim, embedding_dim, attention_dim,
154
- attention_location_n_filters, attention_location_kernel_size):
155
- super(Attention, self).__init__()
156
- self.query_layer = LinearNorm(attention_rnn_dim, attention_dim,
157
- bias=False, w_init_gain='tanh')
158
- self.memory_layer = LinearNorm(embedding_dim, attention_dim, bias=False,
159
- w_init_gain='tanh')
160
- self.v = LinearNorm(attention_dim, 1, bias=False)
161
- self.location_layer = LocationLayer(attention_location_n_filters,
162
- attention_location_kernel_size,
163
- attention_dim)
164
- self.score_mask_value = -float("inf")
165
-
166
- def get_alignment_energies(self, query, processed_memory,
167
- attention_weights_cat):
168
- """
169
- PARAMS
170
- ------
171
- query: decoder output (batch, n_mel_channels * n_frames_per_step)
172
- processed_memory: processed encoder outputs (B, T_in, attention_dim)
173
- attention_weights_cat: cumulative and prev. att weights (B, 2, max_time)
174
- RETURNS
175
- -------
176
- alignment (batch, max_time)
177
- """
178
-
179
- processed_query = self.query_layer(query.unsqueeze(1))
180
- processed_attention_weights = self.location_layer(attention_weights_cat)
181
- energies = self.v(torch.tanh(
182
- processed_query + processed_attention_weights + processed_memory))
183
-
184
- energies = energies.squeeze(-1)
185
- return energies
186
-
187
- def forward(self, attention_hidden_state, memory, processed_memory,
188
- attention_weights_cat, mask):
189
- """
190
- PARAMS
191
- ------
192
- attention_hidden_state: attention rnn last output
193
- memory: encoder outputs
194
- processed_memory: processed encoder outputs
195
- attention_weights_cat: previous and cummulative attention weights
196
- mask: binary mask for padded data
197
- """
198
- alignment = self.get_alignment_energies(
199
- attention_hidden_state, processed_memory, attention_weights_cat)
200
-
201
- if mask is not None:
202
- alignment.data.masked_fill_(mask, self.score_mask_value)
203
-
204
- attention_weights = F.softmax(alignment, dim=1)
205
- attention_context = torch.bmm(attention_weights.unsqueeze(1), memory)
206
- attention_context = attention_context.squeeze(1)
207
-
208
- return attention_context, attention_weights
209
-
210
-
211
- class ForwardAttentionV2(nn.Module):
212
- def __init__(self, attention_rnn_dim, embedding_dim, attention_dim,
213
- attention_location_n_filters, attention_location_kernel_size):
214
- super(ForwardAttentionV2, self).__init__()
215
- self.query_layer = LinearNorm(attention_rnn_dim, attention_dim,
216
- bias=False, w_init_gain='tanh')
217
- self.memory_layer = LinearNorm(embedding_dim, attention_dim, bias=False,
218
- w_init_gain='tanh')
219
- self.v = LinearNorm(attention_dim, 1, bias=False)
220
- self.location_layer = LocationLayer(attention_location_n_filters,
221
- attention_location_kernel_size,
222
- attention_dim)
223
- self.score_mask_value = -float(1e20)
224
-
225
- def get_alignment_energies(self, query, processed_memory,
226
- attention_weights_cat):
227
- """
228
- PARAMS
229
- ------
230
- query: decoder output (batch, n_mel_channels * n_frames_per_step)
231
- processed_memory: processed encoder outputs (B, T_in, attention_dim)
232
- attention_weights_cat: prev. and cumulative att weights (B, 2, max_time)
233
- RETURNS
234
- -------
235
- alignment (batch, max_time)
236
- """
237
-
238
- processed_query = self.query_layer(query.unsqueeze(1))
239
- processed_attention_weights = self.location_layer(attention_weights_cat)
240
- energies = self.v(torch.tanh(
241
- processed_query + processed_attention_weights + processed_memory))
242
-
243
- energies = energies.squeeze(-1)
244
- return energies
245
-
246
- def forward(self, attention_hidden_state, memory, processed_memory,
247
- attention_weights_cat, mask, log_alpha):
248
- """
249
- PARAMS
250
- ------
251
- attention_hidden_state: attention rnn last output
252
- memory: encoder outputs
253
- processed_memory: processed encoder outputs
254
- attention_weights_cat: previous and cummulative attention weights
255
- mask: binary mask for padded data
256
- """
257
- log_energy = self.get_alignment_energies(
258
- attention_hidden_state, processed_memory, attention_weights_cat)
259
-
260
- #log_energy =
261
-
262
- if mask is not None:
263
- log_energy.data.masked_fill_(mask, self.score_mask_value)
264
-
265
- #attention_weights = F.softmax(alignment, dim=1)
266
-
267
- #content_score = log_energy.unsqueeze(1) #[B, MAX_TIME] -> [B, 1, MAX_TIME]
268
- #log_alpha = log_alpha.unsqueeze(2) #[B, MAX_TIME] -> [B, MAX_TIME, 1]
269
-
270
- #log_total_score = log_alpha + content_score
271
-
272
- #previous_attention_weights = attention_weights_cat[:,0,:]
273
-
274
- log_alpha_shift_padded = []
275
- max_time = log_energy.size(1)
276
- for sft in range(2):
277
- shifted = log_alpha[:,:max_time-sft]
278
- shift_padded = F.pad(shifted, (sft,0), 'constant', self.score_mask_value)
279
- log_alpha_shift_padded.append(shift_padded.unsqueeze(2))
280
-
281
- biased = torch.logsumexp(torch.cat(log_alpha_shift_padded,2), 2)
282
-
283
- log_alpha_new = biased + log_energy
284
-
285
- attention_weights = F.softmax(log_alpha_new, dim=1)
286
-
287
- attention_context = torch.bmm(attention_weights.unsqueeze(1), memory)
288
- attention_context = attention_context.squeeze(1)
289
-
290
- return attention_context, attention_weights, log_alpha_new
291
-
292
-
293
- class PhaseShuffle2d(nn.Module):
294
- def __init__(self, n=2):
295
- super(PhaseShuffle2d, self).__init__()
296
- self.n = n
297
- self.random = random.Random(1)
298
-
299
- def forward(self, x, move=None):
300
- # x.size = (B, C, M, L)
301
- if move is None:
302
- move = self.random.randint(-self.n, self.n)
303
-
304
- if move == 0:
305
- return x
306
- else:
307
- left = x[:, :, :, :move]
308
- right = x[:, :, :, move:]
309
- shuffled = torch.cat([right, left], dim=3)
310
- return shuffled
311
-
312
- class PhaseShuffle1d(nn.Module):
313
- def __init__(self, n=2):
314
- super(PhaseShuffle1d, self).__init__()
315
- self.n = n
316
- self.random = random.Random(1)
317
-
318
- def forward(self, x, move=None):
319
- # x.size = (B, C, M, L)
320
- if move is None:
321
- move = self.random.randint(-self.n, self.n)
322
-
323
- if move == 0:
324
- return x
325
- else:
326
- left = x[:, :, :move]
327
- right = x[:, :, move:]
328
- shuffled = torch.cat([right, left], dim=2)
329
-
330
- return shuffled
331
-
332
- class MFCC(nn.Module):
333
- def __init__(self, n_mfcc=40, n_mels=80):
334
- super(MFCC, self).__init__()
335
- self.n_mfcc = n_mfcc
336
- self.n_mels = n_mels
337
- self.norm = 'ortho'
338
- dct_mat = audio_F.create_dct(self.n_mfcc, self.n_mels, self.norm)
339
- self.register_buffer('dct_mat', dct_mat)
340
-
341
- def forward(self, mel_specgram):
342
- if len(mel_specgram.shape) == 2:
343
- mel_specgram = mel_specgram.unsqueeze(0)
344
- unsqueezed = True
345
- else:
346
- unsqueezed = False
347
- # (channel, n_mels, time).tranpose(...) dot (n_mels, n_mfcc)
348
- # -> (channel, time, n_mfcc).tranpose(...)
