Spaces:
Running
on
Zero
Running
on
Zero
Serhiy Stetskovych
commited on
Commit
·
77d64d5
1
Parent(s):
7bc1992
Remove files
Browse files- Modules/__init__.py +0 -1
- Modules/diffusion/__init__.py +0 -1
- Modules/diffusion/diffusion.py +0 -94
- Modules/diffusion/modules.py +0 -693
- Modules/diffusion/sampler.py +0 -691
- Modules/diffusion/utils.py +0 -82
- Modules/discriminators.py +0 -188
- Modules/hifigan.py +0 -477
- Modules/istftnet.py +0 -530
- Modules/slmadv.py +0 -195
- Modules/utils.py +0 -14
- Utils/ASR/__init__.py +0 -1
- Utils/ASR/config.yml +0 -29
- Utils/ASR/layers.py +0 -354
- Utils/ASR/models.py +0 -186
- Utils/JDC/__init__.py +0 -1
- Utils/JDC/model.py +0 -190
- Utils/PLBERT/config.yml +0 -30
- Utils/PLBERT/util.py +0 -24
- Utils/__init__.py +0 -1
- models.py +0 -717
- weights/asr.bin +0 -3
- weights/jdc.bin +0 -3
- weights/plbert.bin +0 -3
Modules/__init__.py
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
|
|
|
|
Modules/diffusion/__init__.py
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
|
|
|
|
Modules/diffusion/diffusion.py
DELETED
@@ -1,94 +0,0 @@
|
|
1 |
-
from math import pi
|
2 |
-
from random import randint
|
3 |
-
from typing import Any, Optional, Sequence, Tuple, Union
|
4 |
-
|
5 |
-
import torch
|
6 |
-
from einops import rearrange
|
7 |
-
from torch import Tensor, nn
|
8 |
-
from tqdm import tqdm
|
9 |
-
|
10 |
-
from .utils import *
|
11 |
-
from .sampler import *
|
12 |
-
|
13 |
-
"""
|
14 |
-
Diffusion Classes (generic for 1d data)
|
15 |
-
"""
|
16 |
-
|
17 |
-
|
18 |
-
class Model1d(nn.Module):
|
19 |
-
def __init__(self, unet_type: str = "base", **kwargs):
|
20 |
-
super().__init__()
|
21 |
-
diffusion_kwargs, kwargs = groupby("diffusion_", kwargs)
|
22 |
-
self.unet = None
|
23 |
-
self.diffusion = None
|
24 |
-
|
25 |
-
def forward(self, x: Tensor, **kwargs) -> Tensor:
|
26 |
-
return self.diffusion(x, **kwargs)
|
27 |
-
|
28 |
-
def sample(self, *args, **kwargs) -> Tensor:
|
29 |
-
return self.diffusion.sample(*args, **kwargs)
|
30 |
-
|
31 |
-
|
32 |
-
"""
|
33 |
-
Audio Diffusion Classes (specific for 1d audio data)
|
34 |
-
"""
|
35 |
-
|
36 |
-
|
37 |
-
def get_default_model_kwargs():
|
38 |
-
return dict(
|
39 |
-
channels=128,
|
40 |
-
patch_size=16,
|
41 |
-
multipliers=[1, 2, 4, 4, 4, 4, 4],
|
42 |
-
factors=[4, 4, 4, 2, 2, 2],
|
43 |
-
num_blocks=[2, 2, 2, 2, 2, 2],
|
44 |
-
attentions=[0, 0, 0, 1, 1, 1, 1],
|
45 |
-
attention_heads=8,
|
46 |
-
attention_features=64,
|
47 |
-
attention_multiplier=2,
|
48 |
-
attention_use_rel_pos=False,
|
49 |
-
diffusion_type="v",
|
50 |
-
diffusion_sigma_distribution=UniformDistribution(),
|
51 |
-
)
|
52 |
-
|
53 |
-
|
54 |
-
def get_default_sampling_kwargs():
|
55 |
-
return dict(sigma_schedule=LinearSchedule(), sampler=VSampler(), clamp=True)
|
56 |
-
|
57 |
-
|
58 |
-
class AudioDiffusionModel(Model1d):
|
59 |
-
def __init__(self, **kwargs):
|
60 |
-
super().__init__(**{**get_default_model_kwargs(), **kwargs})
|
61 |
-
|
62 |
-
def sample(self, *args, **kwargs):
|
63 |
-
return super().sample(*args, **{**get_default_sampling_kwargs(), **kwargs})
|
64 |
-
|
65 |
-
|
66 |
-
class AudioDiffusionConditional(Model1d):
|
67 |
-
def __init__(
|
68 |
-
self,
|
69 |
-
embedding_features: int,
|
70 |
-
embedding_max_length: int,
|
71 |
-
embedding_mask_proba: float = 0.1,
|
72 |
-
**kwargs,
|
73 |
-
):
|
74 |
-
self.embedding_mask_proba = embedding_mask_proba
|
75 |
-
default_kwargs = dict(
|
76 |
-
**get_default_model_kwargs(),
|
77 |
-
unet_type="cfg",
|
78 |
-
context_embedding_features=embedding_features,
|
79 |
-
context_embedding_max_length=embedding_max_length,
|
80 |
-
)
|
81 |
-
super().__init__(**{**default_kwargs, **kwargs})
|
82 |
-
|
83 |
-
def forward(self, *args, **kwargs):
|
84 |
-
default_kwargs = dict(embedding_mask_proba=self.embedding_mask_proba)
|
85 |
-
return super().forward(*args, **{**default_kwargs, **kwargs})
|
86 |
-
|
87 |
-
def sample(self, *args, **kwargs):
|
88 |
-
default_kwargs = dict(
|
89 |
-
**get_default_sampling_kwargs(),
|
90 |
-
embedding_scale=5.0,
|
91 |
-
)
|
92 |
-
return super().sample(*args, **{**default_kwargs, **kwargs})
|
93 |
-
|
94 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Modules/diffusion/modules.py
DELETED
@@ -1,693 +0,0 @@
|
|
1 |
-
from math import floor, log, pi
|
2 |
-
from typing import Any, List, Optional, Sequence, Tuple, Union
|
3 |
-
|
4 |
-
from .utils import *
|
5 |
-
|
6 |
-
import torch
|
7 |
-
import torch.nn as nn
|
8 |
-
from einops import rearrange, reduce, repeat
|
9 |
-
from einops.layers.torch import Rearrange
|
10 |
-
from einops_exts import rearrange_many
|
11 |
-
from torch import Tensor, einsum
|
12 |
-
|
13 |
-
|
14 |
-
"""
|
15 |
-
Utils
|
16 |
-
"""
|
17 |
-
|
18 |
-
class AdaLayerNorm(nn.Module):
|
19 |
-
def __init__(self, style_dim, channels, eps=1e-5):
|
20 |
-
super().__init__()
|
21 |
-
self.channels = channels
|
22 |
-
self.eps = eps
|
23 |
-
|
24 |
-
self.fc = nn.Linear(style_dim, channels*2)
|
25 |
-
|
26 |
-
def forward(self, x, s):
|
27 |
-
x = x.transpose(-1, -2)
|
28 |
-
x = x.transpose(1, -1)
|
29 |
-
|
30 |
-
h = self.fc(s)
|
31 |
-
h = h.view(h.size(0), h.size(1), 1)
|
32 |
-
gamma, beta = torch.chunk(h, chunks=2, dim=1)
|
33 |
-
gamma, beta = gamma.transpose(1, -1), beta.transpose(1, -1)
|
34 |
-
|
35 |
-
|
36 |
-
x = F.layer_norm(x, (self.channels,), eps=self.eps)
|
37 |
-
x = (1 + gamma) * x + beta
|
38 |
-
return x.transpose(1, -1).transpose(-1, -2)
|
39 |
-
|
40 |
-
class StyleTransformer1d(nn.Module):
|
41 |
-
def __init__(
|
42 |
-
self,
|
43 |
-
num_layers: int,
|
44 |
-
channels: int,
|
45 |
-
num_heads: int,
|
46 |
-
head_features: int,
|
47 |
-
multiplier: int,
|
48 |
-
use_context_time: bool = True,
|
49 |
-
use_rel_pos: bool = False,
|
50 |
-
context_features_multiplier: int = 1,
|
51 |
-
rel_pos_num_buckets: Optional[int] = None,
|
52 |
-
rel_pos_max_distance: Optional[int] = None,
|
53 |
-
context_features: Optional[int] = None,
|
54 |
-
context_embedding_features: Optional[int] = None,
|
55 |
-
embedding_max_length: int = 512,
|
56 |
-
):
|
57 |
-
super().__init__()
|
58 |
-
|
59 |
-
self.blocks = nn.ModuleList(
|
60 |
-
[
|
61 |
-
StyleTransformerBlock(
|
62 |
-
features=channels + context_embedding_features,
|
63 |
-
head_features=head_features,
|
64 |
-
num_heads=num_heads,
|
65 |
-
multiplier=multiplier,
|
66 |
-
style_dim=context_features,
|
67 |
-
use_rel_pos=use_rel_pos,
|
68 |
-
rel_pos_num_buckets=rel_pos_num_buckets,
|
69 |
-
rel_pos_max_distance=rel_pos_max_distance,
|
70 |
-
)
|
71 |
-
for i in range(num_layers)
|
72 |
-
]
|
73 |
-
)
|
74 |
-
|
75 |
-
self.to_out = nn.Sequential(
|
76 |
-
Rearrange("b t c -> b c t"),
|
77 |
-
nn.Conv1d(
|
78 |
-
in_channels=channels + context_embedding_features,
|
79 |
-
out_channels=channels,
|
80 |
-
kernel_size=1,
|
81 |
-
),
|
82 |
-
)
|
83 |
-
|
84 |
-
use_context_features = exists(context_features)
|
85 |
-
self.use_context_features = use_context_features
|
86 |
-
self.use_context_time = use_context_time
|
87 |
-
|
88 |
-
if use_context_time or use_context_features:
|
89 |
-
context_mapping_features = channels + context_embedding_features
|
90 |
-
|
91 |
-
self.to_mapping = nn.Sequential(
|
92 |
-
nn.Linear(context_mapping_features, context_mapping_features),
|
93 |
-
nn.GELU(),
|
94 |
-
nn.Linear(context_mapping_features, context_mapping_features),
|
95 |
-
nn.GELU(),
|
96 |
-
)
|
97 |
-
|
98 |
-
if use_context_time:
|
99 |
-
assert exists(context_mapping_features)
|
100 |
-
self.to_time = nn.Sequential(
|
101 |
-
TimePositionalEmbedding(
|
102 |
-
dim=channels, out_features=context_mapping_features
|
103 |
-
),
|
104 |
-
nn.GELU(),
|
105 |
-
)
|
106 |
-
|
107 |
-
if use_context_features:
|
108 |
-
assert exists(context_features) and exists(context_mapping_features)
|
109 |
-
self.to_features = nn.Sequential(
|
110 |
-
nn.Linear(
|
111 |
-
in_features=context_features, out_features=context_mapping_features
|
112 |
-
),
|
113 |
-
nn.GELU(),
|
114 |
-
)
|
115 |
-
|
116 |
-
self.fixed_embedding = FixedEmbedding(
|
117 |
-
max_length=embedding_max_length, features=context_embedding_features
|
118 |
-
)
|
119 |
-
|
120 |
-
|
121 |
-
def get_mapping(
|
122 |
-
self, time: Optional[Tensor] = None, features: Optional[Tensor] = None
|
123 |
-
) -> Optional[Tensor]:
|
124 |
-
"""Combines context time features and features into mapping"""
|
125 |
-
items, mapping = [], None
|
126 |
-
# Compute time features
|
127 |
-
if self.use_context_time:
|
128 |
-
assert_message = "use_context_time=True but no time features provided"
|
129 |
-
assert exists(time), assert_message
|
130 |
-
items += [self.to_time(time)]
|
131 |
-
# Compute features
|
132 |
-
if self.use_context_features:
|
133 |
-
assert_message = "context_features exists but no features provided"
|
134 |
-
assert exists(features), assert_message
|
135 |
-
items += [self.to_features(features)]
|
136 |
-
|
137 |
-
# Compute joint mapping
|
138 |
-
if self.use_context_time or self.use_context_features:
|
139 |
-
mapping = reduce(torch.stack(items), "n b m -> b m", "sum")
|
140 |
-
mapping = self.to_mapping(mapping)
|
141 |
-
|
142 |
-
return mapping
|
143 |
-
|
144 |
-
def run(self, x, time, embedding, features):
|
145 |
-
|
146 |
-
mapping = self.get_mapping(time, features)
|
147 |
-
x = torch.cat([x.expand(-1, embedding.size(1), -1), embedding], axis=-1)
|
148 |
-
mapping = mapping.unsqueeze(1).expand(-1, embedding.size(1), -1)
|
149 |
-
|
150 |
-
for block in self.blocks:
|
151 |
-
x = x + mapping
|
152 |
-
x = block(x, features)
|
153 |
-
|
154 |
-
x = x.mean(axis=1).unsqueeze(1)
|
155 |
-
x = self.to_out(x)
|
156 |
-
x = x.transpose(-1, -2)
|
157 |
-
|
158 |
-
return x
|
159 |
-
|
160 |
-
def forward(self, x: Tensor,
|
161 |
-
time: Tensor,
|
162 |
-
embedding_mask_proba: float = 0.0,
|
163 |
-
embedding: Optional[Tensor] = None,
|
164 |
-
features: Optional[Tensor] = None,
|
165 |
-
embedding_scale: float = 1.0) -> Tensor:
|
166 |
-
|
167 |
-
b, device = embedding.shape[0], embedding.device
|
168 |
-
fixed_embedding = self.fixed_embedding(embedding)
|
169 |
-
if embedding_mask_proba > 0.0:
|
170 |
-
# Randomly mask embedding
|
171 |
-
batch_mask = rand_bool(
|
172 |
-
shape=(b, 1, 1), proba=embedding_mask_proba, device=device
|
173 |
-
)
|
174 |
-
embedding = torch.where(batch_mask, fixed_embedding, embedding)
|
175 |
-
|
176 |
-
if embedding_scale != 1.0:
|
177 |
-
# Compute both normal and fixed embedding outputs
|
178 |
-
out = self.run(x, time, embedding=embedding, features=features)
|
179 |
-
out_masked = self.run(x, time, embedding=fixed_embedding, features=features)
|
180 |
-
# Scale conditional output using classifier-free guidance
|
181 |
-
return out_masked + (out - out_masked) * embedding_scale
|
182 |
-
else:
|
183 |
-
return self.run(x, time, embedding=embedding, features=features)
|
184 |
-
|
185 |
-
return x
|
186 |
-
|
187 |
-
|
188 |
-
class StyleTransformerBlock(nn.Module):
|
189 |
-
def __init__(
|
190 |
-
self,
|
191 |
-
features: int,
|
192 |
-
num_heads: int,
|
193 |
-
head_features: int,
|
194 |
-
style_dim: int,
|
195 |
-
multiplier: int,
|
196 |
-
use_rel_pos: bool,
|
197 |
-
rel_pos_num_buckets: Optional[int] = None,
|
198 |
-
rel_pos_max_distance: Optional[int] = None,
|
199 |
-
context_features: Optional[int] = None,
|
200 |
-
):
|
201 |
-
super().__init__()
|
202 |
-
|
203 |
-
self.use_cross_attention = exists(context_features) and context_features > 0
|
204 |
-
|
205 |
-
self.attention = StyleAttention(
|
206 |
-
features=features,
|
207 |
-
style_dim=style_dim,
|
208 |
-
num_heads=num_heads,
|
209 |
-
head_features=head_features,
|
210 |
-
use_rel_pos=use_rel_pos,
|
211 |
-
rel_pos_num_buckets=rel_pos_num_buckets,
|
212 |
-
rel_pos_max_distance=rel_pos_max_distance,
|
213 |
-
)
|
214 |
-
|
215 |
-
if self.use_cross_attention:
|
216 |
-
self.cross_attention = StyleAttention(
|
217 |
-
features=features,
|
218 |
-
style_dim=style_dim,
|
219 |
-
num_heads=num_heads,
|
220 |
-
head_features=head_features,
|
221 |
-
context_features=context_features,
|
222 |
-
use_rel_pos=use_rel_pos,
|
223 |
-
rel_pos_num_buckets=rel_pos_num_buckets,
|
224 |
-
rel_pos_max_distance=rel_pos_max_distance,
|
225 |
-
)
|
226 |
-
|
227 |
-
self.feed_forward = FeedForward(features=features, multiplier=multiplier)
|
228 |
-
|
229 |
-
def forward(self, x: Tensor, s: Tensor, *, context: Optional[Tensor] = None) -> Tensor:
|
230 |
-
x = self.attention(x, s) + x
|
231 |
-
if self.use_cross_attention:
|
232 |
-
x = self.cross_attention(x, s, context=context) + x
|
233 |
-
x = self.feed_forward(x) + x
|
234 |
-
return x
|
235 |
-
|
236 |
-
class StyleAttention(nn.Module):
|
237 |
-
def __init__(
|
238 |
-
self,
|
239 |
-
features: int,
|
240 |
-
*,
|
241 |
-
style_dim: int,
|
242 |
-
head_features: int,
|
243 |
-
num_heads: int,
|
244 |
-
context_features: Optional[int] = None,
|
245 |
-
use_rel_pos: bool,
|
246 |
-
rel_pos_num_buckets: Optional[int] = None,
|
247 |
-
rel_pos_max_distance: Optional[int] = None,
|
248 |
-
):
|
249 |
-
super().__init__()
|
250 |
-
self.context_features = context_features
|
251 |
-
mid_features = head_features * num_heads
|
252 |
-
context_features = default(context_features, features)
|
253 |
-
|
254 |
-
self.norm = AdaLayerNorm(style_dim, features)
|
255 |
-
self.norm_context = AdaLayerNorm(style_dim, context_features)
|
256 |
-
self.to_q = nn.Linear(
|
257 |
-
in_features=features, out_features=mid_features, bias=False
|
258 |
-
)
|
259 |
-
self.to_kv = nn.Linear(
|
260 |
-
in_features=context_features, out_features=mid_features * 2, bias=False
|
261 |
-
)
|
262 |
-
self.attention = AttentionBase(
|
263 |
-
features,
|
264 |
-
num_heads=num_heads,
|
265 |
-
head_features=head_features,
|
266 |
-
use_rel_pos=use_rel_pos,
|
267 |
-
rel_pos_num_buckets=rel_pos_num_buckets,
|
268 |
-
rel_pos_max_distance=rel_pos_max_distance,
|
269 |
-
)
|
270 |
-
|
271 |
-
def forward(self, x: Tensor, s: Tensor, *, context: Optional[Tensor] = None) -> Tensor:
|
272 |
-
assert_message = "You must provide a context when using context_features"
|
273 |
-
assert not self.context_features or exists(context), assert_message
|
274 |
-
# Use context if provided
|
275 |
-
context = default(context, x)
|
276 |
-
# Normalize then compute q from input and k,v from context
|
277 |
-
x, context = self.norm(x, s), self.norm_context(context, s)
|
278 |
-
|
279 |
-
q, k, v = (self.to_q(x), *torch.chunk(self.to_kv(context), chunks=2, dim=-1))
|
280 |
-
# Compute and return attention
|
281 |
-
return self.attention(q, k, v)
|
282 |
-
|
283 |
-
class Transformer1d(nn.Module):
|
284 |
-
def __init__(
|
285 |
-
self,
|
286 |
-
num_layers: int,
|
287 |
-
channels: int,
|
288 |
-
num_heads: int,
|
289 |
-
head_features: int,
|
290 |
-
multiplier: int,
|
291 |
-
use_context_time: bool = True,
|
292 |
-
use_rel_pos: bool = False,
|
293 |
-
context_features_multiplier: int = 1,
|
294 |
-
rel_pos_num_buckets: Optional[int] = None,
|
295 |
-
rel_pos_max_distance: Optional[int] = None,
|
296 |
-
context_features: Optional[int] = None,
|
297 |
-
context_embedding_features: Optional[int] = None,
|
298 |
-
embedding_max_length: int = 512,
|
299 |
-
):
|
300 |
-
super().__init__()
|
301 |
-
|
302 |
-
self.blocks = nn.ModuleList(
|
303 |
-
[
|
304 |
-
TransformerBlock(
|
305 |
-
features=channels + context_embedding_features,
|
306 |
-
head_features=head_features,
|
307 |
-
num_heads=num_heads,
|
308 |
-
multiplier=multiplier,
|
309 |
-
use_rel_pos=use_rel_pos,
|
310 |
-
rel_pos_num_buckets=rel_pos_num_buckets,
|
311 |
-
rel_pos_max_distance=rel_pos_max_distance,
|
312 |
-
)
|
313 |
-
for i in range(num_layers)
|
314 |
-
]
|
315 |
-
)
|
316 |
-
|
317 |
-
self.to_out = nn.Sequential(
|
318 |
-
Rearrange("b t c -> b c t"),
|
319 |
-
nn.Conv1d(
|
320 |
-
in_channels=channels + context_embedding_features,
|
321 |
-
out_channels=channels,
|
322 |
-
kernel_size=1,
|
323 |
-
),
|
324 |
-
)
|
325 |
-
|
326 |
-
use_context_features = exists(context_features)
|
327 |
-
self.use_context_features = use_context_features
|
328 |
-
self.use_context_time = use_context_time
|
329 |
-
|
330 |
-
if use_context_time or use_context_features:
|
331 |
-
context_mapping_features = channels + context_embedding_features
|
332 |
-
|
333 |
-
self.to_mapping = nn.Sequential(
|