349
- mfcc = torch.matmul(mel_specgram.transpose(1, 2), self.dct_mat).transpose(1, 2)
350
-
351
- # unpack batch
352
- if unsqueezed:
353
- mfcc = mfcc.squeeze(0)
354
- return mfcc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Utils/ASR/models.py DELETED
@@ -1,186 +0,0 @@
1
- import math
2
- import torch
3
- from torch import nn
4
- from torch.nn import TransformerEncoder
5
- import torch.nn.functional as F
6
- from .layers import MFCC, Attention, LinearNorm, ConvNorm, ConvBlock
7
-
8
- class ASRCNN(nn.Module):
9
- def __init__(self,
10
- input_dim=80,
11
- hidden_dim=256,
12
- n_token=35,
13
- n_layers=6,
14
- token_embedding_dim=256,
15
-
16
- ):
17
- super().__init__()
18
- self.n_token = n_token
19
- self.n_down = 1
20
- self.to_mfcc = MFCC()
21
- self.init_cnn = ConvNorm(input_dim//2, hidden_dim, kernel_size=7, padding=3, stride=2)
22
- self.cnns = nn.Sequential(
23
- *[nn.Sequential(
24
- ConvBlock(hidden_dim),
25
- nn.GroupNorm(num_groups=1, num_channels=hidden_dim)
26
- ) for n in range(n_layers)])
27
- self.projection = ConvNorm(hidden_dim, hidden_dim // 2)
28
- self.ctc_linear = nn.Sequential(
29
- LinearNorm(hidden_dim//2, hidden_dim),
30
- nn.ReLU(),
31
- LinearNorm(hidden_dim, n_token))
32
- self.asr_s2s = ASRS2S(
33
- embedding_dim=token_embedding_dim,
34
- hidden_dim=hidden_dim//2,
35
- n_token=n_token)
36
-
37
- def forward(self, x, src_key_padding_mask=None, text_input=None):
38
- x = self.to_mfcc(x)
39
- x = self.init_cnn(x)
40
- x = self.cnns(x)
41
- x = self.projection(x)
42
- x = x.transpose(1, 2)
43
- ctc_logit = self.ctc_linear(x)
44
- if text_input is not None:
45
- _, s2s_logit, s2s_attn = self.asr_s2s(x, src_key_padding_mask, text_input)
46
- return ctc_logit, s2s_logit, s2s_attn
47
- else:
48
- return ctc_logit
49
-
50
- def get_feature(self, x):
51
- x = self.to_mfcc(x.squeeze(1))
52
- x = self.init_cnn(x)
53
- x = self.cnns(x)
54
- x = self.projection(x)
55
- return x
56
-
57
- def length_to_mask(self, lengths):
58
- mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
59
- mask = torch.gt(mask+1, lengths.unsqueeze(1)).to(lengths.device)
60
- return mask
61
-
62
- def get_future_mask(self, out_length, unmask_future_steps=0):
63
- """
64
- Args:
65
- out_length (int): returned mask shape is (out_length, out_length).
66
- unmask_futre_steps (int): unmasking future step size.
67
- Return:
68
- mask (torch.BoolTensor): mask future timesteps mask[i, j] = True if i > j + unmask_future_steps else False
69
- """
70
- index_tensor = torch.arange(out_length).unsqueeze(0).expand(out_length, -1)
71
- mask = torch.gt(index_tensor, index_tensor.T + unmask_future_steps)
72
- return mask
73
-
74
- class ASRS2S(nn.Module):
75
- def __init__(self,
76
- embedding_dim=256,
77
- hidden_dim=512,
78
- n_location_filters=32,
79
- location_kernel_size=63,
80
- n_token=40):
81
- super(ASRS2S, self).__init__()
82
- self.embedding = nn.Embedding(n_token, embedding_dim)
83
- val_range = math.sqrt(6 / hidden_dim)
84
- self.embedding.weight.data.uniform_(-val_range, val_range)
85
-
86
- self.decoder_rnn_dim = hidden_dim
87
- self.project_to_n_symbols = nn.Linear(self.decoder_rnn_dim, n_token)
88
- self.attention_layer = Attention(
89
- self.decoder_rnn_dim,
90
- hidden_dim,
91
- hidden_dim,
92
- n_location_filters,
93
- location_kernel_size
94
- )
95
- self.decoder_rnn = nn.LSTMCell(self.decoder_rnn_dim + embedding_dim, self.decoder_rnn_dim)
96
- self.project_to_hidden = nn.Sequential(
97
- LinearNorm(self.decoder_rnn_dim * 2, hidden_dim),
98
- nn.Tanh())
99
- self.sos = 1
100
- self.eos = 2
101
-
102
- def initialize_decoder_states(self, memory, mask):
103
- """
104
- moemory.shape = (B, L, H) = (Batchsize, Maxtimestep, Hiddendim)
105
- """
106
- B, L, H = memory.shape
107
- self.decoder_hidden = torch.zeros((B, self.decoder_rnn_dim)).type_as(memory)
108
- self.decoder_cell = torch.zeros((B, self.decoder_rnn_dim)).type_as(memory)
109
- self.attention_weights = torch.zeros((B, L)).type_as(memory)
110
- self.attention_weights_cum = torch.zeros((B, L)).type_as(memory)
111
- self.attention_context = torch.zeros((B, H)).type_as(memory)
112
- self.memory = memory
113
- self.processed_memory = self.attention_layer.memory_layer(memory)
114
- self.mask = mask
115
- self.unk_index = 3
116
- self.random_mask = 0.1
117
-
118
- def forward(self, memory, memory_mask, text_input):
119
- """
120
- moemory.shape = (B, L, H) = (Batchsize, Maxtimestep, Hiddendim)
121
- moemory_mask.shape = (B, L, )
122
- texts_input.shape = (B, T)
123
- """
124
- self.initialize_decoder_states(memory, memory_mask)
125
- # text random mask
126
- random_mask = (torch.rand(text_input.shape) < self.random_mask).to(text_input.device)
127
- _text_input = text_input.clone()
128
- _text_input.masked_fill_(random_mask, self.unk_index)
129
- decoder_inputs = self.embedding(_text_input).transpose(0, 1) # -> [T, B, channel]
130
- start_embedding = self.embedding(
131
- torch.LongTensor([self.sos]*decoder_inputs.size(1)).to(decoder_inputs.device))
132
- decoder_inputs = torch.cat((start_embedding.unsqueeze(0), decoder_inputs), dim=0)
133
-
134
- hidden_outputs, logit_outputs, alignments = [], [], []
135
- while len(hidden_outputs) < decoder_inputs.size(0):
136
-
137
- decoder_input = decoder_inputs[len(hidden_outputs)]
138
- hidden, logit, attention_weights = self.decode(decoder_input)
139
- hidden_outputs += [hidden]
140
- logit_outputs += [logit]
141
- alignments += [attention_weights]
142
-
143
- hidden_outputs, logit_outputs, alignments = \
144
- self.parse_decoder_outputs(
145
- hidden_outputs, logit_outputs, alignments)
146
-
147
- return hidden_outputs, logit_outputs, alignments
148
-
149
-
150
- def decode(self, decoder_input):
151
-
152
- cell_input = torch.cat((decoder_input, self.attention_context), -1)
153
- self.decoder_hidden, self.decoder_cell = self.decoder_rnn(
154
- cell_input,
155
- (self.decoder_hidden, self.decoder_cell))
156
-
157
- attention_weights_cat = torch.cat(
158
- (self.attention_weights.unsqueeze(1),
159
- self.attention_weights_cum.unsqueeze(1)),dim=1)
160
-
161
- self.attention_context, self.attention_weights = self.attention_layer(
162
- self.decoder_hidden,
163
- self.memory,
164
- self.processed_memory,
165
- attention_weights_cat,
166
- self.mask)
167
-
168
- self.attention_weights_cum += self.attention_weights
169
-
170
- hidden_and_context = torch.cat((self.decoder_hidden, self.attention_context), -1)
171
- hidden = self.project_to_hidden(hidden_and_context)
172
-
173
- # dropout to increasing g
174
- logit = self.project_to_n_symbols(F.dropout(hidden, 0.5, self.training))
175
-
176
- return hidden, logit, self.attention_weights
177
-
178
- def parse_decoder_outputs(self, hidden, logit, alignments):
179
-
180
- # -> [B, T_out + 1, max_time]
181
- alignments = torch.stack(alignments).transpose(0,1)
182
- # [T_out + 1, B, n_symbols] -> [B, T_out + 1, n_symbols]
183
- logit = torch.stack(logit).transpose(0, 1).contiguous()
184
- hidden = torch.stack(hidden).transpose(0, 1).contiguous()
185
-
186
- return hidden, logit, alignments
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Utils/JDC/__init__.py DELETED
@@ -1 +0,0 @@
1
-
 
 
Utils/JDC/model.py DELETED
@@ -1,190 +0,0 @@
1
- """
2
- Implementation of model from:
3
- Kum et al. - "Joint Detection and Classification of Singing Voice Melody Using
4
- Convolutional Recurrent Neural Networks" (2019)
5
- Link: https://www.semanticscholar.org/paper/Joint-Detection-and-Classification-of-Singing-Voice-Kum-Nam/60a2ad4c7db43bace75805054603747fcd062c0d
6
- """
7
- import torch
8
- from torch import nn
9
-
10
- class JDCNet(nn.Module):
11
- """
12
- Joint Detection and Classification Network model for singing voice melody.
13
- """
14
- def __init__(self, num_class=722, seq_len=31, leaky_relu_slope=0.01):
15
- super().__init__()
16
- self.num_class = num_class
17
-
18
- # input = (b, 1, 31, 513), b = batch size
19
- self.conv_block = nn.Sequential(
20
- nn.Conv2d(in_channels=1, out_channels=64, kernel_size=3, padding=1, bias=False), # out: (b, 64, 31, 513)
21
- nn.BatchNorm2d(num_features=64),
22
- nn.LeakyReLU(leaky_relu_slope, inplace=True),
23
- nn.Conv2d(64, 64, 3, padding=1, bias=False), # (b, 64, 31, 513)
24
- )
25
-
26
- # res blocks
27
- self.res_block1 = ResBlock(in_channels=64, out_channels=128) # (b, 128, 31, 128)
28
- self.res_block2 = ResBlock(in_channels=128, out_channels=192) # (b, 192, 31, 32)
29
- self.res_block3 = ResBlock(in_channels=192, out_channels=256) # (b, 256, 31, 8)
30
-
31
- # pool block
32
- self.pool_block = nn.Sequential(
33
- nn.BatchNorm2d(num_features=256),
34
- nn.LeakyReLU(leaky_relu_slope, inplace=True),
35
- nn.MaxPool2d(kernel_size=(1, 4)), # (b, 256, 31, 2)
36
- nn.Dropout(p=0.2),
37
- )
38
-
39
- # maxpool layers (for auxiliary network inputs)
40
- # in = (b, 128, 31, 513) from conv_block, out = (b, 128, 31, 2)
41
- self.maxpool1 = nn.MaxPool2d(kernel_size=(1, 40))
42
- # in = (b, 128, 31, 128) from res_block1, out = (b, 128, 31, 2)
43
- self.maxpool2 = nn.MaxPool2d(kernel_size=(1, 20))
44
- # in = (b, 128, 31, 32) from res_block2, out = (b, 128, 31, 2)
45
- self.maxpool3 = nn.MaxPool2d(kernel_size=(1, 10))
46
-
47
- # in = (b, 640, 31, 2), out = (b, 256, 31, 2)
48
- self.detector_conv = nn.Sequential(
49
- nn.Conv2d(640, 256, 1, bias=False),
50
- nn.BatchNorm2d(256),
51
- nn.LeakyReLU(leaky_relu_slope, inplace=True),
52
- nn.Dropout(p=0.2),
53
- )
54
-
55
- # input: (b, 31, 512) - resized from (b, 256, 31, 2)
56
- self.bilstm_classifier = nn.LSTM(
57
- input_size=512, hidden_size=256,
58
- batch_first=True, bidirectional=True) # (b, 31, 512)
59
-
60
- # input: (b, 31, 512) - resized from (b, 256, 31, 2)
61
- self.bilstm_detector = nn.LSTM(
62
- input_size=512, hidden_size=256,
63
- batch_first=True, bidirectional=True) # (b, 31, 512)
64
-
65
- # input: (b * 31, 512)
66
- self.classifier = nn.Linear(in_features=512, out_features=self.num_class) # (b * 31, num_class)
67
-
68
- # input: (b * 31, 512)
69
- self.detector = nn.Linear(in_features=512, out_features=2) # (b * 31, 2) - binary classifier
70
-
71
- # initialize weights
72
- self.apply(self.init_weights)
73
-
74
- def get_feature_GAN(self, x):
75
- seq_len = x.shape[-2]
76
- x = x.float().transpose(-1, -2)
77
-
78
- convblock_out = self.conv_block(x)
79
-
80
- resblock1_out = self.res_block1(convblock_out)
81
- resblock2_out = self.res_block2(resblock1_out)
82
- resblock3_out = self.res_block3(resblock2_out)
83
- poolblock_out = self.pool_block[0](resblock3_out)
84
- poolblock_out = self.pool_block[1](poolblock_out)
85
-
86
- return poolblock_out.transpose(-1, -2)
87
-
88
- def get_feature(self, x):
89
- seq_len = x.shape[-2]
90
- x = x.float().transpose(-1, -2)
91
-
92
- convblock_out = self.conv_block(x)
93
-
94
- resblock1_out = self.res_block1(convblock_out)
95
- resblock2_out = self.res_block2(resblock1_out)
96
- resblock3_out = self.res_block3(resblock2_out)
97
- poolblock_out = self.pool_block[0](resblock3_out)
98
- poolblock_out = self.pool_block[1](poolblock_out)
99
-
100
- return self.pool_block[2](poolblock_out)
101
-
102
- def forward(self, x):
103
- """
104
- Returns:
105
- classification_prediction, detection_prediction
106
- sizes: (b, 31, 722), (b, 31, 2)
107
- """
108
- ###############################
109
- # forward pass for classifier #
110
- ###############################
111
- seq_len = x.shape[-1]
112
- x = x.float().transpose(-1, -2)
113
-
114
- convblock_out = self.conv_block(x)
115
-
116
- resblock1_out = self.res_block1(convblock_out)
117
- resblock2_out = self.res_block2(resblock1_out)
118
- resblock3_out = self.res_block3(resblock2_out)
119
-
120
-
121
- poolblock_out = self.pool_block[0](resblock3_out)
122
- poolblock_out = self.pool_block[1](poolblock_out)
123
- GAN_feature = poolblock_out.transpose(-1, -2)
124
- poolblock_out = self.pool_block[2](poolblock_out)
125
-
126
- # (b, 256, 31, 2) => (b, 31, 256, 2) => (b, 31, 512)
127