334 |
-
nn.Linear(context_mapping_features, context_mapping_features),
|
335 |
-
nn.GELU(),
|
336 |
-
nn.Linear(context_mapping_features, context_mapping_features),
|
337 |
-
nn.GELU(),
|
338 |
-
)
|
339 |
-
|
340 |
-
if use_context_time:
|
341 |
-
assert exists(context_mapping_features)
|
342 |
-
self.to_time = nn.Sequential(
|
343 |
-
TimePositionalEmbedding(
|
344 |
-
dim=channels, out_features=context_mapping_features
|
345 |
-
),
|
346 |
-
nn.GELU(),
|
347 |
-
)
|
348 |
-
|
349 |
-
if use_context_features:
|
350 |
-
assert exists(context_features) and exists(context_mapping_features)
|
351 |
-
self.to_features = nn.Sequential(
|
352 |
-
nn.Linear(
|
353 |
-
in_features=context_features, out_features=context_mapping_features
|
354 |
-
),
|
355 |
-
nn.GELU(),
|
356 |
-
)
|
357 |
-
|
358 |
-
self.fixed_embedding = FixedEmbedding(
|
359 |
-
max_length=embedding_max_length, features=context_embedding_features
|
360 |
-
)
|
361 |
-
|
362 |
-
|
363 |
-
def get_mapping(
|
364 |
-
self, time: Optional[Tensor] = None, features: Optional[Tensor] = None
|
365 |
-
) -> Optional[Tensor]:
|
366 |
-
"""Combines context time features and features into mapping"""
|
367 |
-
items, mapping = [], None
|
368 |
-
# Compute time features
|
369 |
-
if self.use_context_time:
|
370 |
-
assert_message = "use_context_time=True but no time features provided"
|
371 |
-
assert exists(time), assert_message
|
372 |
-
items += [self.to_time(time)]
|
373 |
-
# Compute features
|
374 |
-
if self.use_context_features:
|
375 |
-
assert_message = "context_features exists but no features provided"
|
376 |
-
assert exists(features), assert_message
|
377 |
-
items += [self.to_features(features)]
|
378 |
-
|
379 |
-
# Compute joint mapping
|
380 |
-
if self.use_context_time or self.use_context_features:
|
381 |
-
mapping = reduce(torch.stack(items), "n b m -> b m", "sum")
|
382 |
-
mapping = self.to_mapping(mapping)
|
383 |
-
|
384 |
-
return mapping
|
385 |
-
|
386 |
-
def run(self, x, time, embedding, features):
|
387 |
-
|
388 |
-
mapping = self.get_mapping(time, features)
|
389 |
-
x = torch.cat([x.expand(-1, embedding.size(1), -1), embedding], axis=-1)
|
390 |
-
mapping = mapping.unsqueeze(1).expand(-1, embedding.size(1), -1)
|
391 |
-
|
392 |
-
for block in self.blocks:
|
393 |
-
x = x + mapping
|
394 |
-
x = block(x)
|
395 |
-
|
396 |
-
x = x.mean(axis=1).unsqueeze(1)
|
397 |
-
x = self.to_out(x)
|
398 |
-
x = x.transpose(-1, -2)
|
399 |
-
|
400 |
-
return x
|
401 |
-
|
402 |
-
def forward(self, x: Tensor,
|
403 |
-
time: Tensor,
|
404 |
-
embedding_mask_proba: float = 0.0,
|
405 |
-
embedding: Optional[Tensor] = None,
|
406 |
-
features: Optional[Tensor] = None,
|
407 |
-
embedding_scale: float = 1.0) -> Tensor:
|
408 |
-
|
409 |
-
b, device = embedding.shape[0], embedding.device
|
410 |
-
fixed_embedding = self.fixed_embedding(embedding)
|
411 |
-
if embedding_mask_proba > 0.0:
|
412 |
-
# Randomly mask embedding
|
413 |
-
batch_mask = rand_bool(
|
414 |
-
shape=(b, 1, 1), proba=embedding_mask_proba, device=device
|
415 |
-
)
|
416 |
-
embedding = torch.where(batch_mask, fixed_embedding, embedding)
|
417 |
-
|
418 |
-
if embedding_scale != 1.0:
|
419 |
-
# Compute both normal and fixed embedding outputs
|
420 |
-
out = self.run(x, time, embedding=embedding, features=features)
|
421 |
-
out_masked = self.run(x, time, embedding=fixed_embedding, features=features)
|
422 |
-
# Scale conditional output using classifier-free guidance
|
423 |
-
return out_masked + (out - out_masked) * embedding_scale
|
424 |
-
else:
|
425 |
-
return self.run(x, time, embedding=embedding, features=features)
|
426 |
-
|
427 |
-
return x
|
428 |
-
|
429 |
-
|
430 |
-
"""
|
431 |
-
Attention Components
|
432 |
-
"""
|
433 |
-
|
434 |
-
|
435 |
-
class RelativePositionBias(nn.Module):
|
436 |
-
def __init__(self, num_buckets: int, max_distance: int, num_heads: int):
|
437 |
-
super().__init__()
|
438 |
-
self.num_buckets = num_buckets
|
439 |
-
self.max_distance = max_distance
|
440 |
-
self.num_heads = num_heads
|
441 |
-
self.relative_attention_bias = nn.Embedding(num_buckets, num_heads)
|
442 |
-
|
443 |
-
@staticmethod
|
444 |
-
def _relative_position_bucket(
|
445 |
-
relative_position: Tensor, num_buckets: int, max_distance: int
|
446 |
-
):
|
447 |
-
num_buckets //= 2
|
448 |
-
ret = (relative_position >= 0).to(torch.long) * num_buckets
|
449 |
-
n = torch.abs(relative_position)
|
450 |
-
|
451 |
-
max_exact = num_buckets // 2
|
452 |
-
is_small = n < max_exact
|
453 |
-
|
454 |
-
val_if_large = (
|
455 |
-
max_exact
|
456 |
-
+ (
|
457 |
-
torch.log(n.float() / max_exact)
|
458 |
-
/ log(max_distance / max_exact)
|
459 |
-
* (num_buckets - max_exact)
|
460 |
-
).long()
|
461 |
-
)
|
462 |
-
val_if_large = torch.min(
|
463 |
-
val_if_large, torch.full_like(val_if_large, num_buckets - 1)
|
464 |
-
)
|
465 |
-
|
466 |
-
ret += torch.where(is_small, n, val_if_large)
|
467 |
-
return ret
|
468 |
-
|
469 |
-
def forward(self, num_queries: int, num_keys: int) -> Tensor:
|
470 |
-
i, j, device = num_queries, num_keys, self.relative_attention_bias.weight.device
|
471 |
-
q_pos = torch.arange(j - i, j, dtype=torch.long, device=device)
|
472 |
-
k_pos = torch.arange(j, dtype=torch.long, device=device)
|
473 |
-
rel_pos = rearrange(k_pos, "j -> 1 j") - rearrange(q_pos, "i -> i 1")
|
474 |
-
|
475 |
-
relative_position_bucket = self._relative_position_bucket(
|
476 |
-
rel_pos, num_buckets=self.num_buckets, max_distance=self.max_distance
|
477 |
-
)
|
478 |
-
|
479 |
-
bias = self.relative_attention_bias(relative_position_bucket)
|
480 |
-
bias = rearrange(bias, "m n h -> 1 h m n")
|
481 |
-
return bias
|
482 |
-
|
483 |
-
|
484 |
-
def FeedForward(features: int, multiplier: int) -> nn.Module:
|
485 |
-
mid_features = features * multiplier
|
486 |
-
return nn.Sequential(
|
487 |
-
nn.Linear(in_features=features, out_features=mid_features),
|
488 |
-
nn.GELU(),
|
489 |
-
nn.Linear(in_features=mid_features, out_features=features),
|
490 |
-
)
|
491 |
-
|
492 |
-
|
493 |
-
class AttentionBase(nn.Module):
|
494 |
-
def __init__(
|
495 |
-
self,
|
496 |
-
features: int,
|
497 |
-
*,
|
498 |
-
head_features: int,
|
499 |
-
num_heads: int,
|
500 |
-
use_rel_pos: bool,
|
501 |
-
out_features: Optional[int] = None,
|
502 |
-
rel_pos_num_buckets: Optional[int] = None,
|
503 |
-
rel_pos_max_distance: Optional[int] = None,
|
504 |
-
):
|
505 |
-
super().__init__()
|
506 |
-
self.scale = head_features ** -0.5
|
507 |
-
self.num_heads = num_heads
|
508 |
-
self.use_rel_pos = use_rel_pos
|
509 |
-
mid_features = head_features * num_heads
|
510 |
-
|
511 |
-
if use_rel_pos:
|
512 |
-
assert exists(rel_pos_num_buckets) and exists(rel_pos_max_distance)
|
513 |
-
self.rel_pos = RelativePositionBias(
|
514 |
-
num_buckets=rel_pos_num_buckets,
|
515 |
-
max_distance=rel_pos_max_distance,
|
516 |
-
num_heads=num_heads,
|
517 |
-
)
|
518 |
-
if out_features is None:
|
519 |
-
out_features = features
|
520 |
-
|
521 |
-
self.to_out = nn.Linear(in_features=mid_features, out_features=out_features)
|
522 |
-
|
523 |
-
def forward(self, q: Tensor, k: Tensor, v: Tensor) -> Tensor:
|
524 |
-
# Split heads
|
525 |
-
q, k, v = rearrange_many((q, k, v), "b n (h d) -> b h n d", h=self.num_heads)
|
526 |
-
# Compute similarity matrix
|
527 |
-
sim = einsum("... n d, ... m d -> ... n m", q, k)
|
528 |
-
sim = (sim + self.rel_pos(*sim.shape[-2:])) if self.use_rel_pos else sim
|
529 |
-
sim = sim * self.scale
|
530 |
-
# Get attention matrix with softmax
|
531 |
-
attn = sim.softmax(dim=-1)
|
532 |
-
# Compute values
|
533 |
-
out = einsum("... n m, ... m d -> ... n d", attn, v)
|
534 |
-
out = rearrange(out, "b h n d -> b n (h d)")
|
535 |
-
return self.to_out(out)
|
536 |
-
|
537 |
-
|
538 |
-
class Attention(nn.Module):
|
539 |
-
def __init__(
|
540 |
-
self,
|
541 |
-
features: int,
|
542 |
-
*,
|
543 |
-
head_features: int,
|
544 |
-
num_heads: int,
|
545 |
-
out_features: Optional[int] = None,
|
546 |
-
context_features: Optional[int] = None,
|
547 |
-
use_rel_pos: bool,
|
548 |
-
rel_pos_num_buckets: Optional[int] = None,
|
549 |
-
rel_pos_max_distance: Optional[int] = None,
|
550 |
-
):
|
551 |
-
super().__init__()
|
552 |
-
self.context_features = context_features
|
553 |
-
mid_features = head_features * num_heads
|
554 |
-
context_features = default(context_features, features)
|
555 |
-
|
556 |
-
self.norm = nn.LayerNorm(features)
|
557 |
-
self.norm_context = nn.LayerNorm(context_features)
|
558 |
-
self.to_q = nn.Linear(
|
559 |
-
in_features=features, out_features=mid_features, bias=False
|
560 |
-
)
|
561 |
-
self.to_kv = nn.Linear(
|
562 |
-
in_features=context_features, out_features=mid_features * 2, bias=False
|
563 |
-
)
|
564 |
-
|
565 |
-
self.attention = AttentionBase(
|
566 |
-
features,
|
567 |
-
out_features=out_features,
|
568 |
-
num_heads=num_heads,
|
569 |
-
head_features=head_features,
|
570 |
-
use_rel_pos=use_rel_pos,
|
571 |
-
rel_pos_num_buckets=rel_pos_num_buckets,
|
572 |
-
rel_pos_max_distance=rel_pos_max_distance,
|
573 |
-
)
|
574 |
-
|
575 |
-
def forward(self, x: Tensor, *, context: Optional[Tensor] = None) -> Tensor:
|
576 |
-
assert_message = "You must provide a context when using context_features"
|
577 |
-
assert not self.context_features or exists(context), assert_message
|
578 |
-
# Use context if provided
|
579 |
-
context = default(context, x)
|
580 |
-
# Normalize then compute q from input and k,v from context
|
581 |
-
x, context = self.norm(x), self.norm_context(context)
|
582 |
-
q, k, v = (self.to_q(x), *torch.chunk(self.to_kv(context), chunks=2, dim=-1))
|
583 |
-
# Compute and return attention
|
584 |
-
return self.attention(q, k, v)
|
585 |
-
|
586 |
-
|
587 |
-
"""
|
588 |
-
Transformer Blocks
|
589 |
-
"""
|
590 |
-
|
591 |
-
|
592 |
-
class TransformerBlock(nn.Module):
|
593 |
-
def __init__(
|
594 |
-
self,
|
595 |
-
features: int,
|
596 |
-
num_heads: int,
|
597 |
-
head_features: int,
|
598 |
-
multiplier: int,
|
599 |
-
use_rel_pos: bool,
|
600 |
-
rel_pos_num_buckets: Optional[int] = None,
|
601 |
-
rel_pos_max_distance: Optional[int] = None,
|
602 |
-
context_features: Optional[int] = None,
|
603 |
-
):
|
604 |
-
super().__init__()
|
605 |
-
|
606 |
-
self.use_cross_attention = exists(context_features) and context_features > 0
|
607 |
-
|
608 |
-
self.attention = Attention(
|
609 |
-
features=features,
|
610 |
-
num_heads=num_heads,
|
611 |
-
head_features=head_features,
|
612 |
-
use_rel_pos=use_rel_pos,
|
613 |
-
rel_pos_num_buckets=rel_pos_num_buckets,
|
614 |
-
rel_pos_max_distance=rel_pos_max_distance,
|
615 |
-
)
|
616 |
-
|
617 |
-
if self.use_cross_attention:
|
618 |
-
self.cross_attention = Attention(
|
619 |
-
features=features,
|
620 |
-
num_heads=num_heads,
|
621 |
-
head_features=head_features,
|
622 |
-
context_features=context_features,
|
623 |
-
use_rel_pos=use_rel_pos,
|
624 |
-
rel_pos_num_buckets=rel_pos_num_buckets,
|
625 |
-
rel_pos_max_distance=rel_pos_max_distance,
|
626 |
-
)
|
627 |
-
|
628 |
-
self.feed_forward = FeedForward(features=features, multiplier=multiplier)
|
629 |
-
|
630 |
-
def forward(self, x: Tensor, *, context: Optional[Tensor] = None) -> Tensor:
|
631 |
-
x = self.attention(x) + x
|
632 |
-
if self.use_cross_attention:
|
633 |
-
x = self.cross_attention(x, context=context) + x
|
634 |
-
x = self.feed_forward(x) + x
|
635 |
-
return x
|
636 |
-
|
637 |
-
|
638 |
-
|
639 |
-
"""
|
640 |
-
Time Embeddings
|
641 |
-
"""
|
642 |
-
|
643 |
-
|
644 |
-
class SinusoidalEmbedding(nn.Module):
|
645 |
-
def __init__(self, dim: int):
|
646 |
-
super().__init__()
|
647 |
-
self.dim = dim
|
648 |
-
|
649 |
-
def forward(self, x: Tensor) -> Tensor:
|
650 |
-
device, half_dim = x.device, self.dim // 2
|
651 |
-
emb = torch.tensor(log(10000) / (half_dim - 1), device=device)
|
652 |
-
emb = torch.exp(torch.arange(half_dim, device=device) * -emb)
|
653 |
-
emb = rearrange(x, "i -> i 1") * rearrange(emb, "j -> 1 j")
|
654 |
-
return torch.cat((emb.sin(), emb.cos()), dim=-1)
|
655 |
-
|
656 |
-
|
657 |
-
class LearnedPositionalEmbedding(nn.Module):
|
658 |
-
"""Used for continuous time"""
|
659 |
-
|
660 |
-
def __init__(self, dim: int):
|
661 |
-
super().__init__()
|
662 |
-
assert (dim % 2) == 0
|
663 |
-
half_dim = dim // 2
|
664 |
-
self.weights = nn.Parameter(torch.randn(half_dim))
|
665 |
-
|
666 |
-
def forward(self, x: Tensor) -> Tensor:
|
667 |
-
x = rearrange(x, "b -> b 1")
|
668 |
-
freqs = x * rearrange(self.weights, "d -> 1 d") * 2 * pi
|
669 |
-
fouriered = torch.cat((freqs.sin(), freqs.cos()), dim=-1)
|
670 |
-
fouriered = torch.cat((x, fouriered), dim=-1)
|
671 |
-
return fouriered
|
672 |
-
|
673 |
-
|
674 |
-
def TimePositionalEmbedding(dim: int, out_features: int) -> nn.Module:
|
675 |
-
return nn.Sequential(
|
676 |
-
LearnedPositionalEmbedding(dim),
|
677 |
-
nn.Linear(in_features=dim + 1, out_features=out_features),
|
678 |
-
)
|
679 |
-
|
680 |
-
class FixedEmbedding(nn.Module):
|
681 |
-
def __init__(self, max_length: int, features: int):
|
682 |
-
super().__init__()
|
683 |
-
self.max_length = max_length
|
684 |
-
self.embedding = nn.Embedding(max_length, features)
|
685 |
-
|
686 |
-
def forward(self, x: Tensor) -> Tensor:
|
687 |
-
batch_size, length, device = *x.shape[0:2], x.device
|
688 |
-
assert_message = "Input sequence length must be <= max_length"
|
689 |
-
assert length <= self.max_length, assert_message
|
690 |
-
position = torch.arange(length, device=device)
|
691 |
-
fixed_embedding = self.embedding(position)
|
692 |
-
fixed_embedding = repeat(fixed_embedding, "n d -> b n d", b=batch_size)
|
693 |
-
return fixed_embedding
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Modules/diffusion/sampler.py
DELETED
@@ -1,691 +0,0 @@
|
|
1 |
-
from math import atan, cos, pi, sin, sqrt
|
2 |
-
from typing import Any, Callable, List, Optional, Tuple, Type
|
3 |
-
|
4 |
-
import torch
|
5 |
-
import torch.nn as nn
|
6 |
-
import torch.nn.functional as F
|
7 |
-
from einops import rearrange, reduce
|
8 |
-
from torch import Tensor
|
9 |
-
|
10 |
-
from .utils import *
|
11 |
-
|
12 |
-
"""
|
13 |
-
Diffusion Training
|
14 |
-
"""
|
15 |
-
|
16 |
-
""" Distributions """
|
17 |
-
|
18 |
-
|
19 |
-
class Distribution:
|
20 |
-
def __call__(self, num_samples: int, device: torch.device):
|
21 |
-
raise NotImplementedError()
|
22 |
-
|
23 |
-
|
24 |
-
class LogNormalDistribution(Distribution):
|
25 |
-
def __init__(self, mean: float, std: float):
|
26 |
-
self.mean = mean
|
27 |
-
self.std = std
|
28 |
-
|
29 |
-
def __call__(
|
30 |
-
self, num_samples: int, device: torch.device = torch.device("cpu")
|
31 |
-
) -> Tensor:
|
32 |
-
normal = self.mean + self.std * torch.randn((num_samples,), device=device)
|
33 |
-
return normal.exp()
|
34 |
-
|
35 |
-
|
36 |
-
class UniformDistribution(Distribution):
|
37 |
-
def __call__(self, num_samples: int, device: torch.device = torch.device("cpu")):
|
38 |
-
return torch.rand(num_samples, device=device)
|
39 |
-
|
40 |
-
|
41 |
-
class VKDistribution(Distribution):
|
42 |
-
def __init__(
|
43 |
-
self,
|
44 |
-
min_value: float = 0.0,
|
45 |
-
max_value: float = float("inf"),
|
46 |
-
sigma_data: float = 1.0,
|
47 |
-
):
|
48 |
-
self.min_value = min_value
|
49 |
-
self.max_value = max_value
|
50 |
-
self.sigma_data = sigma_data
|
51 |
-
|
52 |
-
def __call__(
|
53 |
-
self, num_samples: int, device: torch.device = torch.device("cpu")
|
54 |
-
) -> Tensor:
|
55 |
-
sigma_data = self.sigma_data
|
56 |
-
min_cdf = atan(self.min_value / sigma_data) * 2 / pi
|
57 |
-
max_cdf = atan(self.max_value / sigma_data) * 2 / pi
|
58 |
-
u = (max_cdf - min_cdf) * torch.randn((num_samples,), device=device) + min_cdf
|
59 |
-
return torch.tan(u * pi / 2) * sigma_data
|
60 |
-
|
61 |
-
|
62 |
-
""" Diffusion Classes """
|
63 |
-
|
64 |
-
|
65 |
-
def pad_dims(x: Tensor, ndim: int) -> Tensor:
|
66 |
-
# Pads additional ndims to the right of the tensor
|
67 |
-
return x.view(*x.shape, *((1,) * ndim))
|
68 |
-
|
69 |
-
|
70 |
-
def clip(x: Tensor, dynamic_threshold: float = 0.0):
|
71 |
-
if dynamic_threshold == 0.0:
|
72 |
-
return x.clamp(-1.0, 1.0)
|
73 |
-
else:
|
74 |
-
# Dynamic thresholding
|
75 |
-
# Find dynamic threshold quantile for each batch
|
76 |
-
x_flat = rearrange(x, "b ... -> b (...)")