- classifier_out = poolblock_out.permute(0, 2, 1, 3).contiguous().view((-1, seq_len, 512))
128
- classifier_out, _ = self.bilstm_classifier(classifier_out) # ignore the hidden states
129
-
130
- classifier_out = classifier_out.contiguous().view((-1, 512)) # (b * 31, 512)
131
- classifier_out = self.classifier(classifier_out)
132
- classifier_out = classifier_out.view((-1, seq_len, self.num_class)) # (b, 31, num_class)
133
-
134
- # sizes: (b, 31, 722), (b, 31, 2)
135
- # classifier output consists of predicted pitch classes per frame
136
- # detector output consists of: (isvoice, notvoice) estimates per frame
137
- return torch.abs(classifier_out.squeeze()), GAN_feature, poolblock_out
138
-
139
- @staticmethod
140
- def init_weights(m):
141
- if isinstance(m, nn.Linear):
142
- nn.init.kaiming_uniform_(m.weight)
143
- if m.bias is not None:
144
- nn.init.constant_(m.bias, 0)
145
- elif isinstance(m, nn.Conv2d):
146
- nn.init.xavier_normal_(m.weight)
147
- elif isinstance(m, nn.LSTM) or isinstance(m, nn.LSTMCell):
148
- for p in m.parameters():
149
- if p.data is None:
150
- continue
151
-
152
- if len(p.shape) >= 2:
153
- nn.init.orthogonal_(p.data)
154
- else:
155
- nn.init.normal_(p.data)
156
-
157
-
158
- class ResBlock(nn.Module):
159
- def __init__(self, in_channels: int, out_channels: int, leaky_relu_slope=0.01):
160
- super().__init__()
161
- self.downsample = in_channels != out_channels
162
-
163
- # BN / LReLU / MaxPool layer before the conv layer - see Figure 1b in the paper
164
- self.pre_conv = nn.Sequential(
165
- nn.BatchNorm2d(num_features=in_channels),
166
- nn.LeakyReLU(leaky_relu_slope, inplace=True),
167
- nn.MaxPool2d(kernel_size=(1, 2)), # apply downsampling on the y axis only
168
- )
169
-
170
- # conv layers
171
- self.conv = nn.Sequential(
172
- nn.Conv2d(in_channels=in_channels, out_channels=out_channels,
173
- kernel_size=3, padding=1, bias=False),
174
- nn.BatchNorm2d(out_channels),
175
- nn.LeakyReLU(leaky_relu_slope, inplace=True),
176
- nn.Conv2d(out_channels, out_channels, 3, padding=1, bias=False),
177
- )
178
-
179
- # 1 x 1 convolution layer to match the feature dimensions
180
- self.conv1by1 = None
181
- if self.downsample:
182
- self.conv1by1 = nn.Conv2d(in_channels, out_channels, 1, bias=False)
183
-
184
- def forward(self, x):
185
- x = self.pre_conv(x)
186
- if self.downsample:
187
- x = self.conv(x) + self.conv1by1(x)
188
- else:
189
- x = self.conv(x) + x
190
- return x
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Utils/PLBERT/config.yml DELETED
@@ -1,30 +0,0 @@
1
- log_dir: "Checkpoint"
2
- mixed_precision: "fp16"
3
- data_folder: "wikipedia_20220301.en.processed"
4
- batch_size: 192
5
- save_interval: 5000
6
- log_interval: 10
7
- num_process: 1 # number of GPUs
8
- num_steps: 1000000
9
-
10
- dataset_params:
11
- tokenizer: "transfo-xl-wt103"
12
- token_separator: " " # token used for phoneme separator (space)
13
- token_mask: "M" # token used for phoneme mask (M)
14
- word_separator: 3039 # token used for word separator (<formula>)
15
- token_maps: "token_maps.pkl" # token map path
16
-
17
- max_mel_length: 512 # max phoneme length
18
-
19
- word_mask_prob: 0.15 # probability to mask the entire word
20
- phoneme_mask_prob: 0.1 # probability to mask each phoneme
21
- replace_prob: 0.2 # probablity to replace phonemes
22
-
23
- model_params:
24
- vocab_size: 198
25
- hidden_size: 768
26
- num_attention_heads: 12
27
- intermediate_size: 2048
28
- max_position_embeddings: 512
29
- num_hidden_layers: 12
30
- dropout: 0.1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Utils/PLBERT/util.py DELETED
@@ -1,24 +0,0 @@
1
- import os
2
- import yaml
3
- import torch
4
- from transformers import AlbertConfig, AlbertModel
5
-
6
- class CustomAlbert(AlbertModel):
7
- def forward(self, *args, **kwargs):
8
- # Call the original forward method
9
- outputs = super().forward(*args, **kwargs)
10
-
11
- # Only return the last_hidden_state
12
- return outputs.last_hidden_state
13
-
14
-
15
- def load_plbert(wights_path, config_path):
16
- plbert_config = yaml.safe_load(open(config_path))
17
-
18
- albert_base_configuration = AlbertConfig(**plbert_config['model_params'])
19
- bert = CustomAlbert(albert_base_configuration)
20
-
21
- state_dict = torch.load(wights_path, map_location='cpu')
22
- bert.load_state_dict(state_dict, strict=False)
23
-
24
- return bert
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Utils/__init__.py DELETED
@@ -1 +0,0 @@
1
-
 
 
models.py DELETED
@@ -1,717 +0,0 @@
1
- #coding:utf-8
2
-
3
- import os
4
- import os.path as osp
5
-
6
- import copy
7
- import math
8
-
9
- import numpy as np
10
- import torch
11
- import torch.nn as nn
12
- import torch.nn.functional as F
13
- from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
14
-
15
- from Utils.ASR.models import ASRCNN
16
- from Utils.JDC.model import JDCNet
17
-
18
- from Modules.diffusion.sampler import KDiffusion, LogNormalDistribution, DiffusionSampler, ADPM2Sampler, KarrasSchedule
19
- from Modules.diffusion.modules import Transformer1d, StyleTransformer1d
20
- from Modules.diffusion.diffusion import AudioDiffusionConditional
21
-
22
- from Modules.discriminators import MultiPeriodDiscriminator, MultiResSpecDiscriminator, WavLMDiscriminator
23
-
24
- from munch import Munch
25
- import yaml
26
-
27
- class LearnedDownSample(nn.Module):
28
- def __init__(self, layer_type, dim_in):
29
- super().__init__()
30
- self.layer_type = layer_type
31
-
32
- if self.layer_type == 'none':
33
- self.conv = nn.Identity()
34
- elif self.layer_type == 'timepreserve':
35
- self.conv = spectral_norm(nn.Conv2d(dim_in, dim_in, kernel_size=(3, 1), stride=(2, 1), groups=dim_in, padding=(1, 0)))
36
- elif self.layer_type == 'half':
37
- self.conv = spectral_norm(nn.Conv2d(dim_in, dim_in, kernel_size=(3, 3), stride=(2, 2), groups=dim_in, padding=1))
38
- else:
39
- raise RuntimeError('Got unexpected donwsampletype %s, expected is [none, timepreserve, half]' % self.layer_type)
40
-
41
- def forward(self, x):
42
- return self.conv(x)
43
-
44
- class LearnedUpSample(nn.Module):
45
- def __init__(self, layer_type, dim_in):
46
- super().__init__()
47
- self.layer_type = layer_type
48
-
49
- if self.layer_type == 'none':
50
- self.conv = nn.Identity()
51
- elif self.layer_type == 'timepreserve':
52
- self.conv = nn.ConvTranspose2d(dim_in, dim_in, kernel_size=(3, 1), stride=(2, 1), groups=dim_in, output_padding=(1, 0), padding=(1, 0))
53
- elif self.layer_type == 'half':
54
- self.conv = nn.ConvTranspose2d(dim_in, dim_in, kernel_size=(3, 3), stride=(2, 2), groups=dim_in, output_padding=1, padding=1)
55
- else:
56
- raise RuntimeError('Got unexpected upsampletype %s, expected is [none, timepreserve, half]' % self.layer_type)
57
-
58
-
59
- def forward(self, x):
60
- return self.conv(x)
61
-
62
- class DownSample(nn.Module):
63
- def __init__(self, layer_type):
64
- super().__init__()
65
- self.layer_type = layer_type
66
-
67
- def forward(self, x):
68
- if self.layer_type == 'none':
69
- return x
70
- elif self.layer_type == 'timepreserve':
71
- return F.avg_pool2d(x, (2, 1))
72
- elif self.layer_type == 'half':
73
- if x.shape[-1] % 2 != 0:
74
- x = torch.cat([x, x[..., -1].unsqueeze(-1)], dim=-1)
75
- return F.avg_pool2d(x, 2)
76
- else:
77
- raise RuntimeError('Got unexpected donwsampletype %s, expected is [none, timepreserve, half]' % self.layer_type)
78
-
79
-
80
- class UpSample(nn.Module):
81
- def __init__(self, layer_type):
82
- super().__init__()
83
- self.layer_type = layer_type
84
-
85
- def forward(self, x):
86
- if self.layer_type == 'none':
87
- return x
88
- elif self.layer_type == 'timepreserve':
89
- return F.interpolate(x, scale_factor=(2, 1), mode='nearest')
90
- elif self.layer_type == 'half':
91
- return F.interpolate(x, scale_factor=2, mode='nearest')
92
- else:
93
- raise RuntimeError('Got unexpected upsampletype %s, expected is [none, timepreserve, half]' % self.layer_type)
94
-
95
-
96
- class ResBlk(nn.Module):
97
- def __init__(self, dim_in, dim_out, actv=nn.LeakyReLU(0.2),
98
- normalize=False, downsample='none'):
99
- super().__init__()
100
- self.actv = actv
101
- self.normalize = normalize
102
- self.downsample = DownSample(downsample)
103
- self.downsample_res = LearnedDownSample(downsample, dim_in)
104
- self.learned_sc = dim_in != dim_out
105
- self._build_weights(dim_in, dim_out)
106
-
107
- def _build_weights(self, dim_in, dim_out):
108
- self.conv1 = spectral_norm(nn.Conv2d(dim_in, dim_in, 3, 1, 1))
109
- self.conv2 = spectral_norm(nn.Conv2d(dim_in, dim_out, 3, 1, 1))
110
- if self.normalize:
111
- self.norm1 = nn.InstanceNorm2d(dim_in, affine=True)
112
- self.norm2 = nn.InstanceNorm2d(dim_in, affine=True)
113
- if self.learned_sc:
114
- self.conv1x1 = spectral_norm(nn.Conv2d(dim_in, dim_out, 1, 1, 0, bias=False))
115
-
116
- def _shortcut(self, x):
117
- if self.learned_sc:
118
- x = self.conv1x1(x)
119
- if self.downsample:
120
- x = self.downsample(x)
121
- return x
122
-
123
- def _residual(self, x):
124
- if self.normalize:
125
- x = self.norm1(x)
126
- x = self.actv(x)
127
- x = self.conv1(x)
128
- x = self.downsample_res(x)
129
- if self.normalize:
130
- x = self.norm2(x)
131
- x = self.actv(x)
132
- x = self.conv2(x)
133
- return x
134
-
135
- def forward(self, x):
136
- x = self._shortcut(x) + self._residual(x)
137
- return x / math.sqrt(2) # unit variance
138
-
139
- class StyleEncoder(nn.Module):
140
- def __init__(self, dim_in=48, style_dim=48, max_conv_dim=384):
141
- super().__init__()
142
- blocks = []
143
- blocks += [spectral_norm(nn.Conv2d(1, dim_in, 3, 1, 1))]
144
-
145
- repeat_num = 4
146
- for _ in range(repeat_num):
147
- dim_out = min(dim_in*2, max_conv_dim)
148
- blocks += [ResBlk(dim_in, dim_out, downsample='half')]
149
- dim_in = dim_out
150
-
151
- blocks += [nn.LeakyReLU(0.2)]
152
- blocks += [spectral_norm(nn.Conv2d(dim_out, dim_out, 5, 1, 0))]
153
- blocks += [nn.AdaptiveAvgPool2d(1)]
154
- blocks += [nn.LeakyReLU(0.2)]
155
- self.shared = nn.Sequential(*blocks)
156
-
157
- self.unshared = nn.Linear(dim_out, style_dim)
158
-
159
- def forward(self, x):
160
- h = self.shared(x)
161
- h = h.view(h.size(0), -1)
162
- s = self.unshared(h)
163
-
164
- return s
165
-
166
- class LinearNorm(torch.nn.Module):
167
- def __init__(self, in_dim, out_dim, bias=True, w_init_gain='linear'):
168
- super(LinearNorm, self).__init__()
169
- self.linear_layer = torch.nn.Linear(in_dim, out_dim, bias=bias)
170
-
171
- torch.nn.init.xavier_uniform_(
172
- self.linear_layer.weight,
173
- gain=torch.nn.init.calculate_gain(w_init_gain))
174
-
175
- def forward(self, x):
176
- return self.linear_layer(x)
177
-
178
- class Discriminator2d(nn.Module):
179
- def __init__(self, dim_in=48, num_domains=1, max_conv_dim=384, repeat_num=4):
180
- super().__init__()
181
- blocks = []
182
- blocks += [spectral_norm(nn.Conv2d(1, dim_in, 3, 1, 1))]
183
-
184
- for lid in range(repeat_num):
185
- dim_out = min(dim_in*2, max_conv_dim)
186
- blocks += [ResBlk(dim_in, dim_out, downsample='half')]
187
- dim_in = dim_out
188
-
189
- blocks += [nn.LeakyReLU(0.2)]
190
- blocks += [spectral_norm(nn.Conv2d(dim_out, dim_out, 5, 1, 0))]
191
- blocks += [nn.LeakyReLU(0.2)]
192
- blocks += [nn.AdaptiveAvgPool2d(1)]
193
- blocks += [spectral_norm(nn.Conv2d(dim_out, num_domains, 1, 1, 0))]
194
- self.main = nn.Sequential(*blocks)
195
-
196
- def get_feature(self, x):
197
- features = []
198
- for l in self.main:
199
- x = l(x)
200
- features.append(x)
201
- out = features[-1]
202
- out = out.view(out.size(0), -1) # (batch, num_domains)
203
- return out, features
204
-
205
- def forward(self, x):
206
- out, features = self.get_feature(x)
207
- out = out.squeeze() # (batch)
208
- return out, features
209
-
210
- class ResBlk1d(nn.Module):
211
- def __init__(self, dim_in, dim_out, actv=nn.LeakyReLU(0.2),
212
- normalize=False, downsample='none', dropout_p=0.2):
213
- super().__init__()
214
- self.actv = actv
215
- self.normalize = normalize
216