|
77 |
-
scale = torch.quantile(x_flat.abs(), dynamic_threshold, dim=-1)
|
78 |
-
# Clamp to a min of 1.0
|
79 |
-
scale.clamp_(min=1.0)
|
80 |
-
# Clamp all values and scale
|
81 |
-
scale = pad_dims(scale, ndim=x.ndim - scale.ndim)
|
82 |
-
x = x.clamp(-scale, scale) / scale
|
83 |
-
return x
|
84 |
-
|
85 |
-
|
86 |
-
def to_batch(
|
87 |
-
batch_size: int,
|
88 |
-
device: torch.device,
|
89 |
-
x: Optional[float] = None,
|
90 |
-
xs: Optional[Tensor] = None,
|
91 |
-
) -> Tensor:
|
92 |
-
assert exists(x) ^ exists(xs), "Either x or xs must be provided"
|
93 |
-
# If x provided use the same for all batch items
|
94 |
-
if exists(x):
|
95 |
-
xs = torch.full(size=(batch_size,), fill_value=x).to(device)
|
96 |
-
assert exists(xs)
|
97 |
-
return xs
|
98 |
-
|
99 |
-
|
100 |
-
class Diffusion(nn.Module):
|
101 |
-
|
102 |
-
alias: str = ""
|
103 |
-
|
104 |
-
"""Base diffusion class"""
|
105 |
-
|
106 |
-
def denoise_fn(
|
107 |
-
self,
|
108 |
-
x_noisy: Tensor,
|
109 |
-
sigmas: Optional[Tensor] = None,
|
110 |
-
sigma: Optional[float] = None,
|
111 |
-
**kwargs,
|
112 |
-
) -> Tensor:
|
113 |
-
raise NotImplementedError("Diffusion class missing denoise_fn")
|
114 |
-
|
115 |
-
def forward(self, x: Tensor, noise: Tensor = None, **kwargs) -> Tensor:
|
116 |
-
raise NotImplementedError("Diffusion class missing forward function")
|
117 |
-
|
118 |
-
|
119 |
-
class VDiffusion(Diffusion):
|
120 |
-
|
121 |
-
alias = "v"
|
122 |
-
|
123 |
-
def __init__(self, net: nn.Module, *, sigma_distribution: Distribution):
|
124 |
-
super().__init__()
|
125 |
-
self.net = net
|
126 |
-
self.sigma_distribution = sigma_distribution
|
127 |
-
|
128 |
-
def get_alpha_beta(self, sigmas: Tensor) -> Tuple[Tensor, Tensor]:
|
129 |
-
angle = sigmas * pi / 2
|
130 |
-
alpha = torch.cos(angle)
|
131 |
-
beta = torch.sin(angle)
|
132 |
-
return alpha, beta
|
133 |
-
|
134 |
-
def denoise_fn(
|
135 |
-
self,
|
136 |
-
x_noisy: Tensor,
|
137 |
-
sigmas: Optional[Tensor] = None,
|
138 |
-
sigma: Optional[float] = None,
|
139 |
-
**kwargs,
|
140 |
-
) -> Tensor:
|
141 |
-
batch_size, device = x_noisy.shape[0], x_noisy.device
|
142 |
-
sigmas = to_batch(x=sigma, xs=sigmas, batch_size=batch_size, device=device)
|
143 |
-
return self.net(x_noisy, sigmas, **kwargs)
|
144 |
-
|
145 |
-
def forward(self, x: Tensor, noise: Tensor = None, **kwargs) -> Tensor:
|
146 |
-
batch_size, device = x.shape[0], x.device
|
147 |
-
|
148 |
-
# Sample amount of noise to add for each batch element
|
149 |
-
sigmas = self.sigma_distribution(num_samples=batch_size, device=device)
|
150 |
-
sigmas_padded = rearrange(sigmas, "b -> b 1 1")
|
151 |
-
|
152 |
-
# Get noise
|
153 |
-
noise = default(noise, lambda: torch.randn_like(x))
|
154 |
-
|
155 |
-
# Combine input and noise weighted by half-circle
|
156 |
-
alpha, beta = self.get_alpha_beta(sigmas_padded)
|
157 |
-
x_noisy = x * alpha + noise * beta
|
158 |
-
x_target = noise * alpha - x * beta
|
159 |
-
|
160 |
-
# Denoise and return loss
|
161 |
-
x_denoised = self.denoise_fn(x_noisy, sigmas, **kwargs)
|
162 |
-
return F.mse_loss(x_denoised, x_target)
|
163 |
-
|
164 |
-
|
165 |
-
class KDiffusion(Diffusion):
|
166 |
-
"""Elucidated Diffusion (Karras et al. 2022): https://arxiv.org/abs/2206.00364"""
|
167 |
-
|
168 |
-
alias = "k"
|
169 |
-
|
170 |
-
def __init__(
|
171 |
-
self,
|
172 |
-
net: nn.Module,
|
173 |
-
*,
|
174 |
-
sigma_distribution: Distribution,
|
175 |
-
sigma_data: float, # data distribution standard deviation
|
176 |
-
dynamic_threshold: float = 0.0,
|
177 |
-
):
|
178 |
-
super().__init__()
|
179 |
-
self.net = net
|
180 |
-
self.sigma_data = sigma_data
|
181 |
-
self.sigma_distribution = sigma_distribution
|
182 |
-
self.dynamic_threshold = dynamic_threshold
|
183 |
-
|
184 |
-
def get_scale_weights(self, sigmas: Tensor) -> Tuple[Tensor, ...]:
|
185 |
-
sigma_data = self.sigma_data
|
186 |
-
c_noise = torch.log(sigmas) * 0.25
|
187 |
-
sigmas = rearrange(sigmas, "b -> b 1 1")
|
188 |
-
c_skip = (sigma_data ** 2) / (sigmas ** 2 + sigma_data ** 2)
|
189 |
-
c_out = sigmas * sigma_data * (sigma_data ** 2 + sigmas ** 2) ** -0.5
|
190 |
-
c_in = (sigmas ** 2 + sigma_data ** 2) ** -0.5
|
191 |
-
return c_skip, c_out, c_in, c_noise
|
192 |
-
|
193 |
-
def denoise_fn(
|
194 |
-
self,
|
195 |
-
x_noisy: Tensor,
|
196 |
-
sigmas: Optional[Tensor] = None,
|
197 |
-
sigma: Optional[float] = None,
|
198 |
-
**kwargs,
|
199 |
-
) -> Tensor:
|
200 |
-
batch_size, device = x_noisy.shape[0], x_noisy.device
|
201 |
-
sigmas = to_batch(x=sigma, xs=sigmas, batch_size=batch_size, device=device)
|
202 |
-
|
203 |
-
# Predict network output and add skip connection
|
204 |
-
c_skip, c_out, c_in, c_noise = self.get_scale_weights(sigmas)
|
205 |
-
x_pred = self.net(c_in * x_noisy, c_noise, **kwargs)
|
206 |
-
x_denoised = c_skip * x_noisy + c_out * x_pred
|
207 |
-
|
208 |
-
return x_denoised
|
209 |
-
|
210 |
-
def loss_weight(self, sigmas: Tensor) -> Tensor:
|
211 |
-
# Computes weight depending on data distribution
|
212 |
-
return (sigmas ** 2 + self.sigma_data ** 2) * (sigmas * self.sigma_data) ** -2
|
213 |
-
|
214 |
-
def forward(self, x: Tensor, noise: Tensor = None, **kwargs) -> Tensor:
|
215 |
-
batch_size, device = x.shape[0], x.device
|
216 |
-
from einops import rearrange, reduce
|
217 |
-
|
218 |
-
# Sample amount of noise to add for each batch element
|
219 |
-
sigmas = self.sigma_distribution(num_samples=batch_size, device=device)
|
220 |
-
sigmas_padded = rearrange(sigmas, "b -> b 1 1")
|
221 |
-
|
222 |
-
# Add noise to input
|
223 |
-
noise = default(noise, lambda: torch.randn_like(x))
|
224 |
-
x_noisy = x + sigmas_padded * noise
|
225 |
-
|
226 |
-
# Compute denoised values
|
227 |
-
x_denoised = self.denoise_fn(x_noisy, sigmas=sigmas, **kwargs)
|
228 |
-
|
229 |
-
# Compute weighted loss
|
230 |
-
losses = F.mse_loss(x_denoised, x, reduction="none")
|
231 |
-
losses = reduce(losses, "b ... -> b", "mean")
|
232 |
-
losses = losses * self.loss_weight(sigmas)
|
233 |
-
loss = losses.mean()
|
234 |
-
return loss
|
235 |
-
|
236 |
-
|
237 |
-
class VKDiffusion(Diffusion):
|
238 |
-
|
239 |
-
alias = "vk"
|
240 |
-
|
241 |
-
def __init__(self, net: nn.Module, *, sigma_distribution: Distribution):
|
242 |
-
super().__init__()
|
243 |
-
self.net = net
|
244 |
-
self.sigma_distribution = sigma_distribution
|
245 |
-
|
246 |
-
def get_scale_weights(self, sigmas: Tensor) -> Tuple[Tensor, ...]:
|
247 |
-
sigma_data = 1.0
|
248 |
-
sigmas = rearrange(sigmas, "b -> b 1 1")
|
249 |
-
c_skip = (sigma_data ** 2) / (sigmas ** 2 + sigma_data ** 2)
|
250 |
-
c_out = -sigmas * sigma_data * (sigma_data ** 2 + sigmas ** 2) ** -0.5
|
251 |
-
c_in = (sigmas ** 2 + sigma_data ** 2) ** -0.5
|
252 |
-
return c_skip, c_out, c_in
|
253 |
-
|
254 |
-
def sigma_to_t(self, sigmas: Tensor) -> Tensor:
|
255 |
-
return sigmas.atan() / pi * 2
|
256 |
-
|
257 |
-
def t_to_sigma(self, t: Tensor) -> Tensor:
|
258 |
-
return (t * pi / 2).tan()
|
259 |
-
|
260 |
-
def denoise_fn(
|
261 |
-
self,
|
262 |
-
x_noisy: Tensor,
|
263 |
-
sigmas: Optional[Tensor] = None,
|
264 |
-
sigma: Optional[float] = None,
|
265 |
-
**kwargs,
|
266 |
-
) -> Tensor:
|
267 |
-
batch_size, device = x_noisy.shape[0], x_noisy.device
|
268 |
-
sigmas = to_batch(x=sigma, xs=sigmas, batch_size=batch_size, device=device)
|
269 |
-
|
270 |
-
# Predict network output and add skip connection
|
271 |
-
c_skip, c_out, c_in = self.get_scale_weights(sigmas)
|
272 |
-
x_pred = self.net(c_in * x_noisy, self.sigma_to_t(sigmas), **kwargs)
|
273 |
-
x_denoised = c_skip * x_noisy + c_out * x_pred
|
274 |
-
return x_denoised
|
275 |
-
|
276 |
-
def forward(self, x: Tensor, noise: Tensor = None, **kwargs) -> Tensor:
|
277 |
-
batch_size, device = x.shape[0], x.device
|
278 |
-
|
279 |
-
# Sample amount of noise to add for each batch element
|
280 |
-
sigmas = self.sigma_distribution(num_samples=batch_size, device=device)
|
281 |
-
sigmas_padded = rearrange(sigmas, "b -> b 1 1")
|
282 |
-
|
283 |
-
# Add noise to input
|
284 |
-
noise = default(noise, lambda: torch.randn_like(x))
|
285 |
-
x_noisy = x + sigmas_padded * noise
|
286 |
-
|
287 |
-
# Compute model output
|
288 |
-
c_skip, c_out, c_in = self.get_scale_weights(sigmas)
|
289 |
-
x_pred = self.net(c_in * x_noisy, self.sigma_to_t(sigmas), **kwargs)
|
290 |
-
|
291 |
-
# Compute v-objective target
|
292 |
-
v_target = (x - c_skip * x_noisy) / (c_out + 1e-7)
|
293 |
-
|
294 |
-
# Compute loss
|
295 |
-
loss = F.mse_loss(x_pred, v_target)
|
296 |
-
return loss
|
297 |
-
|
298 |
-
|
299 |
-
"""
|
300 |
-
Diffusion Sampling
|
301 |
-
"""
|
302 |
-
|
303 |
-
""" Schedules """
|
304 |
-
|
305 |
-
|
306 |
-
class Schedule(nn.Module):
|
307 |
-
"""Interface used by different sampling schedules"""
|
308 |
-
|
309 |
-
def forward(self, num_steps: int, device: torch.device) -> Tensor:
|
310 |
-
raise NotImplementedError()
|
311 |
-
|
312 |
-
|
313 |
-
class LinearSchedule(Schedule):
|
314 |
-
def forward(self, num_steps: int, device: Any) -> Tensor:
|
315 |
-
sigmas = torch.linspace(1, 0, num_steps + 1)[:-1]
|
316 |
-
return sigmas
|
317 |
-
|
318 |
-
|
319 |
-
class KarrasSchedule(Schedule):
|
320 |
-
"""https://arxiv.org/abs/2206.00364 equation 5"""
|
321 |
-
|
322 |
-
def __init__(self, sigma_min: float, sigma_max: float, rho: float = 7.0):
|
323 |
-
super().__init__()
|
324 |
-
self.sigma_min = sigma_min
|
325 |
-
self.sigma_max = sigma_max
|
326 |
-
self.rho = rho
|
327 |
-
|
328 |
-
def forward(self, num_steps: int, device: Any) -> Tensor:
|
329 |
-
rho_inv = 1.0 / self.rho
|
330 |
-
steps = torch.arange(num_steps, device=device, dtype=torch.float32)
|
331 |
-
sigmas = (
|
332 |
-
self.sigma_max ** rho_inv
|
333 |
-
+ (steps / (num_steps - 1))
|
334 |
-
* (self.sigma_min ** rho_inv - self.sigma_max ** rho_inv)
|
335 |
-
) ** self.rho
|
336 |
-
sigmas = F.pad(sigmas, pad=(0, 1), value=0.0)
|
337 |
-
return sigmas
|
338 |
-
|
339 |
-
|
340 |
-
""" Samplers """
|
341 |
-
|
342 |
-
|
343 |
-
class Sampler(nn.Module):
|
344 |
-
|
345 |
-
diffusion_types: List[Type[Diffusion]] = []
|
346 |
-
|
347 |
-
def forward(
|
348 |
-
self, noise: Tensor, fn: Callable, sigmas: Tensor, num_steps: int
|
349 |
-
) -> Tensor:
|
350 |
-
raise NotImplementedError()
|
351 |
-
|
352 |
-
def inpaint(
|
353 |
-
self,
|
354 |
-
source: Tensor,
|
355 |
-
mask: Tensor,
|
356 |
-
fn: Callable,
|
357 |
-
sigmas: Tensor,
|
358 |
-
num_steps: int,
|
359 |
-
num_resamples: int,
|
360 |
-
) -> Tensor:
|
361 |
-
raise NotImplementedError("Inpainting not available with current sampler")
|
362 |
-
|
363 |
-
|
364 |
-
class VSampler(Sampler):
|
365 |
-
|
366 |
-
diffusion_types = [VDiffusion]
|
367 |
-
|
368 |
-
def get_alpha_beta(self, sigma: float) -> Tuple[float, float]:
|
369 |
-
angle = sigma * pi / 2
|
370 |
-
alpha = cos(angle)
|
371 |
-
beta = sin(angle)
|
372 |
-
return alpha, beta
|
373 |
-
|
374 |
-
def forward(
|
375 |
-
self, noise: Tensor, fn: Callable, sigmas: Tensor, num_steps: int
|
376 |
-
) -> Tensor:
|
377 |
-
x = sigmas[0] * noise
|
378 |
-
alpha, beta = self.get_alpha_beta(sigmas[0].item())
|
379 |
-
|
380 |
-
for i in range(num_steps - 1):
|
381 |
-
is_last = i == num_steps - 1
|
382 |
-
|
383 |
-
x_denoised = fn(x, sigma=sigmas[i])
|
384 |
-
x_pred = x * alpha - x_denoised * beta
|
385 |
-
x_eps = x * beta + x_denoised * alpha
|
386 |
-
|
387 |
-
if not is_last:
|
388 |
-
alpha, beta = self.get_alpha_beta(sigmas[i + 1].item())
|
389 |
-
x = x_pred * alpha + x_eps * beta
|
390 |
-
|
391 |
-
return x_pred
|
392 |
-
|
393 |
-
|
394 |
-
class KarrasSampler(Sampler):
|
395 |
-
"""https://arxiv.org/abs/2206.00364 algorithm 1"""
|
396 |
-
|
397 |
-
diffusion_types = [KDiffusion, VKDiffusion]
|
398 |
-
|
399 |
-
def __init__(
|
400 |
-
self,
|
401 |
-
s_tmin: float = 0,
|
402 |
-
s_tmax: float = float("inf"),
|
403 |
-
s_churn: float = 0.0,
|
404 |
-
s_noise: float = 1.0,
|
405 |
-
):
|
406 |
-
super().__init__()
|
407 |
-
self.s_tmin = s_tmin
|
408 |
-
self.s_tmax = s_tmax
|
409 |
-
self.s_noise = s_noise
|
410 |
-
self.s_churn = s_churn
|
411 |
-
|
412 |
-
def step(
|
413 |
-
self, x: Tensor, fn: Callable, sigma: float, sigma_next: float, gamma: float
|
414 |
-
) -> Tensor:
|
415 |
-
"""Algorithm 2 (step)"""
|
416 |
-
# Select temporarily increased noise level
|
417 |
-
sigma_hat = sigma + gamma * sigma
|
418 |
-
# Add noise to move from sigma to sigma_hat
|
419 |
-
epsilon = self.s_noise * torch.randn_like(x)
|
420 |
-
x_hat = x + sqrt(sigma_hat ** 2 - sigma ** 2) * epsilon
|
421 |
-
# Evaluate ∂x/∂sigma at sigma_hat
|
422 |
-
d = (x_hat - fn(x_hat, sigma=sigma_hat)) / sigma_hat
|
423 |
-
# Take euler step from sigma_hat to sigma_next
|
424 |
-
x_next = x_hat + (sigma_next - sigma_hat) * d
|
425 |
-
# Second order correction
|
426 |
-
if sigma_next != 0:
|
427 |
-
model_out_next = fn(x_next, sigma=sigma_next)
|
428 |
-
d_prime = (x_next - model_out_next) / sigma_next
|
429 |
-
x_next = x_hat + 0.5 * (sigma - sigma_hat) * (d + d_prime)
|
430 |
-
return x_next
|
431 |
-
|
432 |
-
def forward(
|
433 |
-
self, noise: Tensor, fn: Callable, sigmas: Tensor, num_steps: int
|
434 |
-
) -> Tensor:
|
435 |
-
x = sigmas[0] * noise
|
436 |
-
# Compute gammas
|
437 |
-
gammas = torch.where(
|
438 |
-
(sigmas >= self.s_tmin) & (sigmas <= self.s_tmax),
|
439 |
-
min(self.s_churn / num_steps, sqrt(2) - 1),
|
440 |
-
0.0,
|
441 |
-
)
|
442 |
-
# Denoise to sample
|
443 |
-
for i in range(num_steps - 1):
|
444 |
-
x = self.step(
|
445 |
-
x, fn=fn, sigma=sigmas[i], sigma_next=sigmas[i + 1], gamma=gammas[i] # type: ignore # noqa
|
446 |
-
)
|
447 |
-
|
448 |
-
return x
|
449 |
-
|
450 |
-
|
451 |
-
class AEulerSampler(Sampler):
|
452 |
-
|
453 |
-
diffusion_types = [KDiffusion, VKDiffusion]
|
454 |
-
|
455 |
-
def get_sigmas(self, sigma: float, sigma_next: float) -> Tuple[float, float]:
|
456 |
-
sigma_up = sqrt(sigma_next ** 2 * (sigma ** 2 - sigma_next ** 2) / sigma ** 2)
|
457 |
-
sigma_down = sqrt(sigma_next ** 2 - sigma_up ** 2)
|
458 |
-
return sigma_up, sigma_down
|
459 |
-
|
460 |
-
def step(self, x: Tensor, fn: Callable, sigma: float, sigma_next: float) -> Tensor:
|
461 |
-
# Sigma steps
|
462 |
-
sigma_up, sigma_down = self.get_sigmas(sigma, sigma_next)
|
463 |
-
# Derivative at sigma (∂x/∂sigma)
|
464 |
-
d = (x - fn(x, sigma=sigma)) / sigma
|
465 |
-
# Euler method
|
466 |
-
x_next = x + d * (sigma_down - sigma)
|
467 |
-
# Add randomness
|
468 |
-
x_next = x_next + torch.randn_like(x) * sigma_up
|
469 |
-
return x_next
|
470 |
-
|
471 |
-
def forward(
|
472 |
-
self, noise: Tensor, fn: Callable, sigmas: Tensor, num_steps: int
|
473 |
-
) -> Tensor:
|
474 |
-
x = sigmas[0] * noise
|
475 |
-
# Denoise to sample
|
476 |
-
for i in range(num_steps - 1):
|
477 |
-
x = self.step(x, fn=fn, sigma=sigmas[i], sigma_next=sigmas[i + 1]) # type: ignore # noqa
|
478 |
-
return x
|
479 |
-
|
480 |
-
|
481 |
-
class ADPM2Sampler(Sampler):
|
482 |
-
"""https://www.desmos.com/calculator/jbxjlqd9mb"""
|
483 |
-
|
484 |
-
diffusion_types = [KDiffusion, VKDiffusion]
|
485 |
-
|
486 |
-
def __init__(self, rho: float = 1.0):
|
487 |
-
super().__init__()
|
488 |
-
self.rho = rho
|
489 |
-
|
490 |
-
def get_sigmas(self, sigma: float, sigma_next: float) -> Tuple[float, float, float]:
|
491 |
-
r = self.rho
|
492 |
-
sigma_up = sqrt(sigma_next ** 2 * (sigma ** 2 - sigma_next ** 2) / sigma ** 2)
|
493 |
-
sigma_down = sqrt(sigma_next ** 2 - sigma_up ** 2)
|
494 |
-
sigma_mid = ((sigma ** (1 / r) + sigma_down ** (1 / r)) / 2) ** r
|
495 |
-
return sigma_up, sigma_down, sigma_mid
|
496 |
-
|
497 |
-
def step(self, x: Tensor, fn: Callable, sigma: float, sigma_next: float) -> Tensor:
|
498 |
-
# Sigma steps
|
499 |
-
sigma_up, sigma_down, sigma_mid = self.get_sigmas(sigma, sigma_next)
|
500 |
-
# Derivative at sigma (∂x/∂sigma)
|
501 |
-
d = (x - fn(x, sigma=sigma)) / sigma
|
502 |
-
# Denoise to midpoint
|
503 |
-
x_mid = x + d * (sigma_mid - sigma)
|
504 |
-
# Derivative at sigma_mid (∂x_mid/∂sigma_mid)
|
505 |
-
d_mid = (x_mid - fn(x_mid, sigma=sigma_mid)) / sigma_mid
|
506 |
-
# Denoise to next
|
507 |
-
x = x + d_mid * (sigma_down - sigma)
|
508 |
-
# Add randomness
|
509 |
-
x_next = x + torch.randn_like(x) * sigma_up
|
510 |
-
return x_next
|
511 |
-
|
512 |
-
def forward(
|
513 |
-
self, noise: Tensor, fn: Callable, sigmas: Tensor, num_steps: int
|
514 |
-
) -> Tensor:
|
515 |
-
x = sigmas[0] * noise
|
516 |
-
# Denoise to sample
|
517 |
-
for i in range(num_steps - 1):
|
518 |
-
x = self.step(x, fn=fn, sigma=sigmas[i], sigma_next=sigmas[i + 1]) # type: ignore # noqa
|
519 |
-
return x
|
520 |
-
|
521 |
-
def inpaint(
|
522 |
-
self,
|
523 |
-
source: Tensor,
|
524 |
-
mask: Tensor,
|
525 |
-
fn: Callable,
|
526 |
-
sigmas: Tensor,
|
527 |
-
num_steps: int,
|
528 |
-
num_resamples: int,
|
529 |
-
) -> Tensor:
|
530 |
-
x = sigmas[0] * torch.randn_like(source)
|
531 |
-
|
532 |
-
for i in range(num_steps - 1):
|
533 |
-
# Noise source to current noise level
|
534 |
-
source_noisy = source + sigmas[i] * torch.randn_like(source)
|
535 |
-
for r in range(num_resamples):
|
536 |
-
# Merge noisy source and current then denoise
|
537 |
-
x = source_noisy * mask + x * ~mask
|
538 |
-
x = self.step(x, fn=fn, sigma=sigmas[i], sigma_next=sigmas[i + 1]) # type: ignore # noqa
|
539 |
-
# Renoise if not last resample step
|
540 |
-
if r < num_resamples - 1:
|
541 |
-
sigma = sqrt(sigmas[i] ** 2 - sigmas[i + 1] ** 2)
|
542 |
-
x = x + sigma * torch.randn_like(x)
|
543 |
-
|
544 |
-
return source * mask + x * ~mask
|
545 |
-
|
546 |
-
|
547 |
-
""" Main Classes """
|
548 |
-
|
549 |
-
|
550 |
-
class DiffusionSampler(nn.Module):
|
551 |
-
def __init__(
|
552 |
-
self,
|
553 |
-
diffusion: Diffusion,
|
554 |
-
*,
|
555 |
-
sampler: Sampler,
|
556 |
-
sigma_schedule: Schedule,
|
557 |
-
num_steps: Optional[int] = None,
|
558 |
-
clamp: bool = True,
|
559 |
-
):
|
560 |
-
super().__init__()
|
561 |
-
self.denoise_fn = diffusion.denoise_fn
|
562 |
-
self.sampler = sampler
|
563 |
-
self.sigma_schedule = sigma_schedule
|
564 |
-
self.num_steps = num_steps
|
565 |
-
self.clamp = clamp
|
566 |
-
|
567 |
-
# Check sampler is compatible with diffusion type
|
568 |
-
sampler_class = sampler.__class__.__name__
|
569 |
-
diffusion_class = diffusion.__class__.__name__
|
570 |
-
message = f"{sampler_class} incompatible with {diffusion_class}"
|
571 |
-
assert diffusion.alias in [t.alias for t in sampler.diffusion_types], message
|
572 |
-
|
573 |
-
def forward(
|
574 |
-
self, noise: Tensor, num_steps: Optional[int] = None, **kwargs
|
575 |
-
) -> Tensor:
|
576 |
-
device = noise.device
|
577 |
-
num_steps = default(num_steps, self.num_steps) # type: ignore
|
578 |
-
assert exists(num_steps), "Parameter `num_steps` must be provided"
|
579 |
-
# Compute sigmas using schedule
|
580 |
-
sigmas = self.sigma_schedule(num_steps, device)
|
581 |
-
# Append additional kwargs to denoise function (used e.g. for conditional unet)
|
582 |
-
fn = lambda *a, **ka: self.denoise_fn(*a, **{**ka, **kwargs}) # noqa
|
583 |
-
# Sample using sampler
|
584 |
-
x = self.sampler(noise, fn=fn, sigmas=sigmas, num_steps=num_steps)
|
585 |
-
x = x.clamp(-1.0, 1.0) if self.clamp else x
|
586 |
-
return x
|
587 |
-
|
588 |
-
|
589 |
-
class DiffusionInpainter(nn.Module):
|
590 |
-
def __init__(
|
591 |
-
self,
|
592 |
-
diffusion: Diffusion,
|
593 |
-
*,
|
594 |
-
num_steps: int,
|
595 |
-
num_resamples: int,
|
596 |
-
sampler: Sampler,
|
597 |
-
sigma_schedule: Schedule,
|
598 |
-
):
|
599 |
-
super().__init__()
|
600 |
-
self.denoise_fn = diffusion.denoise_fn
|
601 |
-
self.num_steps = num_steps
|
602 |
-
self.num_resamples = num_resamples
|
603 |
-
self.inpaint_fn = sampler.inpaint
|
604 |
-
self.sigma_schedule = sigma_schedule
|
605 |
-
|
606 |
-
@torch.no_grad()
|
607 |
-
def forward(self, inpaint: Tensor, inpaint_mask: Tensor) -> Tensor:
|
608 |
-
x = self.inpaint_fn(
|
609 |
-
source=inpaint,
|
610 |
-
mask=inpaint_mask,
|
611 |
-
fn=self.denoise_fn,
|
612 |
-
sigmas=self.sigma_schedule(self.num_steps, inpaint.device),
|
613 |
-
num_steps=self.num_steps,
|
614 |
-
num_resamples=self.num_resamples,
|
615 |
-
)
|
616 |
-
return x
|
617 |
-
|
618 |
-
|
619 |
-
def sequential_mask(like: Tensor, start: int) -> Tensor:
|
620 |
-
length, device = like.shape[2], like.device
|
621 |
-
mask = torch.ones_like(like, dtype=torch.bool)
|
622 |
-
mask[:, :, start:] = torch.zeros((length - start,), device=device)
|
623 |
-
return mask
|
624 |
-
|
625 |
-
|
626 |
-
class SpanBySpanComposer(nn.Module):
|
627 |
-
def __init__(
|
628 |
-
self,
|
629 |
-
inpainter: DiffusionInpainter,
|
630 |
-
*,
|
631 |
-
num_spans: int,
|
632 |
-
):
|
633 |
-
super().__init__()
|
634 |
-
self.inpainter = inpainter
|
635 |
-
self.num_spans = num_spans
|
636 |
-
|
637 |
-
def forward(self, start: Tensor, keep_start: bool = False) -> Tensor:
|
638 |
-
half_length = start.shape[2] // 2
|
639 |
-
|
640 |
-
spans = list(start.chunk(chunks=2, dim=-1)) if keep_start else []
|
641 |
-
# Inpaint second half from first half
|
642 |
-
inpaint = torch.zeros_like(start)
|
643 |
-
inpaint[:, :, :half_length] = start[:, :, half_length:]
|
644 |
-
inpaint_mask = sequential_mask(like=start, start=half_length)
|
645 |
-
|
646 |
-
for i in range(self.num_spans):
|
647 |
-
# Inpaint second half
|
648 |
-
span = self.inpainter(inpaint=inpaint, inpaint_mask=inpaint_mask)
|
649 |
-
# Replace first half with generated second half
|
650 |
-
second_half = span[:, :, half_length:]
|
651 |
-
inpaint[:, :, :half_length] = second_half
|
652 |
-
# Save generated span
|
653 |
-
spans.append(second_half)
|
654 |
-
|
655 |
-
return torch.cat(spans, dim=2)
|
656 |
-
|
657 |
-
|
658 |
-
class XDiffusion(nn.Module):
|
659 |
-
def __init__(self, type: str, net: nn.Module, **kwargs):
|
660 |
-
super().__init__()
|
661 |
-
|
662 |
-
diffusion_classes = [VDiffusion, KDiffusion, VKDiffusion]
|
663 |
-
aliases = [t.alias for t in diffusion_classes] # type: ignore
|
664 |
-
message = f"type='{type}' must be one of {*aliases,}"
|
665 |
-
assert type in aliases, message
|
666 |
-
self.net = net
|
667 |
-
|
668 |
-
for XDiffusion in diffusion_classes:
|
669 |
-
if XDiffusion.alias == type: # type: ignore
|
670 |
-
self.diffusion = XDiffusion(net=net, **kwargs)
|
671 |
-
|
672 |
-
def forward(self, *args, **kwargs) -> Tensor:
|
673 |
-
return self.diffusion(*args, **kwargs)
|
674 |
-
|
675 |
-
def sample(
|
676 |
-
self,
|
677 |
-
noise: Tensor,
|
678 |
-
num_steps: int,
|
679 |
-
sigma_schedule: Schedule,
|
680 |
-
sampler: Sampler,
|
681 |
-
clamp: bool,
|
682 |
-
**kwargs,
|
683 |
-
) -> Tensor:
|
684 |
-
diffusion_sampler = DiffusionSampler(
|
685 |
-
diffusion=self.diffusion,
|
686 |
-
sampler=sampler,
|
687 |
-
sigma_schedule=sigma_schedule,
|
688 |
-
num_steps=num_steps,
|
689 |
-
clamp=clamp,
|
690 |
-
)
|
691 |
-
return diffusion_sampler(noise, **kwargs)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Modules/diffusion/utils.py
DELETED
@@ -1,82 +0,0 @@
|
|
1 |
-
from functools import reduce
|
2 |
-
from inspect import isfunction
|
3 |
-
from math import ceil, floor, log2, pi
|
4 |
-
from typing import Callable, Dict, List, Optional, Sequence, Tuple, TypeVar, Union
|
5 |
-
|
6 |
-
import torch
|
7 |
-
import torch.nn.functional as F
|
8 |
-
from einops import rearrange
|
9 |
-
from torch import Generator, Tensor
|
10 |
-
from typing_extensions import TypeGuard
|
11 |
-
|
12 |
-
T = TypeVar("T")
|
13 |
-
|
14 |
-
|
15 |
-
def exists(val: Optional[T]) -> TypeGuard[T]:
|
16 |
-
return val is not None
|
17 |
-
|
18 |
-
|
19 |
-
def iff(condition: bool, value: T) -> Optional[T]:
|
20 |
-
return value if condition else None
|
21 |
-
|
22 |
-
|
23 |
-
def is_sequence(obj: T) -> TypeGuard[Union[list, tuple]]:
|
24 |
-
return isinstance(obj, list) or isinstance(obj, tuple)
|
25 |
-
|
26 |
-
|
27 |
-
def default(val: Optional[T], d: Union[Callable[..., T], T]) -> T:
|
28 |
-
if exists(val):
|
29 |
-
return val
|
30 |
-
return d() if isfunction(d) else d
|
31 |
-
|
32 |
-
|
33 |
-
def to_list(val: Union[T, Sequence[T]]) -> List[T]:
|
34 |
-
if isinstance(val, tuple):
|
35 |
-
return list(val)
|
36 |
-
if isinstance(val, list):
|
37 |
-
return val
|
38 |
-
return [val] # type: ignore
|
39 |
-
|
40 |
-
|
41 |
-
def prod(vals: Sequence[int]) -> int:
|
42 |
-
return reduce(lambda x, y: x * y, vals)
|
43 |
-
|
44 |
-
|
45 |
-
def closest_power_2(x: float) -> int:
|
46 |
-
exponent = log2(x)
|
47 |
-
distance_fn = lambda z: abs(x - 2 ** z) # noqa
|
48 |
-
exponent_closest = min((floor(exponent), ceil(exponent)), key=distance_fn)
|
49 |
-
return 2 ** int(exponent_closest)
|
50 |
-
|
51 |
-
def rand_bool(shape, proba, device = None):
|
52 |
-
if proba == 1:
|
53 |
-
return torch.ones(shape, device=device, dtype=torch.bool)
|
54 |
-
elif proba == 0:
|
55 |
-
return torch.zeros(shape, device=device, dtype=torch.bool)
|
56 |
-
else:
|
57 |
-
return torch.bernoulli(torch.full(shape, proba, device=device)).to(torch.bool)
|
58 |
-
|
59 |
-
|
60 |
-
"""
|
61 |
-
Kwargs Utils
|
62 |
-
"""
|
63 |
-
|
64 |
-
|
65 |
-
def group_dict_by_prefix(prefix: str, d: Dict) -> Tuple[Dict, Dict]:
|
66 |
-
return_dicts: Tuple[Dict, Dict] = ({}, {})
|
67 |
-
for key in d.keys():
|
68 |
-
no_prefix = int(not key.startswith(prefix))
|
69 |
-
return_dicts[no_prefix][key] = d[key]
|
70 |
-
return return_dicts
|
71 |
-
|
72 |
-
|
73 |
-
def groupby(prefix: str, d: Dict, keep_prefix: bool = False) -> Tuple[Dict, Dict]:
|
74 |
-
kwargs_with_prefix, kwargs = group_dict_by_prefix(prefix, d)
|
75 |
-
if keep_prefix:
|
76 |
-
return kwargs_with_prefix, kwargs
|
77 |
-
kwargs_no_prefix = {k[len(prefix) :]: v for k, v in kwargs_with_prefix.items()}
|
78 |
-
return kwargs_no_prefix, kwargs
|
79 |
-
|
80 |
-
|
81 |
-
def prefix_dict(prefix: str, d: Dict) -> Dict:
|
82 |
-
return {prefix + str(k): v for k, v in d.items()}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Modules/discriminators.py
DELETED
@@ -1,188 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import torch.nn.functional as F
|
3 |
-
import torch.nn as nn
|
4 |
-
from torch.nn import Conv1d, AvgPool1d, Conv2d
|
5 |
-
from torch.nn.utils import weight_norm, spectral_norm
|
6 |
-
|
7 |
-
from .utils import get_padding
|
8 |
-
|
9 |
-
LRELU_SLOPE = 0.1
|
10 |
-
|
11 |
-
def stft(x, fft_size, hop_size, win_length, window):
|
12 |
-
"""Perform STFT and convert to magnitude spectrogram.