- self.downsample_type = downsample
217
- self.learned_sc = dim_in != dim_out
218
- self._build_weights(dim_in, dim_out)
219
- self.dropout_p = dropout_p
220
-
221
- if self.downsample_type == 'none':
222
- self.pool = nn.Identity()
223
- else:
224
- self.pool = weight_norm(nn.Conv1d(dim_in, dim_in, kernel_size=3, stride=2, groups=dim_in, padding=1))
225
-
226
- def _build_weights(self, dim_in, dim_out):
227
- self.conv1 = weight_norm(nn.Conv1d(dim_in, dim_in, 3, 1, 1))
228
- self.conv2 = weight_norm(nn.Conv1d(dim_in, dim_out, 3, 1, 1))
229
- if self.normalize:
230
- self.norm1 = nn.InstanceNorm1d(dim_in, affine=True)
231
- self.norm2 = nn.InstanceNorm1d(dim_in, affine=True)
232
- if self.learned_sc:
233
- self.conv1x1 = weight_norm(nn.Conv1d(dim_in, dim_out, 1, 1, 0, bias=False))
234
-
235
- def downsample(self, x):
236
- if self.downsample_type == 'none':
237
- return x
238
- else:
239
- if x.shape[-1] % 2 != 0:
240
- x = torch.cat([x, x[..., -1].unsqueeze(-1)], dim=-1)
241
- return F.avg_pool1d(x, 2)
242
-
243
- def _shortcut(self, x):
244
- if self.learned_sc:
245
- x = self.conv1x1(x)
246
- x = self.downsample(x)
247
- return x
248
-
249
- def _residual(self, x):
250
- if self.normalize:
251
- x = self.norm1(x)
252
- x = self.actv(x)
253
- x = F.dropout(x, p=self.dropout_p, training=self.training)
254
-
255
- x = self.conv1(x)
256
- x = self.pool(x)
257
- if self.normalize:
258
- x = self.norm2(x)
259
-
260
- x = self.actv(x)
261
- x = F.dropout(x, p=self.dropout_p, training=self.training)
262
-
263
- x = self.conv2(x)
264
- return x
265
-
266
- def forward(self, x):
267
- x = self._shortcut(x) + self._residual(x)
268
- return x / math.sqrt(2) # unit variance
269
-
270
- class LayerNorm(nn.Module):
271
- def __init__(self, channels, eps=1e-5):
272
- super().__init__()
273
- self.channels = channels
274
- self.eps = eps
275
-
276
- self.gamma = nn.Parameter(torch.ones(channels))
277
- self.beta = nn.Parameter(torch.zeros(channels))
278
-
279
- def forward(self, x):
280
- x = x.transpose(1, -1)
281
- x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
282
- return x.transpose(1, -1)
283
-
284
- class TextEncoder(nn.Module):
285
- def __init__(self, channels, kernel_size, depth, n_symbols, actv=nn.LeakyReLU(0.2)):
286
- super().__init__()
287
- self.embedding = nn.Embedding(n_symbols, channels)
288
-
289
- padding = (kernel_size - 1) // 2
290
- self.cnn = nn.ModuleList()
291
- for _ in range(depth):
292
- self.cnn.append(nn.Sequential(
293
- weight_norm(nn.Conv1d(channels, channels, kernel_size=kernel_size, padding=padding)),
294
- LayerNorm(channels),
295
- actv,
296
- nn.Dropout(0.2),
297
- ))
298
- # self.cnn = nn.Sequential(*self.cnn)
299
-
300
- self.lstm = nn.LSTM(channels, channels//2, 1, batch_first=True, bidirectional=True)
301
-
302
- def forward(self, x, input_lengths, m):
303
- x = self.embedding(x) # [B, T, emb]
304
- x = x.transpose(1, 2) # [B, emb, T]
305
- m = m.to(input_lengths.device).unsqueeze(1)
306
- x.masked_fill_(m, 0.0)
307
-
308
- for c in self.cnn:
309
- x = c(x)
310
- x.masked_fill_(m, 0.0)
311
-
312
- x = x.transpose(1, 2) # [B, T, chn]
313
-
314
- input_lengths = input_lengths.cpu().numpy()
315
- x = nn.utils.rnn.pack_padded_sequence(
316
- x, input_lengths, batch_first=True, enforce_sorted=False)
317
-
318
- self.lstm.flatten_parameters()
319
- x, _ = self.lstm(x)
320
- x, _ = nn.utils.rnn.pad_packed_sequence(
321
- x, batch_first=True)
322
-
323
- x = x.transpose(-1, -2)
324
- x_pad = torch.zeros([x.shape[0], x.shape[1], m.shape[-1]])
325
-
326
- x_pad[:, :, :x.shape[-1]] = x
327
- x = x_pad.to(x.device)
328
-
329
- x.masked_fill_(m, 0.0)
330
-
331
- return x
332
-
333
- def inference(self, x):
334
- x = self.embedding(x)
335
- x = x.transpose(1, 2)
336
- x = self.cnn(x)
337
- x = x.transpose(1, 2)
338
- self.lstm.flatten_parameters()
339
- x, _ = self.lstm(x)
340
- return x
341
-
342
- def length_to_mask(self, lengths):
343
- mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
344
- mask = torch.gt(mask+1, lengths.unsqueeze(1))
345
- return mask
346
-
347
-
348
-
349
- class AdaIN1d(nn.Module):
350
- def __init__(self, style_dim, num_features):
351
- super().__init__()
352
- self.norm = nn.InstanceNorm1d(num_features, affine=False)
353
- self.fc = nn.Linear(style_dim, num_features*2)
354
-
355
- def forward(self, x, s):
356
- h = self.fc(s)
357
- h = h.view(h.size(0), h.size(1), 1)
358
- gamma, beta = torch.chunk(h, chunks=2, dim=1)
359
- return (1 + gamma) * self.norm(x) + beta
360
-
361
- class UpSample1d(nn.Module):
362
- def __init__(self, layer_type):
363
- super().__init__()
364
- self.layer_type = layer_type
365
-
366
- def forward(self, x):
367
- if self.layer_type == 'none':
368
- return x
369
- else:
370
- return F.interpolate(x, scale_factor=2, mode='nearest')
371
-
372
- class AdainResBlk1d(nn.Module):
373
- def __init__(self, dim_in, dim_out, style_dim=64, actv=nn.LeakyReLU(0.2),
374
- upsample='none', dropout_p=0.0):
375
- super().__init__()
376
- self.actv = actv
377
- self.upsample_type = upsample
378
- self.upsample = UpSample1d(upsample)
379
- self.learned_sc = dim_in != dim_out
380
- self._build_weights(dim_in, dim_out, style_dim)
381
- self.dropout = nn.Dropout(dropout_p)
382
-
383
- if upsample == 'none':
384
- self.pool = nn.Identity()
385
- else:
386
- self.pool = weight_norm(nn.ConvTranspose1d(dim_in, dim_in, kernel_size=3, stride=2, groups=dim_in, padding=1, output_padding=1))
387
-
388
-
389
- def _build_weights(self, dim_in, dim_out, style_dim):
390
- self.conv1 = weight_norm(nn.Conv1d(dim_in, dim_out, 3, 1, 1))
391
- self.conv2 = weight_norm(nn.Conv1d(dim_out, dim_out, 3, 1, 1))
392
- self.norm1 = AdaIN1d(style_dim, dim_in)
393
- self.norm2 = AdaIN1d(style_dim, dim_out)
394
- if self.learned_sc:
395
- self.conv1x1 = weight_norm(nn.Conv1d(dim_in, dim_out, 1, 1, 0, bias=False))
396
-
397
- def _shortcut(self, x):
398
- x = self.upsample(x)
399
- if self.learned_sc:
400
- x = self.conv1x1(x)
401
- return x
402
-