|
13 |
-
Args:
|
14 |
-
x (Tensor): Input signal tensor (B, T).
|
15 |
-
fft_size (int): FFT size.
|
16 |
-
hop_size (int): Hop size.
|
17 |
-
win_length (int): Window length.
|
18 |
-
window (str): Window function type.
|
19 |
-
Returns:
|
20 |
-
Tensor: Magnitude spectrogram (B, #frames, fft_size // 2 + 1).
|
21 |
-
"""
|
22 |
-
x_stft = torch.stft(x, fft_size, hop_size, win_length, window,
|
23 |
-
return_complex=True)
|
24 |
-
real = x_stft[..., 0]
|
25 |
-
imag = x_stft[..., 1]
|
26 |
-
|
27 |
-
return torch.abs(x_stft).transpose(2, 1)
|
28 |
-
|
29 |
-
class SpecDiscriminator(nn.Module):
|
30 |
-
"""docstring for Discriminator."""
|
31 |
-
|
32 |
-
def __init__(self, fft_size=1024, shift_size=120, win_length=600, window="hann_window", use_spectral_norm=False):
|
33 |
-
super(SpecDiscriminator, self).__init__()
|
34 |
-
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
35 |
-
self.fft_size = fft_size
|
36 |
-
self.shift_size = shift_size
|
37 |
-
self.win_length = win_length
|
38 |
-
self.window = getattr(torch, window)(win_length)
|
39 |
-
self.discriminators = nn.ModuleList([
|
40 |
-
norm_f(nn.Conv2d(1, 32, kernel_size=(3, 9), padding=(1, 4))),
|
41 |
-
norm_f(nn.Conv2d(32, 32, kernel_size=(3, 9), stride=(1,2), padding=(1, 4))),
|
42 |
-
norm_f(nn.Conv2d(32, 32, kernel_size=(3, 9), stride=(1,2), padding=(1, 4))),
|
43 |
-
norm_f(nn.Conv2d(32, 32, kernel_size=(3, 9), stride=(1,2), padding=(1, 4))),
|
44 |
-
norm_f(nn.Conv2d(32, 32, kernel_size=(3, 3), stride=(1,1), padding=(1, 1))),
|
45 |
-
])
|
46 |
-
|
47 |
-
self.out = norm_f(nn.Conv2d(32, 1, 3, 1, 1))
|
48 |
-
|
49 |
-
def forward(self, y):
|
50 |
-
|
51 |
-
fmap = []
|
52 |
-
y = y.squeeze(1)
|
53 |
-
y = stft(y, self.fft_size, self.shift_size, self.win_length, self.window.to(y.get_device()))
|
54 |
-
y = y.unsqueeze(1)
|
55 |
-
for i, d in enumerate(self.discriminators):
|
56 |
-
y = d(y)
|
57 |
-
y = F.leaky_relu(y, LRELU_SLOPE)
|
58 |
-
fmap.append(y)
|
59 |
-
|
60 |
-
y = self.out(y)
|
61 |
-
fmap.append(y)
|
62 |
-
|
63 |
-
return torch.flatten(y, 1, -1), fmap
|
64 |
-
|
65 |
-
class MultiResSpecDiscriminator(torch.nn.Module):
|
66 |
-
|
67 |
-
def __init__(self,
|
68 |
-
fft_sizes=[1024, 2048, 512],
|
69 |
-
hop_sizes=[120, 240, 50],
|
70 |
-
win_lengths=[600, 1200, 240],
|
71 |
-
window="hann_window"):
|
72 |
-
|
73 |
-
super(MultiResSpecDiscriminator, self).__init__()
|
74 |
-
self.discriminators = nn.ModuleList([
|
75 |
-
SpecDiscriminator(fft_sizes[0], hop_sizes[0], win_lengths[0], window),
|
76 |
-
SpecDiscriminator(fft_sizes[1], hop_sizes[1], win_lengths[1], window),
|
77 |
-
SpecDiscriminator(fft_sizes[2], hop_sizes[2], win_lengths[2], window)
|
78 |
-
])
|
79 |
-
|
80 |
-
def forward(self, y, y_hat):
|
81 |
-
y_d_rs = []
|
82 |
-
y_d_gs = []
|
83 |
-
fmap_rs = []
|
84 |
-
fmap_gs = []
|
85 |
-
for i, d in enumerate(self.discriminators):
|
86 |
-
y_d_r, fmap_r = d(y)
|
87 |
-
y_d_g, fmap_g = d(y_hat)
|
88 |
-
y_d_rs.append(y_d_r)
|
89 |
-
fmap_rs.append(fmap_r)
|
90 |
-
y_d_gs.append(y_d_g)
|
91 |
-
fmap_gs.append(fmap_g)
|
92 |
-
|
93 |
-
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
94 |
-
|
95 |
-
|
96 |
-
class DiscriminatorP(torch.nn.Module):
|
97 |
-
def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
|
98 |
-
super(DiscriminatorP, self).__init__()
|
99 |
-
self.period = period
|
100 |
-
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
101 |
-
self.convs = nn.ModuleList([
|
102 |
-
norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
|
103 |
-
norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
|
104 |
-
norm_f(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
|
105 |
-
norm_f(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(5, 1), 0))),
|
106 |
-
norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(2, 0))),
|
107 |
-
])
|
108 |
-
self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
|
109 |
-
|
110 |
-
def forward(self, x):
|
111 |
-
fmap = []
|
112 |
-
|
113 |
-
# 1d to 2d
|
114 |
-
b, c, t = x.shape
|
115 |
-
if t % self.period != 0: # pad first
|
116 |
-
n_pad = self.period - (t % self.period)
|
117 |
-
x = F.pad(x, (0, n_pad), "reflect")
|
118 |
-
t = t + n_pad
|
119 |
-
x = x.view(b, c, t // self.period, self.period)
|
120 |
-
|
121 |
-
for l in self.convs:
|
122 |
-
x = l(x)
|
123 |
-
x = F.leaky_relu(x, LRELU_SLOPE)
|
124 |
-
fmap.append(x)
|
125 |
-
x = self.conv_post(x)
|
126 |
-
fmap.append(x)
|
127 |
-
x = torch.flatten(x, 1, -1)
|
128 |
-
|
129 |
-
return x, fmap
|
130 |
-
|
131 |
-
|
132 |
-
class MultiPeriodDiscriminator(torch.nn.Module):
|
133 |
-
def __init__(self):
|
134 |
-
super(MultiPeriodDiscriminator, self).__init__()
|
135 |
-
self.discriminators = nn.ModuleList([
|
136 |
-
DiscriminatorP(2),
|
137 |
-
DiscriminatorP(3),
|
138 |
-
DiscriminatorP(5),
|
139 |
-
DiscriminatorP(7),
|
140 |
-
DiscriminatorP(11),
|
141 |
-
])
|
142 |
-
|
143 |
-
def forward(self, y, y_hat):
|
144 |
-
y_d_rs = []
|
145 |
-
y_d_gs = []
|
146 |
-
fmap_rs = []
|
147 |
-
fmap_gs = []
|
148 |
-
for i, d in enumerate(self.discriminators):
|
149 |
-
y_d_r, fmap_r = d(y)
|
150 |
-
y_d_g, fmap_g = d(y_hat)
|
151 |
-
y_d_rs.append(y_d_r)
|
152 |
-
fmap_rs.append(fmap_r)
|
153 |
-
y_d_gs.append(y_d_g)
|
154 |
-
fmap_gs.append(fmap_g)
|
155 |
-
|
156 |
-
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
157 |
-
|
158 |
-
class WavLMDiscriminator(nn.Module):
|
159 |
-
"""docstring for Discriminator."""
|
160 |
-
|
161 |
-
def __init__(self, slm_hidden=768,
|
162 |
-
slm_layers=13,
|
163 |
-
initial_channel=64,
|
164 |
-
use_spectral_norm=False):
|
165 |
-
super(WavLMDiscriminator, self).__init__()
|
166 |
-
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
167 |
-
self.pre = norm_f(Conv1d(slm_hidden * slm_layers, initial_channel, 1, 1, padding=0))
|
168 |
-
|
169 |
-
self.convs = nn.ModuleList([
|
170 |
-
norm_f(nn.Conv1d(initial_channel, initial_channel * 2, kernel_size=5, padding=2)),
|
171 |
-
norm_f(nn.Conv1d(initial_channel * 2, initial_channel * 4, kernel_size=5, padding=2)),
|
172 |
-
norm_f(nn.Conv1d(initial_channel * 4, initial_channel * 4, 5, 1, padding=2)),
|
173 |
-
])
|
174 |
-
|
175 |
-
self.conv_post = norm_f(Conv1d(initial_channel * 4, 1, 3, 1, padding=1))
|
176 |
-
|
177 |
-
def forward(self, x):
|
178 |
-
x = self.pre(x)
|
179 |
-
|
180 |
-
fmap = []
|
181 |
-
for l in self.convs:
|
182 |
-
x = l(x)
|
183 |
-
x = F.leaky_relu(x, LRELU_SLOPE)
|
184 |
-
fmap.append(x)
|
185 |
-
x = self.conv_post(x)
|
186 |
-
x = torch.flatten(x, 1, -1)
|
187 |
-
|
188 |
-
return x
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Modules/hifigan.py
DELETED
@@ -1,477 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import torch.nn.functional as F
|
3 |
-
import torch.nn as nn
|
4 |
-
from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
|
5 |
-
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
|
6 |
-
from .utils import init_weights, get_padding
|
7 |
-
|
8 |
-
import math
|
9 |
-
import random
|
10 |
-
import numpy as np
|
11 |
-
|
12 |
-
LRELU_SLOPE = 0.1
|
13 |
-
|
14 |
-
class AdaIN1d(nn.Module):
|
15 |
-
def __init__(self, style_dim, num_features):
|
16 |
-
super().__init__()
|
17 |
-
self.norm = nn.InstanceNorm1d(num_features, affine=False)
|
18 |
-
self.fc = nn.Linear(style_dim, num_features*2)
|
19 |
-
|
20 |
-
def forward(self, x, s):
|
21 |
-
h = self.fc(s)
|
22 |
-
h = h.view(h.size(0), h.size(1), 1)
|
23 |
-
gamma, beta = torch.chunk(h, chunks=2, dim=1)
|
24 |
-
return (1 + gamma) * self.norm(x) + beta
|
25 |
-
|
26 |
-
class AdaINResBlock1(torch.nn.Module):
|
27 |
-
def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5), style_dim=64):
|
28 |
-
super(AdaINResBlock1, self).__init__()
|
29 |
-
self.convs1 = nn.ModuleList([
|
30 |
-
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
|
31 |
-
padding=get_padding(kernel_size, dilation[0]))),
|
32 |
-
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
|
33 |
-
padding=get_padding(kernel_size, dilation[1]))),
|
34 |
-
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2],
|
35 |
-
padding=get_padding(kernel_size, dilation[2])))
|
36 |
-
])
|
37 |
-
self.convs1.apply(init_weights)
|
38 |
-
|
39 |
-
self.convs2 = nn.ModuleList([
|
40 |
-
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
41 |
-
padding=get_padding(kernel_size, 1))),
|
42 |
-
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
43 |
-
padding=get_padding(kernel_size, 1))),
|
44 |
-
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
45 |
-
padding=get_padding(kernel_size, 1)))
|
46 |
-
])
|
47 |
-
self.convs2.apply(init_weights)
|
48 |
-
|
49 |
-
self.adain1 = nn.ModuleList([
|
50 |
-
AdaIN1d(style_dim, channels),
|
51 |
-
AdaIN1d(style_dim, channels),
|
52 |
-
AdaIN1d(style_dim, channels),
|
53 |
-
])
|
54 |
-
|
55 |
-
self.adain2 = nn.ModuleList([
|
56 |
-
AdaIN1d(style_dim, channels),
|
57 |
-
AdaIN1d(style_dim, channels),
|
58 |
-
AdaIN1d(style_dim, channels),
|
59 |
-
])
|
60 |
-
|
61 |
-
self.alpha1 = nn.ParameterList([nn.Parameter(torch.ones(1, channels, 1)) for i in range(len(self.convs1))])
|
62 |
-
self.alpha2 = nn.ParameterList([nn.Parameter(torch.ones(1, channels, 1)) for i in range(len(self.convs2))])
|
63 |
-
|
64 |
-
|
65 |
-
def forward(self, x, s):
|
66 |
-
for c1, c2, n1, n2, a1, a2 in zip(self.convs1, self.convs2, self.adain1, self.adain2, self.alpha1, self.alpha2):
|
67 |
-
xt = n1(x, s)
|
68 |
-
xt = xt + (1 / a1) * (torch.sin(a1 * xt) ** 2) # Snake1D
|
69 |
-
xt = c1(xt)
|
70 |
-
xt = n2(xt, s)
|
71 |
-
xt = xt + (1 / a2) * (torch.sin(a2 * xt) ** 2) # Snake1D
|
72 |
-
xt = c2(xt)
|
73 |
-
x = xt + x
|
74 |
-
return x
|
75 |
-
|
76 |
-
def remove_weight_norm(self):
|
77 |
-
for l in self.convs1:
|
78 |
-
remove_weight_norm(l)
|
79 |
-
for l in self.convs2:
|
80 |
-
remove_weight_norm(l)
|
81 |
-
|
82 |
-
class SineGen(torch.nn.Module):
|
83 |
-
""" Definition of sine generator
|
84 |
-
SineGen(samp_rate, harmonic_num = 0,
|
85 |
-
sine_amp = 0.1, noise_std = 0.003,
|
86 |
-
voiced_threshold = 0,
|
87 |
-
flag_for_pulse=False)
|
88 |
-
samp_rate: sampling rate in Hz
|
89 |
-
harmonic_num: number of harmonic overtones (default 0)
|
90 |
-
sine_amp: amplitude of sine-wavefrom (default 0.1)
|
91 |
-
noise_std: std of Gaussian noise (default 0.003)
|
92 |
-
voiced_thoreshold: F0 threshold for U/V classification (default 0)
|
93 |
-
flag_for_pulse: this SinGen is used inside PulseGen (default False)
|
94 |
-
Note: when flag_for_pulse is True, the first time step of a voiced
|
95 |
-
segment is always sin(np.pi) or cos(0)
|
96 |
-
"""
|
97 |
-
|
98 |
-
def __init__(self, samp_rate, upsample_scale, harmonic_num=0,
|
99 |
-
sine_amp=0.1, noise_std=0.003,
|
100 |
-
voiced_threshold=0,
|
101 |
-
flag_for_pulse=False):
|
102 |
-
super(SineGen, self).__init__()
|
103 |
-
self.sine_amp = sine_amp
|
104 |
-
self.noise_std = noise_std
|
105 |
-
self.harmonic_num = harmonic_num
|
106 |
-
self.dim = self.harmonic_num + 1
|
107 |
-
self.sampling_rate = samp_rate
|
108 |
-
self.voiced_threshold = voiced_threshold
|
109 |
-
self.flag_for_pulse = flag_for_pulse
|
110 |
-
self.upsample_scale = upsample_scale
|
111 |
-
|
112 |
-
def _f02uv(self, f0):
|
113 |
-
# generate uv signal
|
114 |
-
uv = (f0 > self.voiced_threshold).type(torch.float32)
|
115 |
-
return uv
|
116 |
-
|
117 |
-
def _f02sine(self, f0_values):
|
118 |
-
""" f0_values: (batchsize, length, dim)
|
119 |
-
where dim indicates fundamental tone and overtones
|
120 |
-
"""
|
121 |
-
# convert to F0 in rad. The interger part n can be ignored
|
122 |
-
# because 2 * np.pi * n doesn't affect phase
|
123 |
-
rad_values = (f0_values / self.sampling_rate) % 1
|
124 |
-
|
125 |
-
# initial phase noise (no noise for fundamental component)
|
126 |
-
rand_ini = torch.rand(f0_values.shape[0], f0_values.shape[2], \
|
127 |
-
device=f0_values.device)
|
128 |
-
rand_ini[:, 0] = 0
|
129 |
-
rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini
|
130 |
-
|
131 |
-
# instantanouse phase sine[t] = sin(2*pi \sum_i=1 ^{t} rad)
|
132 |
-
if not self.flag_for_pulse:
|
133 |
-
# # for normal case
|
134 |
-
|
135 |
-
# # To prevent torch.cumsum numerical overflow,
|
136 |
-
# # it is necessary to add -1 whenever \sum_k=1^n rad_value_k > 1.
|
137 |
-
# # Buffer tmp_over_one_idx indicates the time step to add -1.
|
138 |
-
# # This will not change F0 of sine because (x-1) * 2*pi = x * 2*pi
|
139 |
-
# tmp_over_one = torch.cumsum(rad_values, 1) % 1
|
140 |
-
# tmp_over_one_idx = (padDiff(tmp_over_one)) < 0
|
141 |
-
# cumsum_shift = torch.zeros_like(rad_values)
|
142 |
-
# cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0
|
143 |
-
|
144 |
-
# phase = torch.cumsum(rad_values, dim=1) * 2 * np.pi
|
145 |
-
rad_values = torch.nn.functional.interpolate(rad_values.transpose(1, 2),
|
146 |
-
scale_factor=1/self.upsample_scale,
|
147 |
-
mode="linear").transpose(1, 2)
|
148 |
-
|
149 |
-
# tmp_over_one = torch.cumsum(rad_values, 1) % 1
|
150 |
-
# tmp_over_one_idx = (padDiff(tmp_over_one)) < 0
|
151 |
-
# cumsum_shift = torch.zeros_like(rad_values)
|
152 |
-
# cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0
|
153 |
-
|
154 |
-
phase = torch.cumsum(rad_values, dim=1) * 2 * np.pi
|
155 |
-
phase = torch.nn.functional.interpolate(phase.transpose(1, 2) * self.upsample_scale,
|
156 |
-
scale_factor=self.upsample_scale, mode="linear").transpose(1, 2)
|
157 |
-
sines = torch.sin(phase)
|
158 |
-
|
159 |
-
else:
|
160 |
-
# If necessary, make sure that the first time step of every
|
161 |
-
# voiced segments is sin(pi) or cos(0)
|
162 |
-
# This is used for pulse-train generation
|
163 |
-
|
164 |
-
# identify the last time step in unvoiced segments
|
165 |
-
uv = self._f02uv(f0_values)
|
166 |
-
uv_1 = torch.roll(uv, shifts=-1, dims=1)
|
167 |
-
uv_1[:, -1, :] = 1
|
168 |
-
u_loc = (uv < 1) * (uv_1 > 0)
|
169 |
-
|
170 |
-
# get the instantanouse phase
|
171 |
-
tmp_cumsum = torch.cumsum(rad_values, dim=1)
|
172 |
-
# different batch needs to be processed differently
|
173 |
-
for idx in range(f0_values.shape[0]):
|
174 |
-
temp_sum = tmp_cumsum[idx, u_loc[idx, :, 0], :]
|
175 |
-
temp_sum[1:, :] = temp_sum[1:, :] - temp_sum[0:-1, :]