403
- def _residual(self, x, s):
404
- x = self.norm1(x, s)
405
- x = self.actv(x)
406
- x = self.pool(x)
407
- x = self.conv1(self.dropout(x))
408
- x = self.norm2(x, s)
409
- x = self.actv(x)
410
- x = self.conv2(self.dropout(x))
411
- return x
412
-
413
- def forward(self, x, s):
414
- out = self._residual(x, s)
415
- out = (out + self._shortcut(x)) / math.sqrt(2)
416
- return out
417
-
418
- class AdaLayerNorm(nn.Module):
419
- def __init__(self, style_dim, channels, eps=1e-5):
420
- super().__init__()
421
- self.channels = channels
422
- self.eps = eps
423
-
424
- self.fc = nn.Linear(style_dim, channels*2)
425
-
426
- def forward(self, x, s):
427
- x = x.transpose(-1, -2)
428
- x = x.transpose(1, -1)
429
-
430
- h = self.fc(s)
431
- h = h.view(h.size(0), h.size(1), 1)
432
- gamma, beta = torch.chunk(h, chunks=2, dim=1)
433
- gamma, beta = gamma.transpose(1, -1), beta.transpose(1, -1)
434
-
435
-
436
- x = F.layer_norm(x, (self.channels,), eps=self.eps)
437
- x = (1 + gamma) * x + beta
438
- return x.transpose(1, -1).transpose(-1, -2)
439
-
440
- class ProsodyPredictor(nn.Module):
441
-
442
- def __init__(self, style_dim, d_hid, nlayers, max_dur=50, dropout=0.1):
443
- super().__init__()
444
-
445
- self.text_encoder = DurationEncoder(sty_dim=style_dim,
446
- d_model=d_hid,
447
- nlayers=nlayers,
448
- dropout=dropout)
449
-
450
- self.lstm = nn.LSTM(d_hid + style_dim, d_hid // 2, 1, batch_first=True, bidirectional=True)
451
- self.duration_proj = LinearNorm(d_hid, max_dur)
452
-
453
- self.shared = nn.LSTM(d_hid + style_dim, d_hid // 2, 1, batch_first=True, bidirectional=True)
454
- self.F0 = nn.ModuleList()
455
- self.F0.append(AdainResBlk1d(d_hid, d_hid, style_dim, dropout_p=dropout))
456
- self.F0.append(AdainResBlk1d(d_hid, d_hid // 2, style_dim, upsample=True, dropout_p=dropout))
457
- self.F0.append(AdainResBlk1d(d_hid // 2, d_hid // 2, style_dim, dropout_p=dropout))
458
-
459
- self.N = nn.ModuleList()
460
- self.N.append(AdainResBlk1d(d_hid, d_hid, style_dim, dropout_p=dropout))
461
- self.N.append(AdainResBlk1d(d_hid, d_hid // 2, style_dim, upsample=True, dropout_p=dropout))
462
- self.N.append(AdainResBlk1d(d_hid // 2, d_hid // 2, style_dim, dropout_p=dropout))
463
-
464
- self.F0_proj = nn.Conv1d(d_hid // 2, 1, 1, 1, 0)
465
- self.N_proj = nn.Conv1d(d_hid // 2, 1, 1, 1, 0)
466
-
467
-
468
- def forward(self, texts, style, text_lengths, alignment, m):
469
- d = self.text_encoder(texts, style, text_lengths, m)
470
-
471
- batch_size = d.shape[0]
472
- text_size = d.shape[1]
473
-
474
- # predict duration
475
- input_lengths = text_lengths.cpu().numpy()
476
- x = nn.utils.rnn.pack_padded_sequence(
477
- d, input_lengths, batch_first=True, enforce_sorted=False)
478
-
479
- m = m.to(text_lengths.device).unsqueeze(1)
480
-
481
- self.lstm.flatten_parameters()
482
- x, _ = self.lstm(x)
483
- x, _ = nn.utils.rnn.pad_packed_sequence(
484
- x, batch_first=True)
485
-
486
- x_pad = torch.zeros([x.shape[0], m.shape[-1], x.shape[-1]])
487
-
488
- x_pad[:, :x.shape[1], :] = x
489
- x = x_pad.to(x.device)
490
-
491
- duration = self.duration_proj(nn.functional.dropout(x, 0.5, training=self.training))
492
-
493
- en = (d.transpose(-1, -2) @ alignment)
494
-
495
- return duration.squeeze(-1), en
496
-
497
- def F0Ntrain(self, x, s):
498
- x, _ = self.shared(x.transpose(-1, -2))
499
-
500
- F0 = x.transpose(-1, -2)
501
- for block in self.F0:
502
- F0 = block(F0, s)
503
- F0 = self.F0_proj(F0)
504
-
505
- N = x.transpose(-1, -2)
506
- for block in self.N:
507
- N = block(N, s)
508
- N = self.N_proj(N)
509
-
510
- return F0.squeeze(1), N.squeeze(1)
511
-
512
- def length_to_mask(self, lengths):
513
- mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
514
- mask = torch.gt(mask+1, lengths.unsqueeze(1))
515
- return mask
516
-
517
- class DurationEncoder(nn.Module):
518
-
519
- def __init__(self, sty_dim, d_model, nlayers, dropout=0.1):
520
- super().__init__()
521
- self.lstms = nn.ModuleList()
522
- for _ in range(nlayers):
523
- self.lstms.append(nn.LSTM(d_model + sty_dim,
524
- d_model // 2,
525
- num_layers=1,
526
- batch_first=True,
527
- bidirectional=True,
528
- dropout=dropout))
529
- self.lstms.append(AdaLayerNorm(sty_dim, d_model))
530
-
531
-
532
- self.dropout = dropout
533
- self.d_model = d_model
534
- self.sty_dim = sty_dim
535
-
536
- def forward(self, x, style, text_lengths, m):
537
- masks = m.to(text_lengths.device)
538
-
539
- x = x.permute(2, 0, 1)
540
- s = style.expand(x.shape[0], x.shape[1], -1)
541
- x = torch.cat([x, s], axis=-1)
542
- x.masked_fill_(masks.unsqueeze(-1).transpose(0, 1), 0.0)
543
-
544
- x = x.transpose(0, 1)
545
- input_lengths = text_lengths.cpu().numpy()
546
- x = x.transpose(-1, -2)
547
-
548
- for block in self.lstms:
549
- if isinstance(block, AdaLayerNorm):
550
- x = block(x.transpose(-1, -2), style).transpose(-1, -2)
551
- x = torch.cat([x, s.permute(1, -1, 0)], axis=1)
552
- x.masked_fill_(masks.unsqueeze(-1).transpose(-1, -2), 0.0)
553
- else:
554
- x = x.transpose(-1, -2)
555
- x = nn.utils.rnn.pack_padded_sequence(
556
- x, input_lengths, batch_first=True, enforce_sorted=False)
557
- block.flatten_parameters()
558
- x, _ = block(x)
559
- x, _ = nn.utils.rnn.pad_packed_sequence(
560
- x, batch_first=True)
561
- x = F.dropout(x, p=self.dropout, training=self.training)
562
- x = x.transpose(-1, -2)
563
-
564
- x_pad = torch.zeros([x.shape[0], x.shape[1], m.shape[-1]])
565
-
566
- x_pad[:, :, :x.shape[-1]] = x
567
- x = x_pad.to(x.device)
568
-
569
- return x.transpose(-1, -2)
570
-
571
- def inference(self, x, style):
572
- x = self.embedding(x.transpose(-1, -2)) * math.sqrt(self.d_model)
573
- style = style.expand(x.shape[0], x.shape[1], -1)
574
- x = torch.cat([x, style], axis=-1)
575
- src = self.pos_encoder(x)
576
- output = self.transformer_encoder(src).transpose(0, 1)
577
- return output
578
-
579
- def length_to_mask(self, lengths):
580
- mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
581