|
176 |
-
# stores the accumulation of i.phase within
|
177 |
-
# each voiced segments
|
178 |
-
tmp_cumsum[idx, :, :] = 0
|
179 |
-
tmp_cumsum[idx, u_loc[idx, :, 0], :] = temp_sum
|
180 |
-
|
181 |
-
# rad_values - tmp_cumsum: remove the accumulation of i.phase
|
182 |
-
# within the previous voiced segment.
|
183 |
-
i_phase = torch.cumsum(rad_values - tmp_cumsum, dim=1)
|
184 |
-
|
185 |
-
# get the sines
|
186 |
-
sines = torch.cos(i_phase * 2 * np.pi)
|
187 |
-
return sines
|
188 |
-
|
189 |
-
def forward(self, f0):
|
190 |
-
""" sine_tensor, uv = forward(f0)
|
191 |
-
input F0: tensor(batchsize=1, length, dim=1)
|
192 |
-
f0 for unvoiced steps should be 0
|
193 |
-
output sine_tensor: tensor(batchsize=1, length, dim)
|
194 |
-
output uv: tensor(batchsize=1, length, 1)
|
195 |
-
"""
|
196 |
-
f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim,
|
197 |
-
device=f0.device)
|
198 |
-
# fundamental component
|
199 |
-
fn = torch.multiply(f0, torch.FloatTensor([[range(1, self.harmonic_num + 2)]]).to(f0.device))
|
200 |
-
|
201 |
-
# generate sine waveforms
|
202 |
-
sine_waves = self._f02sine(fn) * self.sine_amp
|
203 |
-
|
204 |
-
# generate uv signal
|
205 |
-
# uv = torch.ones(f0.shape)
|
206 |
-
# uv = uv * (f0 > self.voiced_threshold)
|
207 |
-
uv = self._f02uv(f0)
|
208 |
-
|
209 |
-
# noise: for unvoiced should be similar to sine_amp
|
210 |
-
# std = self.sine_amp/3 -> max value ~ self.sine_amp
|
211 |
-
# . for voiced regions is self.noise_std
|
212 |
-
noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
|
213 |
-
noise = noise_amp * torch.randn_like(sine_waves)
|
214 |
-
|
215 |
-
# first: set the unvoiced part to 0 by uv
|
216 |
-
# then: additive noise
|
217 |
-
sine_waves = sine_waves * uv + noise
|
218 |
-
return sine_waves, uv, noise
|
219 |
-
|
220 |
-
|
221 |
-
class SourceModuleHnNSF(torch.nn.Module):
|
222 |
-
""" SourceModule for hn-nsf
|
223 |
-
SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1,
|
224 |
-
add_noise_std=0.003, voiced_threshod=0)
|
225 |
-
sampling_rate: sampling_rate in Hz
|
226 |
-
harmonic_num: number of harmonic above F0 (default: 0)
|
227 |
-
sine_amp: amplitude of sine source signal (default: 0.1)
|
228 |
-
add_noise_std: std of additive Gaussian noise (default: 0.003)
|
229 |
-
note that amplitude of noise in unvoiced is decided
|
230 |
-
by sine_amp
|
231 |
-
voiced_threshold: threhold to set U/V given F0 (default: 0)
|
232 |
-
Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
|
233 |
-
F0_sampled (batchsize, length, 1)
|
234 |
-
Sine_source (batchsize, length, 1)
|
235 |
-
noise_source (batchsize, length 1)
|
236 |
-
uv (batchsize, length, 1)
|
237 |
-
"""
|
238 |
-
|
239 |
-
def __init__(self, sampling_rate, upsample_scale, harmonic_num=0, sine_amp=0.1,
|
240 |
-
add_noise_std=0.003, voiced_threshod=0):
|
241 |
-
super(SourceModuleHnNSF, self).__init__()
|
242 |
-
|
243 |
-
self.sine_amp = sine_amp
|
244 |
-
self.noise_std = add_noise_std
|
245 |
-
|
246 |
-
# to produce sine waveforms
|
247 |
-
self.l_sin_gen = SineGen(sampling_rate, upsample_scale, harmonic_num,
|
248 |
-
sine_amp, add_noise_std, voiced_threshod)
|
249 |
-
|
250 |
-
# to merge source harmonics into a single excitation
|
251 |
-
self.l_linear = torch.nn.Linear(harmonic_num + 1, 1)
|
252 |
-
self.l_tanh = torch.nn.Tanh()
|
253 |
-
|
254 |
-
def forward(self, x):
|
255 |
-
"""
|
256 |
-
Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
|
257 |
-
F0_sampled (batchsize, length, 1)
|
258 |
-
Sine_source (batchsize, length, 1)
|
259 |
-
noise_source (batchsize, length 1)
|
260 |
-
"""
|
261 |
-
# source for harmonic branch
|
262 |
-
with torch.no_grad():
|
263 |
-
sine_wavs, uv, _ = self.l_sin_gen(x)
|
264 |
-
sine_merge = self.l_tanh(self.l_linear(sine_wavs))
|
265 |
-
|
266 |
-
# source for noise branch, in the same shape as uv
|
267 |
-
noise = torch.randn_like(uv) * self.sine_amp / 3
|
268 |
-
return sine_merge, noise, uv
|
269 |
-
def padDiff(x):
|
270 |
-
return F.pad(F.pad(x, (0,0,-1,1), 'constant', 0) - x, (0,0,0,-1), 'constant', 0)
|
271 |
-
|
272 |
-
class Generator(torch.nn.Module):
|
273 |
-
def __init__(self, style_dim, resblock_kernel_sizes, upsample_rates, upsample_initial_channel, resblock_dilation_sizes, upsample_kernel_sizes):
|
274 |
-
super(Generator, self).__init__()
|
275 |
-
self.num_kernels = len(resblock_kernel_sizes)
|
276 |
-
self.num_upsamples = len(upsample_rates)
|
277 |
-
resblock = AdaINResBlock1
|
278 |
-
|
279 |
-
self.m_source = SourceModuleHnNSF(
|
280 |
-
sampling_rate=24000,
|
281 |
-
upsample_scale=np.prod(upsample_rates),
|
282 |
-
harmonic_num=8, voiced_threshod=10)
|
283 |
-
|
284 |
-
self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(upsample_rates))
|
285 |
-
self.noise_convs = nn.ModuleList()
|
286 |
-
self.ups = nn.ModuleList()
|
287 |
-
self.noise_res = nn.ModuleList()
|
288 |
-
|
289 |
-
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
|
290 |
-
c_cur = upsample_initial_channel // (2 ** (i + 1))
|
291 |
-
|
292 |
-
self.ups.append(weight_norm(ConvTranspose1d(upsample_initial_channel//(2**i),
|
293 |
-
upsample_initial_channel//(2**(i+1)),
|
294 |
-
k, u, padding=(u//2 + u%2), output_padding=u%2)))
|
295 |
-
|
296 |
-
if i + 1 < len(upsample_rates): #
|
297 |
-
stride_f0 = np.prod(upsample_rates[i + 1:])
|
298 |
-
self.noise_convs.append(Conv1d(
|
299 |
-
1, c_cur, kernel_size=stride_f0 * 2, stride=stride_f0, padding=(stride_f0+1) // 2))
|
300 |
-
self.noise_res.append(resblock(c_cur, 7, [1,3,5], style_dim))
|
301 |
-
else:
|
302 |
-
self.noise_convs.append(Conv1d(1, c_cur, kernel_size=1))
|
303 |
-
self.noise_res.append(resblock(c_cur, 11, [1,3,5], style_dim))
|
304 |
-
|
305 |
-
self.resblocks = nn.ModuleList()
|
306 |
-
|
307 |
-
self.alphas = nn.ParameterList()
|
308 |
-
self.alphas.append(nn.Parameter(torch.ones(1, upsample_initial_channel, 1)))
|
309 |
-
|
310 |
-
for i in range(len(self.ups)):
|
311 |
-
ch = upsample_initial_channel//(2**(i+1))
|
312 |
-
self.alphas.append(nn.Parameter(torch.ones(1, ch, 1)))
|
313 |
-
|
314 |
-
for j, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)):
|
315 |
-
self.resblocks.append(resblock(ch, k, d, style_dim))
|
316 |
-
|
317 |
-
self.conv_post = weight_norm(Conv1d(ch, 1, 7, 1, padding=3))
|
318 |
-
self.ups.apply(init_weights)
|
319 |
-
self.conv_post.apply(init_weights)
|
320 |
-
|
321 |
-
def forward(self, x, s, f0):
|
322 |
-
|
323 |
-
f0 = self.f0_upsamp(f0[:, None]).transpose(1, 2) # bs,n,t
|
324 |
-
|
325 |
-
har_source, noi_source, uv = self.m_source(f0)
|
326 |
-
har_source = har_source.transpose(1, 2)
|
327 |
-
|
328 |
-
for i in range(self.num_upsamples):
|
329 |
-
x = x + (1 / self.alphas[i]) * (torch.sin(self.alphas[i] * x) ** 2)
|
330 |
-
x_source = self.noise_convs[i](har_source)
|
331 |
-
x_source = self.noise_res[i](x_source, s)
|
332 |
-
|
333 |
-
x = self.ups[i](x)
|
334 |
-
x = x + x_source
|
335 |
-
|
336 |
-
xs = None
|
337 |
-
for j in range(self.num_kernels):
|
338 |
-
if xs is None:
|
339 |
-
xs = self.resblocks[i*self.num_kernels+j](x, s)
|
340 |
-
else:
|
341 |
-
xs += self.resblocks[i*self.num_kernels+j](x, s)
|
342 |
-
x = xs / self.num_kernels
|
343 |
-
x = x + (1 / self.alphas[i+1]) * (torch.sin(self.alphas[i+1] * x) ** 2)
|
344 |
-
x = self.conv_post(x)
|
345 |
-
x = torch.tanh(x)
|
346 |
-
|
347 |
-
return x
|
348 |
-
|
349 |
-
def remove_weight_norm(self):
|
350 |
-
print('Removing weight norm...')
|
351 |
-
for l in self.ups:
|
352 |
-
remove_weight_norm(l)
|
353 |
-
for l in self.resblocks:
|
354 |
-
l.remove_weight_norm()
|
355 |
-
remove_weight_norm(self.conv_pre)
|
356 |
-
remove_weight_norm(self.conv_post)
|
357 |
-
|
358 |
-
|
359 |
-
class AdainResBlk1d(nn.Module):
|
360 |
-
def __init__(self, dim_in, dim_out, style_dim=64, actv=nn.LeakyReLU(0.2),
|
361 |
-
upsample='none', dropout_p=0.0):
|
362 |
-
super().__init__()
|
363 |
-
self.actv = actv
|
364 |
-
self.upsample_type = upsample
|
365 |
-
self.upsample = UpSample1d(upsample)
|
366 |
-
self.learned_sc = dim_in != dim_out
|
367 |
-
self._build_weights(dim_in, dim_out, style_dim)
|
368 |
-
self.dropout = nn.Dropout(dropout_p)
|
369 |
-
|
370 |
-
if upsample == 'none':
|
371 |
-
self.pool = nn.Identity()
|
372 |
-
else:
|
373 |
-
self.pool = weight_norm(nn.ConvTranspose1d(dim_in, dim_in, kernel_size=3, stride=2, groups=dim_in, padding=1, output_padding=1))
|
374 |
-
|
375 |
-
|
376 |
-
def _build_weights(self, dim_in, dim_out, style_dim):
|
377 |
-
self.conv1 = weight_norm(nn.Conv1d(dim_in, dim_out, 3, 1, 1))
|
378 |
-
self.conv2 = weight_norm(nn.Conv1d(dim_out, dim_out, 3, 1, 1))
|
379 |
-
self.norm1 = AdaIN1d(style_dim, dim_in)
|
380 |
-
self.norm2 = AdaIN1d(style_dim, dim_out)
|
381 |
-
if self.learned_sc:
|
382 |
-
self.conv1x1 = weight_norm(nn.Conv1d(dim_in, dim_out, 1, 1, 0, bias=False))
|
383 |
-
|
384 |
-
def _shortcut(self, x):
|
385 |
-
x = self.upsample(x)
|
386 |
-
if self.learned_sc:
|
387 |
-
x = self.conv1x1(x)
|
388 |
-
return x
|
389 |
-
|
390 |
-
def _residual(self, x, s):
|
391 |
-
x = self.norm1(x, s)
|
392 |
-
x = self.actv(x)
|
393 |
-
x = self.pool(x)
|
394 |
-
x = self.conv1(self.dropout(x))
|
395 |
-
x = self.norm2(x, s)
|
396 |
-
x = self.actv(x)
|
397 |
-
x = self.conv2(self.dropout(x))
|
398 |
-
return x
|
399 |
-
|
400 |
-
def forward(self, x, s):
|
401 |
-
out = self._residual(x, s)
|
402 |
-
out = (out + self._shortcut(x)) / math.sqrt(2)
|
403 |
-
return out
|
404 |
-
|
405 |
-
class UpSample1d(nn.Module):
|
406 |
-
def __init__(self, layer_type):
|
407 |
-
super().__init__()
|
408 |
-
self.layer_type = layer_type
|
409 |
-
|
410 |
-
def forward(self, x):
|
411 |
-
if self.layer_type == 'none':
|
412 |
-
return x
|
413 |
-
else:
|
414 |
-
return F.interpolate(x, scale_factor=2, mode='nearest')
|
415 |
-
|
416 |
-
class Decoder(nn.Module):
|
417 |
-
def __init__(self, dim_in=512, F0_channel=512, style_dim=64, dim_out=80,
|
418 |
-
resblock_kernel_sizes = [3,7,11],
|
419 |
-
upsample_rates = [10,5,3,2],
|
420 |
-
upsample_initial_channel=512,
|
421 |
-
resblock_dilation_sizes=[[1,3,5], [1,3,5], [1,3,5]],
|
422 |
-
upsample_kernel_sizes=[20,10,6,4]):
|
423 |
-
super().__init__()
|
424 |
-
|
425 |
-
self.decode = nn.ModuleList()
|
426 |
-
|
427 |
-
self.encode = AdainResBlk1d(dim_in + 2, 1024, style_dim)
|
428 |
-
|
429 |
-
self.decode.append(AdainResBlk1d(1024 + 2 + 64, 1024, style_dim))
|
430 |
-
self.decode.append(AdainResBlk1d(1024 + 2 + 64, 1024, style_dim))
|
431 |
-
self.decode.append(AdainResBlk1d(1024 + 2 + 64, 1024, style_dim))
|
432 |
-
self.decode.append(AdainResBlk1d(1024 + 2 + 64, 512, style_dim, upsample=True))
|
433 |
-
|
434 |
-
self.F0_conv = weight_norm(nn.Conv1d(1, 1, kernel_size=3, stride=2, groups=1, padding=1))
|
435 |
-
|
436 |
-
self.N_conv = weight_norm(nn.Conv1d(1, 1, kernel_size=3, stride=2, groups=1, padding=1))
|
437 |
-
|
438 |
-
self.asr_res = nn.Sequential(
|
439 |
-
weight_norm(nn.Conv1d(512, 64, kernel_size=1)),
|
440 |
-
)
|
441 |
-
|
442 |
-
|
443 |
-
self.generator = Generator(style_dim, resblock_kernel_sizes, upsample_rates, upsample_initial_channel, resblock_dilation_sizes, upsample_kernel_sizes)
|
444 |
-
|
445 |
-
|
446 |
-
def forward(self, asr, F0_curve, N, s):
|
447 |
-
if self.training:
|
448 |
-
downlist = [0, 3, 7]
|
449 |
-
F0_down = downlist[random.randint(0, 2)]
|
450 |
-
downlist = [0, 3, 7, 15]
|
451 |
-
N_down = downlist[random.randint(0, 3)]
|
452 |
-
if F0_down:
|
453 |
-
F0_curve = nn.functional.conv1d(F0_curve.unsqueeze(1), torch.ones(1, 1, F0_down).to('cuda'), padding=F0_down//2).squeeze(1) / F0_down
|
454 |
-
if N_down:
|
455 |
-
N = nn.functional.conv1d(N.unsqueeze(1), torch.ones(1, 1, N_down).to('cuda'), padding=N_down//2).squeeze(1) / N_down
|
456 |
-
|
457 |
-
|
458 |
-
F0 = self.F0_conv(F0_curve.unsqueeze(1))
|
459 |
-
N = self.N_conv(N.unsqueeze(1))
|
460 |
-
|
461 |
-
x = torch.cat([asr, F0, N], axis=1)
|
462 |
-
x = self.encode(x, s)
|
463 |
-
|
464 |
-
asr_res = self.asr_res(asr)
|
465 |
-
|
466 |
-
res = True
|
467 |
-
for block in self.decode:
|
468 |
-
if res:
|
469 |
-
x = torch.cat([x, asr_res, F0, N], axis=1)
|
470 |
-
x = block(x, s)
|
471 |
-
if block.upsample_type != "none":
|
472 |
-
res = False
|
473 |
-
|
474 |
-
x = self.generator(x, s, F0_curve)
|
475 |
-
return x
|
476 |
-
|
477 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Modules/istftnet.py
DELETED
@@ -1,530 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import torch.nn.functional as F
|
3 |
-
import torch.nn as nn
|
4 |
-
from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
|
5 |
-
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
|
6 |
-
from .utils import init_weights, get_padding
|
7 |
-
|
8 |
-
import math
|
9 |
-
import random
|
10 |
-
import numpy as np
|
11 |
-
from scipy.signal import get_window
|
12 |
-
|
13 |
-
LRELU_SLOPE = 0.1
|
14 |
-
|
15 |
-
class AdaIN1d(nn.Module):
|
16 |
-
def __init__(self, style_dim, num_features):
|
17 |
-
super().__init__()
|
18 |
-
self.norm = nn.InstanceNorm1d(num_features, affine=False)
|
19 |
-
self.fc = nn.Linear(style_dim, num_features*2)
|
20 |
-
|
21 |
-
def forward(self, x, s):
|
22 |
-
h = self.fc(s)
|
23 |
-
h = h.view(h.size(0), h.size(1), 1)
|
24 |
-
gamma, beta = torch.chunk(h, chunks=2, dim=1)
|
25 |
-
return (1 + gamma) * self.norm(x) + beta
|
26 |
-
|
27 |
-
class AdaINResBlock1(torch.nn.Module):
|
28 |
-
def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5), style_dim=64):
|
29 |
-
super(AdaINResBlock1, self).__init__()
|
30 |
-
self.convs1 = nn.ModuleList([
|
31 |
-
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
|
32 |
-
padding=get_padding(kernel_size, dilation[0]))),
|
33 |
-
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
|
34 |
-
padding=get_padding(kernel_size, dilation[1]))),
|
35 |
-
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2],
|
36 |
-
padding=get_padding(kernel_size, dilation[2])))
|
37 |
-
])
|
38 |
-
self.convs1.apply(init_weights)
|
39 |
-
|
40 |
-
self.convs2 = nn.ModuleList([
|
41 |
-
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
42 |
-
padding=get_padding(kernel_size, 1))),
|
43 |
-
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
44 |
-
padding=get_padding(kernel_size, 1))),
|
45 |
-
weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
|
46 |
-
padding=get_padding(kernel_size, 1)))
|
47 |
-
])
|
48 |
-
self.convs2.apply(init_weights)
|
49 |
-
|
50 |
-
self.adain1 = nn.ModuleList([
|
51 |
-
AdaIN1d(style_dim, channels),
|
52 |
-
AdaIN1d(style_dim, channels),
|
53 |
-
AdaIN1d(style_dim, channels),
|
54 |
-
])
|
55 |
-
|
56 |
-
self.adain2 = nn.ModuleList([
|
57 |
-
AdaIN1d(style_dim, channels),
|
58 |
-
AdaIN1d(style_dim, channels),
|
59 |
-
AdaIN1d(style_dim, channels),
|
60 |
-
])
|
61 |
-
|
62 |
-
self.alpha1 = nn.ParameterList([nn.Parameter(torch.ones(1, channels, 1)) for i in range(len(self.convs1))])
|
63 |
-
self.alpha2 = nn.ParameterList([nn.Parameter(torch.ones(1, channels, 1)) for i in range(len(self.convs2))])
|
64 |
-
|
65 |
-
|
66 |
-
def forward(self, x, s):
|
67 |
-
for c1, c2, n1, n2, a1, a2 in zip(self.convs1, self.convs2, self.adain1, self.adain2, self.alpha1, self.alpha2):
|
68 |
-
xt = n1(x, s)
|
69 |
-
xt = xt + (1 / a1) * (torch.sin(a1 * xt) ** 2) # Snake1D
|
70 |
-
xt = c1(xt)
|
71 |
-
xt = n2(xt, s)
|
72 |
-
xt = xt + (1 / a2) * (torch.sin(a2 * xt) ** 2) # Snake1D
|
73 |
-
xt = c2(xt)
|
74 |
-
x = xt + x
|
75 |
-
return x
|
76 |
-
|
77 |
-
def remove_weight_norm(self):
|
78 |
-
for l in self.convs1:
|
79 |
-
remove_weight_norm(l)
|
80 |
-
for l in self.convs2:
|
81 |
-
remove_weight_norm(l)
|
82 |
-
|
83 |
-
class TorchSTFT(torch.nn.Module):
|
84 |
-
def __init__(self, filter_length=800, hop_length=200, win_length=800, window='hann'):
|
85 |
-
super().__init__()
|
86 |
-
self.filter_length = filter_length
|
87 |
-
self.hop_length = hop_length
|
88 |
-
self.win_length = win_length
|
89 |
-
self.window = torch.from_numpy(get_window(window, win_length, fftbins=True).astype(np.float32))
|
90 |
-
|
91 |
-
def transform(self, input_data):
|
92 |
-
forward_transform = torch.stft(
|
93 |
-
input_data,
|
94 |
-
self.filter_length, self.hop_length, self.win_length, window=self.window.to(input_data.device),
|
95 |
-
return_complex=True)
|
96 |
-
|
97 |
-
return torch.abs(forward_transform), torch.angle(forward_transform)
|
98 |
-
|
99 |
-
def inverse(self, magnitude, phase):
|
100 |
-
inverse_transform = torch.istft(
|
101 |
-
magnitude * torch.exp(phase * 1j),
|
102 |
-
self.filter_length, self.hop_length, self.win_length, window=self.window.to(magnitude.device))
|
103 |
-
|
104 |
-
return inverse_transform.unsqueeze(-2) # unsqueeze to stay consistent with conv_transpose1d implementation
|
105 |
-
|
106 |
-
def forward(self, input_data):
|
107 |
-
self.magnitude, self.phase = self.transform(input_data)
|
108 |
-
reconstruction = self.inverse(self.magnitude, self.phase)
|
109 |
-
return reconstruction
|
110 |
-
|
111 |
-
class SineGen(torch.nn.Module):
|
112 |
-
""" Definition of sine generator
|
113 |
-
SineGen(samp_rate, harmonic_num = 0,
|
114 |
-
sine_amp = 0.1, noise_std = 0.003,
|
115 |
-
voiced_threshold = 0,
|
116 |
-
flag_for_pulse=False)
|
117 |
-
samp_rate: sampling rate in Hz
|
118 |
-
harmonic_num: number of harmonic overtones (default 0)
|
119 |
-
sine_amp: amplitude of sine-wavefrom (default 0.1)
|
120 |
-
noise_std: std of Gaussian noise (default 0.003)
|
121 |
-
voiced_thoreshold: F0 threshold for U/V classification (default 0)
|
122 |
-
flag_for_pulse: this SinGen is used inside PulseGen (default False)
|
123 |
-
Note: when flag_for_pulse is True, the first time step of a voiced
|
124 |
-
segment is always sin(np.pi) or cos(0)
|
125 |
-
"""
|
126 |
-
|
127 |
-
def __init__(self, samp_rate, upsample_scale, harmonic_num=0,
|
128 |
-
sine_amp=0.1, noise_std=0.003,
|
129 |
-
voiced_threshold=0,
|
130 |
-
flag_for_pulse=False):
|
131 |
-
super(SineGen, self).__init__()
|
132 |
-
self.sine_amp = sine_amp
|
133 |
-
self.noise_std = noise_std
|
134 |
-
self.harmonic_num = harmonic_num
|
135 |
-
self.dim = self.harmonic_num + 1
|
136 |
-
self.sampling_rate = samp_rate
|
137 |
-
self.voiced_threshold = voiced_threshold
|
138 |
-
self.flag_for_pulse = flag_for_pulse
|
139 |
-
self.upsample_scale = upsample_scale
|
140 |
-
|
141 |
-
def _f02uv(self, f0):
|
142 |
-
# generate uv signal
|
143 |
-
uv = (f0 > self.voiced_threshold).type(torch.float32)
|
144 |
-
return uv
|
145 |
-
|
146 |
-
def _f02sine(self, f0_values):
|
147 |
-
""" f0_values: (batchsize, length, dim)
|
148 |
-
where dim indicates fundamental tone and overtones
|
149 |
-
"""
|
150 |
-
# convert to F0 in rad. The interger part n can be ignored
|
151 |
-
# because 2 * np.pi * n doesn't affect phase
|
152 |
-
rad_values = (f0_values / self.sampling_rate) % 1
|
153 |
-
|
154 |
-
# initial phase noise (no noise for fundamental component)
|
155 |
-
rand_ini = torch.rand(f0_values.shape[0], f0_values.shape[2], \
|
156 |
-
device=f0_values.device)
|
157 |
-
rand_ini[:, 0] = 0
|
158 |
-
rad_values[:, 0, :] = rad_values[:, 0, :] + rand_ini
|
159 |
-
|
160 |
-
# instantanouse phase sine[t] = sin(2*pi \sum_i=1 ^{t} rad)
|
161 |
-
if not self.flag_for_pulse:
|
162 |
-
# # for normal case
|
163 |
-
|
164 |
-
# # To prevent torch.cumsum numerical overflow,
|
165 |
-
# # it is necessary to add -1 whenever \sum_k=1^n rad_value_k > 1.
|
166 |
-
# # Buffer tmp_over_one_idx indicates the time step to add -1.
|
167 |
-
# # This will not change F0 of sine because (x-1) * 2*pi = x * 2*pi
|
168 |
-
# tmp_over_one = torch.cumsum(rad_values, 1) % 1
|
169 |
-
# tmp_over_one_idx = (padDiff(tmp_over_one)) < 0
|
170 |
-
# cumsum_shift = torch.zeros_like(rad_values)
|
171 |
-
# cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0
|
172 |
-
|
173 |
-
# phase = torch.cumsum(rad_values, dim=1) * 2 * np.pi
|
174 |
-
rad_values = torch.nn.functional.interpolate(rad_values.transpose(1, 2),
|
175 |
-
scale_factor=1/self.upsample_scale,
|
176 |
-
mode="linear").transpose(1, 2)
|
177 |
-
|
178 |
-
# tmp_over_one = torch.cumsum(rad_values, 1) % 1
|
179 |
-
# tmp_over_one_idx = (padDiff(tmp_over_one)) < 0
|
180 |
-
# cumsum_shift = torch.zeros_like(rad_values)
|
181 |
-
# cumsum_shift[:, 1:, :] = tmp_over_one_idx * -1.0
|
182 |
-
|
183 |
-
phase = torch.cumsum(rad_values, dim=1) * 2 * np.pi
|
184 |
-
phase = torch.nn.functional.interpolate(phase.transpose(1, 2) * self.upsample_scale,
|
185 |
-
scale_factor=self.upsample_scale, mode="linear").transpose(1, 2)
|
186 |
-
sines = torch.sin(phase)
|
187 |
-
|
188 |
-
else:
|
189 |
-
# If necessary, make sure that the first time step of every
|
190 |
-
# voiced segments is sin(pi) or cos(0)
|
191 |
-
# This is used for pulse-train generation
|
192 |
-
|
193 |
-
# identify the last time step in unvoiced segments
|
194 |
-
uv = self._f02uv(f0_values)
|
195 |
-
uv_1 = torch.roll(uv, shifts=-1, dims=1)
|
196 |
-
uv_1[:, -1, :] = 1
|
197 |
-
u_loc = (uv < 1) * (uv_1 > 0)
|
198 |
-
|
199 |
-
# get the instantanouse phase
|
200 |
-
tmp_cumsum = torch.cumsum(rad_values, dim=1)
|
201 |
-
# different batch needs to be processed differently
|
202 |
-
for idx in range(f0_values.shape[0]):
|
203 |
-
temp_sum = tmp_cumsum[idx, u_loc[idx, :, 0], :]
|
204 |
-
temp_sum[1:, :] = temp_sum[1:, :] - temp_sum[0:-1, :]
|
205 |
-
# stores the accumulation of i.phase within
|
206 |
-
# each voiced segments
|
207 |
-
tmp_cumsum[idx, :, :] = 0
|
208 |
-
tmp_cumsum[idx, u_loc[idx, :, 0], :] = temp_sum
|
209 |
-
|
210 |
-
# rad_values - tmp_cumsum: remove the accumulation of i.phase
|
211 |
-
# within the previous voiced segment.
|
212 |
-
i_phase = torch.cumsum(rad_values - tmp_cumsum, dim=1)
|
213 |
-
|
214 |
-
# get the sines
|
215 |
-
sines = torch.cos(i_phase * 2 * np.pi)
|
216 |
-
return sines
|
217 |
-
|
218 |
-
def forward(self, f0):
|
219 |
-
""" sine_tensor, uv = forward(f0)
|
220 |
-
input F0: tensor(batchsize=1, length, dim=1)
|
221 |
-
f0 for unvoiced steps should be 0
|
222 |
-
output sine_tensor: tensor(batchsize=1, length, dim)
|
223 |
-
output uv: tensor(batchsize=1, length, 1)
|
224 |
-
"""
|
225 |
-
f0_buf = torch.zeros(f0.shape[0], f0.shape[1], self.dim,
|
226 |
-
device=f0.device)
|
227 |
-
# fundamental component
|
228 |
-
fn = torch.multiply(f0, torch.FloatTensor([[range(1, self.harmonic_num + 2)]]).to(f0.device))
|
229 |
-
|
230 |
-
# generate sine waveforms
|
231 |
-
sine_waves = self._f02sine(fn) * self.sine_amp
|
232 |
-
|
233 |
-
# generate uv signal
|
234 |
-
# uv = torch.ones(f0.shape)
|
235 |
-
# uv = uv * (f0 > self.voiced_threshold)
|
236 |
-
uv = self._f02uv(f0)
|
237 |
-
|
238 |
-
# noise: for unvoiced should be similar to sine_amp
|
239 |
-
# std = self.sine_amp/3 -> max value ~ self.sine_amp
|
240 |
-
# . for voiced regions is self.noise_std
|
241 |
-
noise_amp = uv * self.noise_std + (1 - uv) * self.sine_amp / 3
|
242 |
-
noise = noise_amp * torch.randn_like(sine_waves)
|
243 |
-
|
244 |
-
# first: set the unvoiced part to 0 by uv
|
245 |
-
# then: additive noise
|
246 |
-
sine_waves = sine_waves * uv + noise
|
247 |
-
return sine_waves, uv, noise
|
248 |
-
|
249 |
-
|
250 |
-
class SourceModuleHnNSF(torch.nn.Module):
|
251 |
-
""" SourceModule for hn-nsf
|
252 |
-
SourceModule(sampling_rate, harmonic_num=0, sine_amp=0.1,
|
253 |
-
add_noise_std=0.003, voiced_threshod=0)
|
254 |
-
sampling_rate: sampling_rate in Hz
|
255 |
-
harmonic_num: number of harmonic above F0 (default: 0)
|
256 |
-
sine_amp: amplitude of sine source signal (default: 0.1)
|
257 |
-
add_noise_std: std of additive Gaussian noise (default: 0.003)
|
258 |
-
note that amplitude of noise in unvoiced is decided
|
259 |
-
by sine_amp
|
260 |
-
voiced_threshold: threhold to set U/V given F0 (default: 0)
|
261 |
-
Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
|
262 |
-
F0_sampled (batchsize, length, 1)
|
263 |
-
Sine_source (batchsize, length, 1)
|
264 |
-
noise_source (batchsize, length 1)
|
265 |
-
uv (batchsize, length, 1)
|
266 |
-
"""
|
267 |
-
|
268 |
-
def __init__(self, sampling_rate, upsample_scale, harmonic_num=0, sine_amp=0.1,
|
269 |
-
add_noise_std=0.003, voiced_threshod=0):
|
270 |
-
super(SourceModuleHnNSF, self).__init__()
|
271 |
-
|
272 |
-
self.sine_amp = sine_amp
|
273 |
-
self.noise_std = add_noise_std
|
274 |
-
|
275 |
-
# to produce sine waveforms
|
276 |
-
self.l_sin_gen = SineGen(sampling_rate, upsample_scale, harmonic_num,
|
277 |
-
sine_amp, add_noise_std, voiced_threshod)
|
278 |
-
|
279 |
-
# to merge source harmonics into a single excitation
|
280 |
-
self.l_linear = torch.nn.Linear(harmonic_num + 1, 1)
|
281 |
-
self.l_tanh = torch.nn.Tanh()
|
282 |
-
|
283 |
-
def forward(self, x):
|
284 |
-
"""
|
285 |
-
Sine_source, noise_source = SourceModuleHnNSF(F0_sampled)
|
286 |
-
F0_sampled (batchsize, length, 1)
|
287 |
-
Sine_source (batchsize, length, 1)
|
288 |
-
noise_source (batchsize, length 1)
|
289 |
-
"""
|
290 |
-
# source for harmonic branch
|
291 |
-
with torch.no_grad():
|
292 |
-
sine_wavs, uv, _ = self.l_sin_gen(x)
|
293 |
-
sine_merge = self.l_tanh(self.l_linear(sine_wavs))
|
294 |
-
|
295 |
-
# source for noise branch, in the same shape as uv
|
296 |
-
noise = torch.randn_like(uv) * self.sine_amp / 3
|
297 |
-
return sine_merge, noise, uv
|
298 |
-
def padDiff(x):
|
299 |
-
return F.pad(F.pad(x, (0,0,-1,1), 'constant', 0) - x, (0,0,0,-1), 'constant', 0)
|
300 |
-
|
301 |
-
|
302 |
-
class Generator(torch.nn.Module):
|
303 |
-
def __init__(self, style_dim, resblock_kernel_sizes, upsample_rates, upsample_initial_channel, resblock_dilation_sizes, upsample_kernel_sizes, gen_istft_n_fft, gen_istft_hop_size):
|
304 |
-
super(Generator, self).__init__()
|
305 |
-
|
306 |
-
self.num_kernels = len(resblock_kernel_sizes)
|
307 |
-
self.num_upsamples = len(upsample_rates)
|
308 |
-
resblock = AdaINResBlock1
|
309 |
-
|
310 |
-
self.m_source = SourceModuleHnNSF(
|
311 |
-
sampling_rate=24000,
|
312 |
-
upsample_scale=np.prod(upsample_rates) * gen_istft_hop_size,
|
313 |
-
harmonic_num=8, voiced_threshod=10)
|
314 |
-
self.f0_upsamp = torch.nn.Upsample(scale_factor=np.prod(upsample_rates) * gen_istft_hop_size)
|
315 |
-
self.noise_convs = nn.ModuleList()
|
316 |
-
self.noise_res = nn.ModuleList()
|
317 |
-
|
318 |
-
self.ups = nn.ModuleList()
|
319 |
-
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
|
320 |
-
self.ups.append(weight_norm(
|
321 |
-
ConvTranspose1d(upsample_initial_channel//(2**i), upsample_initial_channel//(2**(i+1)),
|
322 |
-
k, u, padding=(k-u)//2)))
|
323 |
-
|
324 |
-
self.resblocks = nn.ModuleList()
|
325 |
-
for i in range(len(self.ups)):
|
326 |
-
ch = upsample_initial_channel//(2**(i+1))
|
327 |
-
for j, (k, d) in enumerate(zip(resblock_kernel_sizes,resblock_dilation_sizes)):
|
328 |
-
self.resblocks.append(resblock(ch, k, d, style_dim))
|
329 |
-
|
330 |
-
c_cur = upsample_initial_channel // (2 ** (i + 1))
|
331 |
-
|
332 |
-
if i + 1 < len(upsample_rates): #
|
333 |
-
stride_f0 = np.prod(upsample_rates[i + 1:])
|
334 |
-
self.noise_convs.append(Conv1d(
|
335 |
-
gen_istft_n_fft + 2, c_cur, kernel_size=stride_f0 * 2, stride=stride_f0, padding=(stride_f0+1) // 2))
|
336 |
-
self.noise_res.append(resblock(c_cur, 7, [1,3,5], style_dim))
|
337 |
-
else:
|
338 |
-
self.noise_convs.append(Conv1d(gen_istft_n_fft + 2, c_cur, kernel_size=1))
|
339 |
-
self.noise_res.append(resblock(c_cur, 11, [1,3,5], style_dim))
|
340 |
-
|
341 |
-
|
342 |
-
self.post_n_fft = gen_istft_n_fft
|
343 |
-
self.conv_post = weight_norm(Conv1d(ch, self.post_n_fft + 2, 7, 1, padding=3))
|
344 |
-
self.ups.apply(init_weights)
|
345 |
-
self.conv_post.apply(init_weights)
|
346 |
-
self.reflection_pad = torch.nn.ReflectionPad1d((1, 0))
|
347 |
-
self.stft = TorchSTFT(filter_length=gen_istft_n_fft, hop_length=gen_istft_hop_size, win_length=gen_istft_n_fft)
|
348 |
-
|
349 |
-
|
350 |
-
def forward(self, x, s, f0):
|
351 |
-
with torch.no_grad():
|
352 |
-
f0 = self.f0_upsamp(f0[:, None]).transpose(1, 2) # bs,n,t
|
353 |
-
|
354 |
-
har_source, noi_source, uv = self.m_source(f0)
|
355 |
-
har_source = har_source.transpose(1, 2).squeeze(1)
|
356 |
-
har_spec, har_phase = self.stft.transform(har_source)
|
357 |
-
har = torch.cat([har_spec, har_phase], dim=1)
|
358 |
-
|
359 |
-
for i in range(self.num_upsamples):
|
360 |
-
x = F.leaky_relu(x, LRELU_SLOPE)
|
361 |
-
x_source = self.noise_convs[i](har)
|
362 |
-
x_source = self.noise_res[i](x_source, s)
|
363 |
-
|
364 |
-
x = self.ups[i](x)
|
365 |
-
if i == self.num_upsamples - 1:
|
366 |
-
x = self.reflection_pad(x)
|
367 |
-
|
368 |
-
x = x + x_source
|
369 |
-
xs = None
|
370 |
-
for j in range(self.num_kernels):
|
371 |
-
if xs is None:
|
372 |
-
xs = self.resblocks[i*self.num_kernels+j](x, s)
|
373 |
-
else:
|
374 |
-
xs += self.resblocks[i*self.num_kernels+j](x, s)
|
375 |
-
x = xs / self.num_kernels
|
376 |
-
x = F.leaky_relu(x)
|
377 |
-
x = self.conv_post(x)
|
378 |
-
spec = torch.exp(x[:,:self.post_n_fft // 2 + 1, :])
|
379 |
-
phase = torch.sin(x[:, self.post_n_fft // 2 + 1:, :])
|
380 |
-
return self.stft.inverse(spec, phase)
|
381 |
-
|
382 |
-
def fw_phase(self, x, s):
|
383 |
-
for i in range(self.num_upsamples):
|
384 |
-
x = F.leaky_relu(x, LRELU_SLOPE)
|
385 |
-
x = self.ups[i](x)
|
386 |
-
xs = None
|
387 |
-
for j in range(self.num_kernels):
|
388 |
-
if xs is None:
|
389 |
-
xs = self.resblocks[i*self.num_kernels+j](x, s)
|
390 |
-
else:
|
391 |
-
xs += self.resblocks[i*self.num_kernels+j](x, s)
|
392 |
-
x = xs / self.num_kernels
|
393 |
-
x = F.leaky_relu(x)
|
394 |
-
x = self.reflection_pad(x)
|
395 |
-
x = self.conv_post(x)
|
396 |
-
spec = torch.exp(x[:,:self.post_n_fft // 2 + 1, :])
|
397 |
-
phase = torch.sin(x[:, self.post_n_fft // 2 + 1:, :])
|
398 |
-
return spec, phase
|
399 |
-
|
400 |
-
def remove_weight_norm(self):
|
401 |
-
print('Removing weight norm...')
|
402 |
-
for l in self.ups:
|
403 |
-
remove_weight_norm(l)
|
404 |
-
for l in self.resblocks:
|
405 |
-
l.remove_weight_norm()
|
406 |
-
remove_weight_norm(self.conv_pre)
|
407 |
-
remove_weight_norm(self.conv_post)
|
408 |
-
|
409 |
-
|
410 |
-
class AdainResBlk1d(nn.Module):
|
411 |
-
def __init__(self, dim_in, dim_out, style_dim=64, actv=nn.LeakyReLU(0.2),
|
412 |
-
upsample='none', dropout_p=0.0):
|
413 |
-
super().__init__()
|
414 |
-
self.actv = actv
|
415 |
-
self.upsample_type = upsample
|
416 |
-
self.upsample = UpSample1d(upsample)
|
417 |
-
self.learned_sc = dim_in != dim_out
|
418 |
-
self._build_weights(dim_in, dim_out, style_dim)
|
419 |
-
self.dropout = nn.Dropout(dropout_p)
|
420 |
-
|
421 |
-
if upsample == 'none':
|
422 |
-
self.pool = nn.Identity()
|
423 |
-
else:
|
424 |
-
self.pool = weight_norm(nn.ConvTranspose1d(dim_in, dim_in, kernel_size=3, stride=2, groups=dim_in, padding=1, output_padding=1))
|
425 |
-
|
426 |
-
|
427 |
-
def _build_weights(self, dim_in, dim_out, style_dim):
|
428 |
-
self.conv1 = weight_norm(nn.Conv1d(dim_in, dim_out, 3, 1, 1))
|
429 |
-
self.conv2 = weight_norm(nn.Conv1d(dim_out, dim_out, 3, 1, 1))
|
430 |
-
self.norm1 = AdaIN1d(style_dim, dim_in)
|
431 |
-
self.norm2 = AdaIN1d(style_dim, dim_out)
|
432 |
-
if self.learned_sc:
|
433 |
-
self.conv1x1 = weight_norm(nn.Conv1d(dim_in, dim_out, 1, 1, 0, bias=False))
|
434 |
-
|
435 |
-
def _shortcut(self, x):
|
436 |
-
x = self.upsample(x)
|
437 |
-
if self.learned_sc:
|
438 |
-
x = self.conv1x1(x)
|
439 |
-
return x
|
440 |
-
|
441 |
-
def _residual(self, x, s):
|
442 |
-
x = self.norm1(x, s)
|
443 |
-
x = self.actv(x)
|
444 |
-
x = self.pool(x)
|
445 |
-
x = self.conv1(self.dropout(x))
|
446 |
-
x = self.norm2(x, s)
|
447 |
-
x = self.actv(x)
|
448 |
-
x = self.conv2(self.dropout(x))
|
449 |
-
return x
|
450 |
-
|
451 |
-
def forward(self, x, s):
|
452 |
-
out = self._residual(x, s)
|
453 |
-
out = (out + self._shortcut(x)) / math.sqrt(2)
|
454 |
-
return out
|
455 |
-
|
456 |
-
class UpSample1d(nn.Module):
|
457 |
-
def __init__(self, layer_type):
|
458 |
-
super().__init__()
|
459 |
-
self.layer_type = layer_type
|
460 |
-
|
461 |
-
def forward(self, x):
|
462 |
-
if self.layer_type == 'none':
|
463 |
-
return x
|
464 |
-
else:
|
465 |
-
return F.interpolate(x, scale_factor=2, mode='nearest')
|
466 |
-
|
467 |
-
class Decoder(nn.Module):
|
468 |
-
def __init__(self, dim_in=512, F0_channel=512, style_dim=64, dim_out=80,
|
469 |
-
resblock_kernel_sizes = [3,7,11],
|
470 |
-
upsample_rates = [10, 6],
|
471 |
-
upsample_initial_channel=512,
|
472 |
-
resblock_dilation_sizes=[[1,3,5], [1,3,5], [1,3,5]],
|
473 |
-
upsample_kernel_sizes=[20, 12],
|
474 |
-
gen_istft_n_fft=20, gen_istft_hop_size=5):
|
475 |
-
super().__init__()
|
476 |
-
|
477 |
-
self.decode = nn.ModuleList()
|
478 |
-
|
479 |
-
self.encode = AdainResBlk1d(dim_in + 2, 1024, style_dim)
|
480 |
-
|
481 |
-
self.decode.append(AdainResBlk1d(1024 + 2 + 64, 1024, style_dim))
|
482 |
-
self.decode.append(AdainResBlk1d(1024 + 2 + 64, 1024, style_dim))
|
483 |
-
self.decode.append(AdainResBlk1d(1024 + 2 + 64, 1024, style_dim))
|
484 |
-
self.decode.append(AdainResBlk1d(1024 + 2 + 64, 512, style_dim, upsample=True))
|
485 |
-
|
486 |
-
self.F0_conv = weight_norm(nn.Conv1d(1, 1, kernel_size=3, stride=2, groups=1, padding=1))
|
487 |
-
|
488 |
-
self.N_conv = weight_norm(nn.Conv1d(1, 1, kernel_size=3, stride=2, groups=1, padding=1))
|
489 |
-
|
490 |
-
self.asr_res = nn.Sequential(
|
491 |
-
weight_norm(nn.Conv1d(512, 64, kernel_size=1)),
|
492 |
-
)
|
493 |
-
|
494 |
-
|
495 |
-
self.generator = Generator(style_dim, resblock_kernel_sizes, upsample_rates,
|
496 |
-
upsample_initial_channel, resblock_dilation_sizes,
|
497 |
-
upsample_kernel_sizes, gen_istft_n_fft, gen_istft_hop_size)
|
498 |
-
|
499 |
-
def forward(self, asr, F0_curve, N, s):
|
500 |
-
if self.training:
|
501 |
-
downlist = [0, 3, 7]
|
502 |
-
F0_down = downlist[random.randint(0, 2)]
|
503 |
-
downlist = [0, 3, 7, 15]
|
504 |
-
N_down = downlist[random.randint(0, 3)]
|
505 |
-
if F0_down:
|
506 |
-
F0_curve = nn.functional.conv1d(F0_curve.unsqueeze(1), torch.ones(1, 1, F0_down).to('cuda'), padding=F0_down//2).squeeze(1) / F0_down
|
507 |
-
if N_down:
|
508 |
-
N = nn.functional.conv1d(N.unsqueeze(1), torch.ones(1, 1, N_down).to('cuda'), padding=N_down//2).squeeze(1) / N_down
|
509 |
-
|
510 |
-
|
511 |
-
F0 = self.F0_conv(F0_curve.unsqueeze(1))
|
512 |
-
N = self.N_conv(N.unsqueeze(1))
|
513 |
-
|
514 |
-
x = torch.cat([asr, F0, N], axis=1)
|
515 |
-
x = self.encode(x, s)
|
516 |
-
|
517 |
-
asr_res = self.asr_res(asr)
|
518 |
-
|
519 |
-
res = True
|
520 |
-
for block in self.decode:
|
521 |
-
if res:
|
522 |
-
x = torch.cat([x, asr_res, F0, N], axis=1)
|
523 |
-
x = block(x, s)
|
524 |
-
if block.upsample_type != "none":
|
525 |
-
res = False
|
526 |
-
|
527 |
-
x = self.generator(x, s, F0_curve)
|
528 |
-
return x
|
529 |
-
|
530 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Modules/slmadv.py
DELETED
@@ -1,195 +0,0 @@
|
|
1 |
-
import torch
|
2 |
-
import numpy as np
|
3 |
-
import torch.nn.functional as F
|
4 |
-
|
5 |
-
class SLMAdversarialLoss(torch.nn.Module):
|
6 |
-
|
7 |
-
def __init__(self, model, wl, sampler, min_len, max_len, batch_percentage=0.5, skip_update=10, sig=1.5):
|
8 |
-
super(SLMAdversarialLoss, self).__init__()
|
9 |
-
self.model = model
|
10 |
-
self.wl = wl
|
11 |
-
self.sampler = sampler
|
12 |
-
|
13 |
-
self.min_len = min_len
|
14 |
-
self.max_len = max_len
|
15 |
-
self.batch_percentage = batch_percentage
|
16 |
-
|
17 |
-
self.sig = sig
|
18 |
-
self.skip_update = skip_update
|
19 |
-
|
20 |
-
def forward(self, iters, y_rec_gt, y_rec_gt_pred, waves, mel_input_length, ref_text, ref_lengths, use_ind, s_trg, ref_s=None):
|
21 |
-
text_mask = length_to_mask(ref_lengths).to(ref_text.device)
|
22 |
-
bert_dur = self.model.bert(ref_text, attention_mask=(~text_mask).int())
|
23 |
-
d_en = self.model.bert_encoder(bert_dur).transpose(-1, -2)
|
24 |
-
|
25 |
-
if use_ind and np.random.rand() < 0.5:
|
26 |
-
s_preds = s_trg
|
27 |
-
else:
|
28 |
-
num_steps = np.random.randint(3, 5)
|
29 |
-
if ref_s is not None:
|
30 |
-
s_preds = self.sampler(noise = torch.randn_like(s_trg).unsqueeze(1).to(ref_text.device),
|
31 |
-
embedding=bert_dur,
|
32 |
-
embedding_scale=1,
|
33 |
-
features=ref_s, # reference from the same speaker as the embedding
|
34 |
-
embedding_mask_proba=0.1,
|
35 |
-
num_steps=num_steps).squeeze(1)
|
36 |
-
else:
|
37 |
-
s_preds = self.sampler(noise = torch.randn_like(s_trg).unsqueeze(1).to(ref_text.device),
|
38 |
-
embedding=bert_dur,
|
39 |
-
embedding_scale=1,
|
40 |
-
embedding_mask_proba=0.1,
|
41 |
-
num_steps=num_steps).squeeze(1)
|
42 |
-
|
43 |
-
s_dur = s_preds[:, 128:]
|
44 |
-
s = s_preds[:, :128]
|
45 |
-
|
46 |
-
d, _ = self.model.predictor(d_en, s_dur,
|
47 |
-
ref_lengths,
|
48 |
-
torch.randn(ref_lengths.shape[0], ref_lengths.max(), 2).to(ref_text.device),
|
49 |
-
text_mask)
|
50 |
-
|
51 |
-
bib = 0
|
52 |
-
|
53 |
-
output_lengths = []
|
54 |
-
attn_preds = []
|
55 |
-
|
56 |
-
# differentiable duration modeling
|
57 |
-
for _s2s_pred, _text_length in zip(d, ref_lengths):
|
58 |
-
|
59 |
-
_s2s_pred_org = _s2s_pred[:_text_length, :]
|
60 |
-
|
61 |
-
_s2s_pred = torch.sigmoid(_s2s_pred_org)
|
62 |
-
_dur_pred = _s2s_pred.sum(axis=-1)
|
63 |
-
|
64 |
-
l = int(torch.round(_s2s_pred.sum()).item())
|
65 |
-
t = torch.arange(0, l).expand(l)
|
66 |
-
|
67 |
-
t = torch.arange(0, l).unsqueeze(0).expand((len(_s2s_pred), l)).to(ref_text.device)
|
68 |
-
loc = torch.cumsum(_dur_pred, dim=0) - _dur_pred / 2
|
69 |
-
|
70 |
-
h = torch.exp(-0.5 * torch.square(t - (l - loc.unsqueeze(-1))) / (self.sig)**2)
|
71 |
-
|
72 |
-
out = torch.nn.functional.conv1d(_s2s_pred_org.unsqueeze(0),
|
73 |
-
h.unsqueeze(1),
|
74 |
-
padding=h.shape[-1] - 1, groups=int(_text_length))[..., :l]
|
75 |
-
attn_preds.append(F.softmax(out.squeeze(), dim=0))
|
76 |
-
|
77 |
-
output_lengths.append(l)
|
78 |
-
|
79 |
-
max_len = max(output_lengths)
|
80 |
-
|
81 |
-
with torch.no_grad():
|
82 |
-
t_en = self.model.text_encoder(ref_text, ref_lengths, text_mask)
|
83 |
-
|
84 |
-
s2s_attn = torch.zeros(len(ref_lengths), int(ref_lengths.max()), max_len).to(ref_text.device)
|
85 |
-
for bib in range(len(output_lengths)):
|
86 |
-
s2s_attn[bib, :ref_lengths[bib], :output_lengths[bib]] = attn_preds[bib]
|
87 |
-
|
88 |
-
asr_pred = t_en @ s2s_attn
|
89 |
-
|
90 |
-
_, p_pred = self.model.predictor(d_en, s_dur,
|
91 |
-
ref_lengths,
|
92 |
-
s2s_attn,
|
93 |
-