- mask = torch.gt(mask+1, lengths.unsqueeze(1))
582
- return mask
583
-
584
- def load_F0_models(path):
585
- # load F0 model
586
-
587
- F0_model = JDCNet(num_class=1, seq_len=192)
588
- params = torch.load(path, map_location='cpu')
589
- F0_model.load_state_dict(params)
590
- _ = F0_model.train()
591
-
592
- return F0_model
593
-
594
- def load_ASR_models(ASR_MODEL_PATH, ASR_MODEL_CONFIG):
595
- # load ASR model
596
- def _load_config(path):
597
- with open(path) as f:
598
- config = yaml.safe_load(f)
599
- model_config = config['model_params']
600
- return model_config
601
-
602
- def _load_model(model_config, model_path):
603
- model = ASRCNN(**model_config)
604
- params = torch.load(model_path, map_location='cpu')
605
- model.load_state_dict(params)
606
- return model
607
-
608
- asr_model_config = _load_config(ASR_MODEL_CONFIG)
609
- asr_model = _load_model(asr_model_config, ASR_MODEL_PATH)
610
- _ = asr_model.train()
611
-
612
- return asr_model
613
-
614
- def build_model(args, text_aligner, pitch_extractor, bert):
615
- assert args.decoder.type in ['istftnet', 'hifigan'], 'Decoder type unknown'
616
-
617
- if args.decoder.type == "istftnet":
618
- from Modules.istftnet import Decoder
619
- decoder = Decoder(dim_in=args.hidden_dim, style_dim=args.style_dim, dim_out=args.n_mels,
620
- resblock_kernel_sizes = args.decoder.resblock_kernel_sizes,
621
- upsample_rates = args.decoder.upsample_rates,
622
- upsample_initial_channel=args.decoder.upsample_initial_channel,
623
- resblock_dilation_sizes=args.decoder.resblock_dilation_sizes,
624
- upsample_kernel_sizes=args.decoder.upsample_kernel_sizes,
625
- gen_istft_n_fft=args.decoder.gen_istft_n_fft, gen_istft_hop_size=args.decoder.gen_istft_hop_size)
626
- else:
627
- from Modules.hifigan import Decoder
628
- decoder = Decoder(dim_in=args.hidden_dim, style_dim=args.style_dim, dim_out=args.n_mels,
629
- resblock_kernel_sizes = args.decoder.resblock_kernel_sizes,
630
- upsample_rates = args.decoder.upsample_rates,
631
- upsample_initial_channel=args.decoder.upsample_initial_channel,
632
- resblock_dilation_sizes=args.decoder.resblock_dilation_sizes,
633
- upsample_kernel_sizes=args.decoder.upsample_kernel_sizes)
634
-
635
- text_encoder = TextEncoder(channels=args.hidden_dim, kernel_size=5, depth=args.n_layer, n_symbols=args.n_token)
636
-
637
- predictor = ProsodyPredictor(style_dim=args.style_dim, d_hid=args.hidden_dim, nlayers=args.n_layer, max_dur=args.max_dur, dropout=args.dropout)
638
-
639
- style_encoder = StyleEncoder(dim_in=args.dim_in, style_dim=args.style_dim, max_conv_dim=args.hidden_dim) # acoustic style encoder
640
- predictor_encoder = StyleEncoder(dim_in=args.dim_in, style_dim=args.style_dim, max_conv_dim=args.hidden_dim) # prosodic style encoder
641
-
642
- # define diffusion model
643
- if args.multispeaker:
644
- transformer = StyleTransformer1d(channels=args.style_dim*2,
645
- context_embedding_features=bert.config.hidden_size,
646
- context_features=args.style_dim*2,
647
- **args.diffusion.transformer)
648
- else:
649
- transformer = Transformer1d(channels=args.style_dim*2,
650
- context_embedding_features=bert.config.hidden_size,
651
- **args.diffusion.transformer)
652
-
653
- diffusion = AudioDiffusionConditional(
654
- in_channels=1,
655
- embedding_max_length=bert.config.max_position_embeddings,
656
- embedding_features=bert.config.hidden_size,
657
- embedding_mask_proba=args.diffusion.embedding_mask_proba, # Conditional dropout of batch elements,
658
- channels=args.style_dim*2,
659
- context_features=args.style_dim*2,
660
- )
661
-
662
- diffusion.diffusion = KDiffusion(
663
- net=diffusion.unet,
664
- sigma_distribution=LogNormalDistribution(mean = args.diffusion.dist.mean, std = args.diffusion.dist.std),
665
- sigma_data=args.diffusion.dist.sigma_data, # a placeholder, will be changed dynamically when start training diffusion model
666
- dynamic_threshold=0.0
667
- )
668
- diffusion.diffusion.net = transformer
669
- diffusion.unet = transformer
670
-
671
-
672
- nets = Munch(
673
- bert=bert,
674
- bert_encoder=nn.Linear(bert.config.hidden_size, args.hidden_dim),
675
-
676
- predictor=predictor,
677
- decoder=decoder,
678
- text_encoder=text_encoder,
679
-
680
- predictor_encoder=predictor_encoder,
681
- style_encoder=style_encoder,
682
- diffusion=diffusion,
683
-
684
- text_aligner = text_aligner,
685
- pitch_extractor=pitch_extractor,
686
-
687
- mpd = MultiPeriodDiscriminator(),
688
- msd = MultiResSpecDiscriminator(),
689
-
690
- # slm discriminator head
691
- wd = WavLMDiscriminator(args.slm.hidden, args.slm.nlayers, args.slm.initial_channel),
692
- sampler = DiffusionSampler(diffusion.diffusion,
693
- sampler=ADPM2Sampler(),
694
- sigma_schedule=KarrasSchedule(sigma_min=0.0001, sigma_max=3.0, rho=9.0),
695
- clamp=False )
696
- )
697
-
698
- return nets
699
-
700
- def load_checkpoint(model, optimizer, path, load_only_params=True, ignore_modules=[]):
701
- state = torch.load(path, map_location='cpu')
702
- params = state['net']
703
- for key in model:
704
- if key in params and key not in ignore_modules:
705
- print('%s loaded' % key)
706
- model[key].load_state_dict(params[key], strict=False)
707
- _ = [model[key].eval() for key in model]
708
-
709
- if not load_only_params:
710
- epoch = state["epoch"]
711
- iters = state["iters"]
712
- optimizer.load_state_dict(state["optimizer"])
713
- else:
714
- epoch = 0
715
- iters = 0
716
-
717
- return model, optimizer, epoch, iters
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
weights/asr.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:ee69a5f32c76aff88bafb09f31379dc625e51e3f71d842a4cf30ecd69cb92b56
3
- size 31529032
 
 
 
 
weights/jdc.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:87aabb4a35814b581d13f4cc6ee352e99e80ede7fb6e7e963ea85b1feee940ac
3
- size 21023821
 
 
 
 
weights/plbert.bin DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:74284b3d86962b0c4b52f2d3fe8507fc1ad87ae1defd1e7ddf28677380a290ef
3
- size 25188799