text_mask)
|
94 |
-
|
95 |
-
mel_len = max(int(min(output_lengths) / 2 - 1), self.min_len // 2)
|
96 |
-
mel_len = min(mel_len, self.max_len // 2)
|
97 |
-
|
98 |
-
# get clips
|
99 |
-
|
100 |
-
en = []
|
101 |
-
p_en = []
|
102 |
-
sp = []
|
103 |
-
|
104 |
-
F0_fakes = []
|
105 |
-
N_fakes = []
|
106 |
-
|
107 |
-
wav = []
|
108 |
-
|
109 |
-
for bib in range(len(output_lengths)):
|
110 |
-
mel_length_pred = output_lengths[bib]
|
111 |
-
mel_length_gt = int(mel_input_length[bib].item() / 2)
|
112 |
-
if mel_length_gt <= mel_len or mel_length_pred <= mel_len:
|
113 |
-
continue
|
114 |
-
|
115 |
-
sp.append(s_preds[bib])
|
116 |
-
|
117 |
-
random_start = np.random.randint(0, mel_length_pred - mel_len)
|
118 |
-
en.append(asr_pred[bib, :, random_start:random_start+mel_len])
|
119 |
-
p_en.append(p_pred[bib, :, random_start:random_start+mel_len])
|
120 |
-
|
121 |
-
# get ground truth clips
|
122 |
-
random_start = np.random.randint(0, mel_length_gt - mel_len)
|
123 |
-
y = waves[bib][(random_start * 2) * 300:((random_start+mel_len) * 2) * 300]
|
124 |
-
wav.append(torch.from_numpy(y).to(ref_text.device))
|
125 |
-
|
126 |
-
if len(wav) >= self.batch_percentage * len(waves): # prevent OOM due to longer lengths
|
127 |
-
break
|
128 |
-
|
129 |
-
if len(sp) <= 1:
|
130 |
-
return None
|
131 |
-
|
132 |
-
sp = torch.stack(sp)
|
133 |
-
wav = torch.stack(wav).float()
|
134 |
-
en = torch.stack(en)
|
135 |
-
p_en = torch.stack(p_en)
|
136 |
-
|
137 |
-
F0_fake, N_fake = self.model.predictor.F0Ntrain(p_en, sp[:, 128:])
|
138 |
-
y_pred = self.model.decoder(en, F0_fake, N_fake, sp[:, :128])
|
139 |
-
|
140 |
-
# discriminator loss
|
141 |
-
if (iters + 1) % self.skip_update == 0:
|
142 |
-
if np.random.randint(0, 2) == 0:
|
143 |
-
wav = y_rec_gt_pred
|
144 |
-
use_rec = True
|
145 |
-
else:
|
146 |
-
use_rec = False
|
147 |
-
|
148 |
-
crop_size = min(wav.size(-1), y_pred.size(-1))
|
149 |
-
if use_rec: # use reconstructed (shorter lengths), do length invariant regularization
|
150 |
-
if wav.size(-1) > y_pred.size(-1):
|
151 |
-
real_GP = wav[:, : , :crop_size]
|
152 |
-
out_crop = self.wl.discriminator_forward(real_GP.detach().squeeze())
|
153 |
-
out_org = self.wl.discriminator_forward(wav.detach().squeeze())
|
154 |
-
loss_reg = F.l1_loss(out_crop, out_org[..., :out_crop.size(-1)])
|
155 |
-
|
156 |
-
if np.random.randint(0, 2) == 0:
|
157 |
-
d_loss = self.wl.discriminator(real_GP.detach().squeeze(), y_pred.detach().squeeze()).mean()
|
158 |
-
else:
|
159 |
-
d_loss = self.wl.discriminator(wav.detach().squeeze(), y_pred.detach().squeeze()).mean()
|
160 |
-
else:
|
161 |
-
real_GP = y_pred[:, : , :crop_size]
|
162 |
-
out_crop = self.wl.discriminator_forward(real_GP.detach().squeeze())
|
163 |
-
out_org = self.wl.discriminator_forward(y_pred.detach().squeeze())
|
164 |
-
loss_reg = F.l1_loss(out_crop, out_org[..., :out_crop.size(-1)])
|
165 |
-
|
166 |
-
if np.random.randint(0, 2) == 0:
|
167 |
-
d_loss = self.wl.discriminator(wav.detach().squeeze(), real_GP.detach().squeeze()).mean()
|
168 |
-
else:
|
169 |
-
d_loss = self.wl.discriminator(wav.detach().squeeze(), y_pred.detach().squeeze()).mean()
|
170 |
-
|
171 |
-
# regularization (ignore length variation)
|
172 |
-
d_loss += loss_reg
|
173 |
-
|
174 |
-
out_gt = self.wl.discriminator_forward(y_rec_gt.detach().squeeze())
|
175 |
-
out_rec = self.wl.discriminator_forward(y_rec_gt_pred.detach().squeeze())
|
176 |
-
|
177 |
-
# regularization (ignore reconstruction artifacts)
|
178 |
-
d_loss += F.l1_loss(out_gt, out_rec)
|
179 |
-
|
180 |
-
else:
|
181 |
-
d_loss = self.wl.discriminator(wav.detach().squeeze(), y_pred.detach().squeeze()).mean()
|
182 |
-
else:
|
183 |
-
d_loss = 0
|
184 |
-
|
185 |
-
# generator loss
|
186 |
-
gen_loss = self.wl.generator(y_pred.squeeze())
|
187 |
-
|
188 |
-
gen_loss = gen_loss.mean()
|
189 |
-
|
190 |
-
return d_loss, gen_loss, y_pred.detach().cpu().numpy()
|
191 |
-
|
192 |
-
def length_to_mask(lengths):
|
193 |
-
mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
|
194 |
-
mask = torch.gt(mask+1, lengths.unsqueeze(1))
|
195 |
-
return mask
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Modules/utils.py
DELETED
@@ -1,14 +0,0 @@
|
|
1 |
-
def init_weights(m, mean=0.0, std=0.01):
|
2 |
-
classname = m.__class__.__name__
|
3 |
-
if classname.find("Conv") != -1:
|
4 |
-
m.weight.data.normal_(mean, std)
|
5 |
-
|
6 |
-
|
7 |
-
def apply_weight_norm(m):
|
8 |
-
classname = m.__class__.__name__
|
9 |
-
if classname.find("Conv") != -1:
|
10 |
-
weight_norm(m)
|
11 |
-
|
12 |
-
|
13 |
-
def get_padding(kernel_size, dilation=1):
|
14 |
-
return int((kernel_size*dilation - dilation)/2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Utils/ASR/__init__.py
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
|
|
|
|
Utils/ASR/config.yml
DELETED
@@ -1,29 +0,0 @@
|
|
1 |
-
log_dir: "logs/20201006"
|
2 |
-
save_freq: 5
|
3 |
-
device: "cuda"
|
4 |
-
epochs: 180
|
5 |
-
batch_size: 64
|
6 |
-
pretrained_model: ""
|
7 |
-
train_data: "ASRDataset/train_list.txt"
|
8 |
-
val_data: "ASRDataset/val_list.txt"
|
9 |
-
|
10 |
-
dataset_params:
|
11 |
-
data_augmentation: false
|
12 |
-
|
13 |
-
preprocess_parasm:
|
14 |
-
sr: 24000
|
15 |
-
spect_params:
|
16 |
-
n_fft: 2048
|
17 |
-
win_length: 1200
|
18 |
-
hop_length: 300
|
19 |
-
mel_params:
|
20 |
-
n_mels: 80
|
21 |
-
|
22 |
-
model_params:
|
23 |
-
input_dim: 80
|
24 |
-
hidden_dim: 256
|
25 |
-
n_token: 181
|
26 |
-
token_embedding_dim: 512
|
27 |
-
|
28 |
-
optimizer_params:
|
29 |
-
lr: 0.0005
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Utils/ASR/layers.py
DELETED
@@ -1,354 +0,0 @@
|
|
1 |
-
import math
|
2 |
-
import torch
|
3 |
-
from torch import nn
|
4 |
-
from typing import Optional, Any
|
5 |
-
from torch import Tensor
|
6 |
-
import torch.nn.functional as F
|
7 |
-
import torchaudio
|
8 |
-
import torchaudio.functional as audio_F
|
9 |
-
|
10 |
-
import random
|
11 |
-
random.seed(0)
|
12 |
-
|
13 |
-
|
14 |
-
def _get_activation_fn(activ):
|
15 |
-
if activ == 'relu':
|
16 |
-
return nn.ReLU()
|
17 |
-
elif activ == 'lrelu':
|
18 |
-
return nn.LeakyReLU(0.2)
|
19 |
-
elif activ == 'swish':
|
20 |
-
return lambda x: x*torch.sigmoid(x)
|
21 |
-
else:
|
22 |
-
raise RuntimeError('Unexpected activ type %s, expected [relu, lrelu, swish]' % activ)
|
23 |
-
|
24 |
-
class LinearNorm(torch.nn.Module):
|
25 |
-
def __init__(self, in_dim, out_dim, bias=True, w_init_gain='linear'):
|
26 |
-
super(LinearNorm, self).__init__()
|
27 |
-
self.linear_layer = torch.nn.Linear(in_dim, out_dim, bias=bias)
|
28 |
-
|
29 |
-
torch.nn.init.xavier_uniform_(
|
30 |
-
self.linear_layer.weight,
|
31 |
-
gain=torch.nn.init.calculate_gain(w_init_gain))
|
32 |
-
|
33 |
-
def forward(self, x):
|
34 |
-
return self.linear_layer(x)
|
35 |
-
|
36 |
-
|
37 |
-
class ConvNorm(torch.nn.Module):
|
38 |
-
def __init__(self, in_channels, out_channels, kernel_size=1, stride=1,
|
39 |
-
padding=None, dilation=1, bias=True, w_init_gain='linear', param=None):
|
40 |
-
super(ConvNorm, self).__init__()
|
41 |
-
if padding is None:
|
42 |
-
assert(kernel_size % 2 == 1)
|
43 |
-
padding = int(dilation * (kernel_size - 1) / 2)
|
44 |
-
|
45 |
-
self.conv = torch.nn.Conv1d(in_channels, out_channels,
|
46 |
-
kernel_size=kernel_size, stride=stride,
|
47 |
-
padding=padding, dilation=dilation,
|
48 |
-
bias=bias)
|
49 |
-
|
50 |
-
torch.nn.init.xavier_uniform_(
|
51 |
-
self.conv.weight, gain=torch.nn.init.calculate_gain(w_init_gain, param=param))
|
52 |
-
|
53 |
-
def forward(self, signal):
|
54 |
-
conv_signal = self.conv(signal)
|
55 |
-
return conv_signal
|
56 |
-
|
57 |
-
class CausualConv(nn.Module):
|
58 |
-
def __init__(self, in_channels, out_channels, kernel_size=1, stride=1, padding=1, dilation=1, bias=True, w_init_gain='linear', param=None):
|
59 |
-
super(CausualConv, self).__init__()
|
60 |
-
if padding is None:
|
61 |
-
assert(kernel_size % 2 == 1)
|
62 |
-
padding = int(dilation * (kernel_size - 1) / 2) * 2
|
63 |
-
else:
|
64 |
-
self.padding = padding * 2
|
65 |
-
self.conv = nn.Conv1d(in_channels, out_channels,
|
66 |
-
kernel_size=kernel_size, stride=stride,
|
67 |
-
padding=self.padding,
|
68 |
-
dilation=dilation,
|
69 |
-
bias=bias)
|
70 |
-
|
71 |
-
torch.nn.init.xavier_uniform_(
|
72 |
-
self.conv.weight, gain=torch.nn.init.calculate_gain(w_init_gain, param=param))
|
73 |
-
|
74 |
-
def forward(self, x):
|
75 |
-
x = self.conv(x)
|
76 |
-
x = x[:, :, :-self.padding]
|
77 |
-
return x
|
78 |
-
|
79 |
-
class CausualBlock(nn.Module):
|
80 |
-
def __init__(self, hidden_dim, n_conv=3, dropout_p=0.2, activ='lrelu'):
|
81 |
-
super(CausualBlock, self).__init__()
|
82 |
-
self.blocks = nn.ModuleList([
|
83 |
-
self._get_conv(hidden_dim, dilation=3**i, activ=activ, dropout_p=dropout_p)
|
84 |
-
for i in range(n_conv)])
|
85 |
-
|
86 |
-
def forward(self, x):
|
87 |
-
for block in self.blocks:
|
88 |
-
res = x
|
89 |
-
x = block(x)
|
90 |
-
x += res
|
91 |
-
return x
|
92 |
-
|
93 |
-
def _get_conv(self, hidden_dim, dilation, activ='lrelu', dropout_p=0.2):
|
94 |
-
layers = [
|
95 |
-
CausualConv(hidden_dim, hidden_dim, kernel_size=3, padding=dilation, dilation=dilation),
|
96 |
-
_get_activation_fn(activ),
|
97 |
-
nn.BatchNorm1d(hidden_dim),
|
98 |
-
nn.Dropout(p=dropout_p),
|
99 |
-
CausualConv(hidden_dim, hidden_dim, kernel_size=3, padding=1, dilation=1),
|
100 |
-
_get_activation_fn(activ),
|
101 |
-
nn.Dropout(p=dropout_p)
|
102 |
-
]
|
103 |
-
return nn.Sequential(*layers)
|
104 |
-
|
105 |
-
class ConvBlock(nn.Module):
|
106 |
-
def __init__(self, hidden_dim, n_conv=3, dropout_p=0.2, activ='relu'):
|
107 |
-
super().__init__()
|
108 |
-
self._n_groups = 8
|
109 |
-
self.blocks = nn.ModuleList([
|
110 |
-
self._get_conv(hidden_dim, dilation=3**i, activ=activ, dropout_p=dropout_p)
|
111 |
-
for i in range(n_conv)])
|
112 |
-
|
113 |
-
|
114 |
-
def forward(self, x):
|
115 |
-
for block in self.blocks:
|
116 |
-
res = x
|
117 |
-
x = block(x)
|
118 |
-
x += res
|
119 |
-
return x
|
120 |
-
|
121 |
-
def _get_conv(self, hidden_dim, dilation, activ='relu', dropout_p=0.2):
|
122 |
-
layers = [
|
123 |
-
ConvNorm(hidden_dim, hidden_dim, kernel_size=3, padding=dilation, dilation=dilation),
|
124 |
-
_get_activation_fn(activ),
|
125 |
-
nn.GroupNorm(num_groups=self._n_groups, num_channels=hidden_dim),
|
126 |
-
nn.Dropout(p=dropout_p),
|
127 |
-
ConvNorm(hidden_dim, hidden_dim, kernel_size=3, padding=1, dilation=1),
|
128 |
-
_get_activation_fn(activ),
|
129 |
-
nn.Dropout(p=dropout_p)
|
130 |
-
]
|
131 |
-
return nn.Sequential(*layers)
|
132 |
-
|
133 |
-
class LocationLayer(nn.Module):
|
134 |
-
def __init__(self, attention_n_filters, attention_kernel_size,
|
135 |
-
attention_dim):
|
136 |
-
super(LocationLayer, self).__init__()
|
137 |
-
padding = int((attention_kernel_size - 1) / 2)
|
138 |
-
self.location_conv = ConvNorm(2, attention_n_filters,
|
139 |
-
kernel_size=attention_kernel_size,
|
140 |
-
padding=padding, bias=False, stride=1,
|
141 |
-
dilation=1)
|
142 |
-
self.location_dense = LinearNorm(attention_n_filters, attention_dim,
|
143 |
-
bias=False, w_init_gain='tanh')
|
144 |
-
|
145 |
-
def forward(self, attention_weights_cat):
|
146 |
-
processed_attention = self.location_conv(attention_weights_cat)
|
147 |
-
processed_attention = processed_attention.transpose(1, 2)
|
148 |
-
processed_attention = self.location_dense(processed_attention)
|
149 |
-
return processed_attention
|
150 |
-
|
151 |
-
|
152 |
-
class Attention(nn.Module):
|
153 |
-
def __init__(self, attention_rnn_dim, embedding_dim, attention_dim,
|
154 |
-
attention_location_n_filters, attention_location_kernel_size):
|
155 |
-
super(Attention, self).__init__()
|
156 |
-
self.query_layer = LinearNorm(attention_rnn_dim, attention_dim,
|
157 |
-
bias=False, w_init_gain='tanh')
|
158 |
-
self.memory_layer = LinearNorm(embedding_dim, attention_dim, bias=False,
|
159 |
-
w_init_gain='tanh')
|
160 |
-
self.v = LinearNorm(attention_dim, 1, bias=False)
|
161 |
-
self.location_layer = LocationLayer(attention_location_n_filters,
|
162 |
-
attention_location_kernel_size,
|
163 |
-
attention_dim)
|
164 |
-
self.score_mask_value = -float("inf")
|
165 |
-
|
166 |
-
def get_alignment_energies(self, query, processed_memory,
|
167 |
-
attention_weights_cat):
|
168 |
-
"""
|
169 |
-
PARAMS
|
170 |
-
------
|
171 |
-
query: decoder output (batch, n_mel_channels * n_frames_per_step)
|
172 |
-
processed_memory: processed encoder outputs (B, T_in, attention_dim)
|
173 |
-
attention_weights_cat: cumulative and prev. att weights (B, 2, max_time)
|
174 |
-
RETURNS
|
175 |
-
-------
|
176 |
-
alignment (batch, max_time)
|
177 |
-
"""
|
178 |
-
|
179 |
-
processed_query = self.query_layer(query.unsqueeze(1))
|
180 |
-
processed_attention_weights = self.location_layer(attention_weights_cat)
|
181 |
-
energies = self.v(torch.tanh(
|
182 |
-
processed_query + processed_attention_weights + processed_memory))
|
183 |
-
|
184 |
-
energies = energies.squeeze(-1)
|
185 |
-
return energies
|
186 |
-
|
187 |
-
def forward(self, attention_hidden_state, memory, processed_memory,
|
188 |
-
attention_weights_cat, mask):
|
189 |
-
"""
|
190 |
-
PARAMS
|
191 |
-
------
|
192 |
-
attention_hidden_state: attention rnn last output
|
193 |
-
memory: encoder outputs
|
194 |
-
processed_memory: processed encoder outputs
|
195 |
-
attention_weights_cat: previous and cummulative attention weights
|
196 |
-
mask: binary mask for padded data
|
197 |
-
"""
|
198 |
-
alignment = self.get_alignment_energies(
|
199 |
-
attention_hidden_state, processed_memory, attention_weights_cat)
|
200 |
-
|
201 |
-
if mask is not None:
|
202 |
-
alignment.data.masked_fill_(mask, self.score_mask_value)
|
203 |
-
|
204 |
-
attention_weights = F.softmax(alignment, dim=1)
|
205 |
-
attention_context = torch.bmm(attention_weights.unsqueeze(1), memory)
|
206 |
-
attention_context = attention_context.squeeze(1)
|
207 |
-
|
208 |
-
return attention_context, attention_weights
|
209 |
-
|
210 |
-
|
211 |
-
class ForwardAttentionV2(nn.Module):
|
212 |
-
def __init__(self, attention_rnn_dim, embedding_dim, attention_dim,
|
213 |
-
attention_location_n_filters, attention_location_kernel_size):
|
214 |
-
super(ForwardAttentionV2, self).__init__()
|
215 |
-
self.query_layer = LinearNorm(attention_rnn_dim, attention_dim,
|
216 |
-
bias=False, w_init_gain='tanh')
|
217 |
-
self.memory_layer = LinearNorm(embedding_dim, attention_dim, bias=False,
|
218 |
-
w_init_gain='tanh')
|
219 |
-
self.v = LinearNorm(attention_dim, 1, bias=False)
|
220 |
-
self.location_layer = LocationLayer(attention_location_n_filters,
|
221 |
-
attention_location_kernel_size,
|
222 |
-
attention_dim)
|
223 |
-
self.score_mask_value = -float(1e20)
|
224 |
-
|
225 |
-
def get_alignment_energies(self, query, processed_memory,
|
226 |
-
attention_weights_cat):
|
227 |
-
"""
|
228 |
-
PARAMS
|
229 |
-
------
|
230 |
-
query: decoder output (batch, n_mel_channels * n_frames_per_step)
|
231 |
-
processed_memory: processed encoder outputs (B, T_in, attention_dim)
|
232 |
-
attention_weights_cat: prev. and cumulative att weights (B, 2, max_time)
|
233 |
-
RETURNS
|
234 |
-
-------
|
235 |
-
alignment (batch, max_time)
|
236 |
-
"""
|
237 |
-
|
238 |
-
processed_query = self.query_layer(query.unsqueeze(1))
|
239 |
-
processed_attention_weights = self.location_layer(attention_weights_cat)
|
240 |
-
energies = self.v(torch.tanh(
|
241 |
-
processed_query + processed_attention_weights + processed_memory))
|
242 |
-
|
243 |
-
energies = energies.squeeze(-1)
|
244 |
-
return energies
|
245 |
-
|
246 |
-
def forward(self, attention_hidden_state, memory, processed_memory,
|
247 |
-
attention_weights_cat, mask, log_alpha):
|
248 |
-
"""
|
249 |
-
PARAMS
|
250 |
-
------
|
251 |
-
attention_hidden_state: attention rnn last output
|
252 |
-
memory: encoder outputs
|
253 |
-
processed_memory: processed encoder outputs
|
254 |
-
attention_weights_cat: previous and cummulative attention weights
|
255 |
-
mask: binary mask for padded data
|
256 |
-
"""
|
257 |
-
log_energy = self.get_alignment_energies(
|
258 |
-
attention_hidden_state, processed_memory, attention_weights_cat)
|
259 |
-
|
260 |
-
#log_energy =
|
261 |
-
|
262 |
-
if mask is not None:
|
263 |
-
log_energy.data.masked_fill_(mask, self.score_mask_value)
|
264 |
-
|
265 |
-
#attention_weights = F.softmax(alignment, dim=1)
|
266 |
-
|
267 |
-
#content_score = log_energy.unsqueeze(1) #[B, MAX_TIME] -> [B, 1, MAX_TIME]
|
268 |
-
#log_alpha = log_alpha.unsqueeze(2) #[B, MAX_TIME] -> [B, MAX_TIME, 1]
|
269 |
-
|
270 |
-
#log_total_score = log_alpha + content_score
|
271 |
-
|
272 |
-
#previous_attention_weights = attention_weights_cat[:,0,:]
|
273 |
-
|
274 |
-
log_alpha_shift_padded = []
|
275 |
-
max_time = log_energy.size(1)
|
276 |
-
for sft in range(2):
|
277 |
-
shifted = log_alpha[:,:max_time-sft]
|
278 |
-
shift_padded = F.pad(shifted, (sft,0), 'constant', self.score_mask_value)
|
279 |
-
log_alpha_shift_padded.append(shift_padded.unsqueeze(2))
|
280 |
-
|
281 |
-
biased = torch.logsumexp(torch.cat(log_alpha_shift_padded,2), 2)
|
282 |
-
|
283 |
-
log_alpha_new = biased + log_energy
|
284 |
-
|
285 |
-
attention_weights = F.softmax(log_alpha_new, dim=1)
|
286 |
-
|
287 |
-
attention_context = torch.bmm(attention_weights.unsqueeze(1), memory)
|
288 |
-
attention_context = attention_context.squeeze(1)
|
289 |
-
|
290 |
-
return attention_context, attention_weights, log_alpha_new
|
291 |
-
|
292 |
-
|
293 |
-
class PhaseShuffle2d(nn.Module):
|
294 |
-
def __init__(self, n=2):
|
295 |
-
super(PhaseShuffle2d, self).__init__()
|
296 |
-
self.n = n
|
297 |
-
self.random = random.Random(1)
|
298 |
-
|
299 |
-
def forward(self, x, move=None):
|
300 |
-
# x.size = (B, C, M, L)
|
301 |
-
if move is None:
|
302 |
-
move = self.random.randint(-self.n, self.n)
|
303 |
-
|
304 |
-
if move == 0:
|
305 |
-
return x
|
306 |
-
else:
|
307 |
-
left = x[:, :, :, :move]
|
308 |
-
right = x[:, :, :, move:]
|
309 |
-
shuffled = torch.cat([right, left], dim=3)
|
310 |
-
return shuffled
|
311 |
-
|
312 |
-
class PhaseShuffle1d(nn.Module):
|
313 |
-
def __init__(self, n=2):
|
314 |
-
super(PhaseShuffle1d, self).__init__()
|
315 |
-
self.n = n
|
316 |
-
self.random = random.Random(1)
|
317 |
-
|
318 |
-
def forward(self, x, move=None):
|
319 |
-
# x.size = (B, C, M, L)
|
320 |
-
if move is None:
|
321 |
-
move = self.random.randint(-self.n, self.n)
|
322 |
-
|
323 |
-
if move == 0:
|
324 |
-
return x
|
325 |
-
else:
|
326 |
-
left = x[:, :, :move]
|
327 |
-
right = x[:, :, move:]
|
328 |
-
shuffled = torch.cat([right, left], dim=2)
|
329 |
-
|
330 |
-
return shuffled
|
331 |
-
|
332 |
-
class MFCC(nn.Module):
|
333 |
-
def __init__(self, n_mfcc=40, n_mels=80):
|
334 |
-
super(MFCC, self).__init__()
|
335 |
-
self.n_mfcc = n_mfcc
|
336 |
-
self.n_mels = n_mels
|
337 |
-
self.norm = 'ortho'
|
338 |
-
dct_mat = audio_F.create_dct(self.n_mfcc, self.n_mels, self.norm)
|
339 |
-
self.register_buffer('dct_mat', dct_mat)
|
340 |
-
|
341 |
-
def forward(self, mel_specgram):
|
342 |
-
if len(mel_specgram.shape) == 2:
|
343 |
-
mel_specgram = mel_specgram.unsqueeze(0)
|
344 |
-
unsqueezed = True
|
345 |
-
else:
|
346 |
-
unsqueezed = False
|
347 |
-
# (channel, n_mels, time).tranpose(...) dot (n_mels, n_mfcc)
|
348 |
-
# -> (channel, time, n_mfcc).tranpose(...)
|
349 |
-
mfcc = torch.matmul(mel_specgram.transpose(1, 2), self.dct_mat).transpose(1, 2)
|
350 |
-
|
351 |
-
# unpack batch
|
352 |
-
if unsqueezed:
|
353 |
-
mfcc = mfcc.squeeze(0)
|
354 |
-
return mfcc
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Utils/ASR/models.py
DELETED
@@ -1,186 +0,0 @@
|
|
1 |
-
import math
|
2 |
-
import torch
|
3 |
-
from torch import nn
|
4 |
-
from torch.nn import TransformerEncoder
|
5 |
-
import torch.nn.functional as F
|
6 |
-
from .layers import MFCC, Attention, LinearNorm, ConvNorm, ConvBlock
|
7 |
-
|
8 |
-
class ASRCNN(nn.Module):
|
9 |
-
def __init__(self,
|
10 |
-
input_dim=80,
|
11 |
-
hidden_dim=256,
|
12 |
-
n_token=35,
|
13 |
-
n_layers=6,
|
14 |
-
token_embedding_dim=256,
|
15 |
-
|
16 |
-
):
|
17 |
-
super().__init__()
|
18 |
-
self.n_token = n_token
|
19 |
-
self.n_down = 1
|
20 |
-
self.to_mfcc = MFCC()
|
21 |
-
self.init_cnn = ConvNorm(input_dim//2, hidden_dim, kernel_size=7, padding=3, stride=2)
|
22 |
-
self.cnns = nn.Sequential(
|
23 |
-
*[nn.Sequential(
|
24 |
-
ConvBlock(hidden_dim),
|
25 |
-
nn.GroupNorm(num_groups=1, num_channels=hidden_dim)
|
26 |
-
) for n in range(n_layers)])
|
27 |
-
self.projection = ConvNorm(hidden_dim, hidden_dim // 2)
|
28 |
-
self.ctc_linear = nn.Sequential(
|
29 |
-
LinearNorm(hidden_dim//2, hidden_dim),
|
30 |
-
nn.ReLU(),
|
31 |
-
LinearNorm(hidden_dim, n_token))
|
32 |
-
self.asr_s2s = ASRS2S(
|
33 |
-
embedding_dim=token_embedding_dim,
|
34 |
-
hidden_dim=hidden_dim//2,
|
35 |
-
n_token=n_token)
|
36 |
-
|
37 |
-
def forward(self, x, src_key_padding_mask=None, text_input=None):
|
38 |
-
x = self.to_mfcc(x)
|
39 |
-
x = self.init_cnn(x)
|
40 |
-
x = self.cnns(x)
|
41 |
-
x = self.projection(x)
|
42 |
-
x = x.transpose(1, 2)
|
43 |
-
ctc_logit = self.ctc_linear(x)
|
44 |
-
if text_input is not None:
|
45 |
-
_, s2s_logit, s2s_attn = self.asr_s2s(x, src_key_padding_mask, text_input)
|
46 |
-
return ctc_logit, s2s_logit, s2s_attn
|
47 |
-
else:
|
48 |
-
return ctc_logit
|
49 |
-
|
50 |
-
def get_feature(self, x):
|
51 |
-
x = self.to_mfcc(x.squeeze(1))
|
52 |
-
x = self.init_cnn(x)
|
53 |
-
x = self.cnns(x)
|
54 |
-
x = self.projection(x)
|
55 |
-
return x
|
56 |
-
|
57 |
-
def length_to_mask(self, lengths):
|
58 |
-
mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
|
59 |
-
mask = torch.gt(mask+1, lengths.unsqueeze(1)).to(lengths.device)
|
60 |
-
return mask
|
61 |
-
|
62 |
-
def get_future_mask(self, out_length, unmask_future_steps=0):
|
63 |
-
"""
|
64 |
-
Args:
|
65 |
-
out_length (int): returned mask shape is (out_length, out_length).
|
66 |
-
unmask_futre_steps (int): unmasking future step size.
|
67 |
-
Return:
|
68 |
-
mask (torch.BoolTensor): mask future timesteps mask[i, j] = True if i > j + unmask_future_steps else False
|
69 |
-
"""
|
70 |
-
index_tensor = torch.arange(out_length).unsqueeze(0).expand(out_length, -1)
|
71 |
-
mask = torch.gt(index_tensor, index_tensor.T + unmask_future_steps)
|
72 |
-
return mask
|
73 |
-
|
74 |
-
class ASRS2S(nn.Module):
|
75 |
-
def __init__(self,
|
76 |
-
embedding_dim=256,
|
77 |
-
hidden_dim=512,
|
78 |
-
n_location_filters=32,
|
79 |
-
location_kernel_size=63,
|
80 |
-
n_token=40):
|
81 |
-
super(ASRS2S, self).__init__()
|
82 |
-
self.embedding = nn.Embedding(n_token, embedding_dim)
|
83 |
-
val_range = math.sqrt(6 / hidden_dim)
|
84 |
-
self.embedding.weight.data.uniform_(-val_range, val_range)
|
85 |
-
|
86 |
-
self.decoder_rnn_dim = hidden_dim
|
87 |
-
self.project_to_n_symbols = nn.Linear(self.decoder_rnn_dim, n_token)
|
88 |
-
self.attention_layer = Attention(
|
89 |
-
self.decoder_rnn_dim,
|
90 |
-
hidden_dim,
|
91 |
-
hidden_dim,
|
92 |
-
n_location_filters,
|
93 |
-
location_kernel_size
|
94 |
-
)
|
95 |
-
self.decoder_rnn = nn.LSTMCell(self.decoder_rnn_dim + embedding_dim, self.decoder_rnn_dim)
|
96 |
-
self.project_to_hidden = nn.Sequential(
|
97 |
-
LinearNorm(self.decoder_rnn_dim * 2, hidden_dim),
|
98 |
-
nn.Tanh())
|
99 |
-
self.sos = 1
|
100 |
-
self.eos = 2
|
101 |
-
|
102 |
-
def initialize_decoder_states(self, memory, mask):
|
103 |
-
"""
|
104 |
-
moemory.shape = (B, L, H) = (Batchsize, Maxtimestep, Hiddendim)
|
105 |
-
"""
|
106 |
-
B, L, H = memory.shape
|
107 |
-
self.decoder_hidden = torch.zeros((B, self.decoder_rnn_dim)).type_as(memory)
|
108 |
-
self.decoder_cell = torch.zeros((B, self.decoder_rnn_dim)).type_as(memory)
|
109 |
-
self.attention_weights = torch.zeros((B, L)).type_as(memory)
|
110 |
-
self.attention_weights_cum = torch.zeros((B, L)).type_as(memory)
|
111 |
-
self.attention_context = torch.zeros((B, H)).type_as(memory)
|
112 |
-
self.memory = memory
|
113 |
-
self.processed_memory = self.attention_layer.memory_layer(memory)
|
114 |
-
self.mask = mask
|
115 |
-
self.unk_index = 3
|
116 |
-
self.random_mask = 0.1
|
117 |
-
|
118 |
-
def forward(self, memory, memory_mask, text_input):
|
119 |
-
"""
|
120 |
-
moemory.shape = (B, L, H) = (Batchsize, Maxtimestep, Hiddendim)
|
121 |
-
moemory_mask.shape = (B, L, )
|
122 |
-
texts_input.shape = (B, T)
|
123 |
-
"""
|
124 |
-
self.initialize_decoder_states(memory, memory_mask)
|
125 |
-
# text random mask
|
126 |
-
random_mask = (torch.rand(text_input.shape) < self.random_mask).to(text_input.device)
|
127 |
-
_text_input = text_input.clone()
|
128 |
-
_text_input.masked_fill_(random_mask, self.unk_index)
|
129 |
-
decoder_inputs = self.embedding(_text_input).transpose(0, 1) # -> [T, B, channel]
|
130 |
-
start_embedding = self.embedding(
|
131 |
-
torch.LongTensor([self.sos]*decoder_inputs.size(1)).to(decoder_inputs.device))
|
132 |
-
decoder_inputs = torch.cat((start_embedding.unsqueeze(0), decoder_inputs), dim=0)
|
133 |
-
|
134 |
-
hidden_outputs, logit_outputs, alignments = [], [], []
|
135 |
-
while len(hidden_outputs) < decoder_inputs.size(0):
|
136 |
-
|
137 |
-
decoder_input = decoder_inputs[len(hidden_outputs)]
|
138 |
-
hidden, logit, attention_weights = self.decode(decoder_input)
|
139 |
-
hidden_outputs += [hidden]
|
140 |
-
logit_outputs += [logit]
|
141 |
-
alignments += [attention_weights]
|
142 |
-
|
143 |
-
hidden_outputs, logit_outputs, alignments = \
|
144 |
-
self.parse_decoder_outputs(
|
145 |
-
hidden_outputs, logit_outputs, alignments)
|
146 |
-
|
147 |
-
return hidden_outputs, logit_outputs, alignments
|
148 |
-
|
149 |
-
|
150 |
-
def decode(self, decoder_input):
|
151 |
-
|
152 |
-
cell_input = torch.cat((decoder_input, self.attention_context), -1)
|
153 |
-
self.decoder_hidden, self.decoder_cell = self.decoder_rnn(
|
154 |
-
cell_input,
|
155 |
-
(self.decoder_hidden, self.decoder_cell))
|
156 |
-
|
157 |
-
attention_weights_cat = torch.cat(
|
158 |
-
(self.attention_weights.unsqueeze(1),
|
159 |
-
self.attention_weights_cum.unsqueeze(1)),dim=1)
|
160 |
-
|
161 |
-
self.attention_context, self.attention_weights = self.attention_layer(
|
162 |
-
self.decoder_hidden,
|
163 |
-
self.memory,
|
164 |
-
self.processed_memory,
|
165 |
-
attention_weights_cat,
|
166 |
-
self.mask)
|
167 |
-
|
168 |
-
self.attention_weights_cum += self.attention_weights
|
169 |
-
|
170 |
-
hidden_and_context = torch.cat((self.decoder_hidden, self.attention_context), -1)
|
171 |
-
hidden = self.project_to_hidden(hidden_and_context)
|
172 |
-
|
173 |
-
# dropout to increasing g
|
174 |
-
logit = self.project_to_n_symbols(F.dropout(hidden, 0.5, self.training))
|
175 |
-
|
176 |
-
return hidden, logit, self.attention_weights
|
177 |
-
|
178 |
-
def parse_decoder_outputs(self, hidden, logit, alignments):
|
179 |
-
|
180 |
-
# -> [B, T_out + 1, max_time]
|
181 |
-
alignments = torch.stack(alignments).transpose(0,1)
|
182 |
-
# [T_out + 1, B, n_symbols] -> [B, T_out + 1, n_symbols]
|
183 |
-
logit = torch.stack(logit).transpose(0, 1).contiguous()
|
184 |
-
hidden = torch.stack(hidden).transpose(0, 1).contiguous()
|
185 |
-
|
186 |
-
return hidden, logit, alignments
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Utils/JDC/__init__.py
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
|
|
|
|
Utils/JDC/model.py
DELETED
@@ -1,190 +0,0 @@
|
|
1 |
-
"""
|
2 |
-
Implementation of model from:
|
3 |
-
Kum et al. - "Joint Detection and Classification of Singing Voice Melody Using
|
4 |
-
Convolutional Recurrent Neural Networks" (2019)
|
5 |
-
Link: https://www.semanticscholar.org/paper/Joint-Detection-and-Classification-of-Singing-Voice-Kum-Nam/60a2ad4c7db43bace75805054603747fcd062c0d
|
6 |
-
"""
|
7 |
-
import torch
|
8 |
-
from torch import nn
|
9 |
-
|
10 |
-
class JDCNet(nn.Module):
|
11 |
-
"""
|
12 |
-
Joint Detection and Classification Network model for singing voice melody.
|
13 |
-
"""
|
14 |
-
def __init__(self, num_class=722, seq_len=31, leaky_relu_slope=0.01):
|
15 |
-
super().__init__()
|
16 |
-
self.num_class = num_class
|
17 |
-
|
18 |
-
# input = (b, 1, 31, 513), b = batch size
|
19 |
-
self.conv_block = nn.Sequential(
|
20 |
-
nn.Conv2d(in_channels=1, out_channels=64, kernel_size=3, padding=1, bias=False), # out: (b, 64, 31, 513)
|
21 |
-
nn.BatchNorm2d(num_features=64),
|
22 |
-
nn.LeakyReLU(leaky_relu_slope, inplace=True),
|
23 |
-
nn.Conv2d(64, 64, 3, padding=1, bias=False), # (b, 64, 31, 513)
|
24 |
-
)
|
25 |
-
|
26 |
-
# res blocks
|
27 |
-
self.res_block1 = ResBlock(in_channels=64, out_channels=128) # (b, 128, 31, 128)
|
28 |
-
self.res_block2 = ResBlock(in_channels=128, out_channels=192) # (b, 192, 31, 32)
|
29 |
-
self.res_block3 = ResBlock(in_channels=192, out_channels=256) # (b, 256, 31, 8)
|
30 |
-
|
31 |
-
# pool block
|
32 |
-
self.pool_block = nn.Sequential(
|
33 |
-
nn.BatchNorm2d(num_features=256),
|
34 |
-
nn.LeakyReLU(leaky_relu_slope, inplace=True),
|
35 |
-
nn.MaxPool2d(kernel_size=(1, 4)), # (b, 256, 31, 2)
|
36 |
-
nn.Dropout(p=0.2),
|
37 |
-
)
|
38 |
-
|
39 |
-
# maxpool layers (for auxiliary network inputs)
|
40 |
-
# in = (b, 128, 31, 513) from conv_block, out = (b, 128, 31, 2)
|
41 |
-
self.maxpool1 = nn.MaxPool2d(kernel_size=(1, 40))
|
42 |
-
# in = (b, 128, 31, 128) from res_block1, out = (b, 128, 31, 2)
|
43 |
-
self.maxpool2 = nn.MaxPool2d(kernel_size=(1, 20))
|
44 |
-
# in = (b, 128, 31, 32) from res_block2, out = (b, 128, 31, 2)
|
45 |
-
self.maxpool3 = nn.MaxPool2d(kernel_size=(1, 10))
|
46 |
-
|
47 |
-
# in = (b, 640, 31, 2), out = (b, 256, 31, 2)
|
48 |
-
self.detector_conv = nn.Sequential(
|
49 |
-
nn.Conv2d(640, 256, 1, bias=False),
|
50 |
-
nn.BatchNorm2d(256),
|
51 |
-
nn.LeakyReLU(leaky_relu_slope, inplace=True),
|
52 |
-
nn.Dropout(p=0.2),
|
53 |
-
)
|
54 |
-
|
55 |
-
# input: (b, 31, 512) - resized from (b, 256, 31, 2)
|
56 |
-
self.bilstm_classifier = nn.LSTM(
|
57 |
-
input_size=512, hidden_size=256,
|
58 |
-
batch_first=True, bidirectional=True) # (b, 31, 512)
|
59 |
-
|
60 |
-
# input: (b, 31, 512) - resized from (b, 256, 31, 2)
|
61 |
-
self.bilstm_detector = nn.LSTM(
|
62 |
-
input_size=512, hidden_size=256,
|
63 |
-
batch_first=True, bidirectional=True) # (b, 31, 512)
|
64 |
-
|
65 |
-
# input: (b * 31, 512)
|
66 |
-
self.classifier = nn.Linear(in_features=512, out_features=self.num_class) # (b * 31, num_class)
|
67 |
-
|
68 |
-
# input: (b * 31, 512)
|
69 |
-
self.detector = nn.Linear(in_features=512, out_features=2) # (b * 31, 2) - binary classifier
|
70 |
-
|
71 |
-
# initialize weights
|
72 |
-
self.apply(self.init_weights)
|
73 |
-
|
74 |
-
def get_feature_GAN(self, x):
|
75 |
-
seq_len = x.shape[-2]
|
76 |
-
x = x.float().transpose(-1, -2)
|
77 |
-
|
78 |
-
convblock_out = self.conv_block(x)
|
79 |
-
|
80 |
-
resblock1_out = self.res_block1(convblock_out)
|
81 |
-
resblock2_out = self.res_block2(resblock1_out)
|
82 |
-
resblock3_out = self.res_block3(resblock2_out)
|
83 |
-
poolblock_out = self.pool_block[0](resblock3_out)
|
84 |
-
poolblock_out = self.pool_block[1](poolblock_out)
|
85 |
-
|
86 |
-
return poolblock_out.transpose(-1, -2)
|
87 |
-
|
88 |
-
def get_feature(self, x):
|
89 |
-
seq_len = x.shape[-2]
|
90 |
-
x = x.float().transpose(-1, -2)
|
91 |
-
|
92 |
-
convblock_out = self.conv_block(x)
|
93 |
-
|
94 |
-
resblock1_out = self.res_block1(convblock_out)
|
95 |
-
resblock2_out = self.res_block2(resblock1_out)
|
96 |
-
resblock3_out = self.res_block3(resblock2_out)
|
97 |
-
poolblock_out = self.pool_block[0](resblock3_out)
|
98 |
-
poolblock_out = self.pool_block[1](poolblock_out)
|
99 |
-
|
100 |
-
return self.pool_block[2](poolblock_out)
|
101 |
-
|
102 |
-
def forward(self, x):
|
103 |
-
"""
|
104 |
-
Returns:
|
105 |
-
classification_prediction, detection_prediction
|
106 |
-
sizes: (b, 31, 722), (b, 31, 2)
|
107 |
-
"""
|
108 |
-
###############################
|
109 |
-
# forward pass for classifier #
|
110 |
-
###############################
|
111 |
-
seq_len = x.shape[-1]
|
112 |
-
x = x.float().transpose(-1, -2)
|
113 |
-
|
114 |
-
convblock_out = self.conv_block(x)
|
115 |
-
|
116 |
-
resblock1_out = self.res_block1(convblock_out)
|
117 |
-
resblock2_out = self.res_block2(resblock1_out)
|
118 |
-
resblock3_out = self.res_block3(resblock2_out)
|
119 |
-
|
120 |
-
|
121 |
-
poolblock_out = self.pool_block[0](resblock3_out)
|
122 |
-
poolblock_out = self.pool_block[1](poolblock_out)
|
123 |
-
GAN_feature = poolblock_out.transpose(-1, -2)
|
124 |
-
poolblock_out = self.pool_block[2](poolblock_out)
|
125 |
-
|
126 |
-
# (b, 256, 31, 2) => (b, 31, 256, 2) => (b, 31, 512)
|
127 |
-
classifier_out = poolblock_out.permute(0, 2, 1, 3).contiguous().view((-1, seq_len, 512))
|
128 |
-
classifier_out, _ = self.bilstm_classifier(classifier_out) # ignore the hidden states
|
129 |
-
|
130 |
-
classifier_out = classifier_out.contiguous().view((-1, 512)) # (b * 31, 512)
|
131 |
-
classifier_out = self.classifier(classifier_out)
|
132 |
-
classifier_out = classifier_out.view((-1, seq_len, self.num_class)) # (b, 31, num_class)
|
133 |
-
|
134 |
-
# sizes: (b, 31, 722), (b, 31, 2)
|
135 |
-
# classifier output consists of predicted pitch classes per frame
|
136 |
-
# detector output consists of: (isvoice, notvoice) estimates per frame
|
137 |
-
return torch.abs(classifier_out.squeeze()), GAN_feature, poolblock_out
|
138 |
-
|
139 |
-
@staticmethod
|
140 |
-
def init_weights(m):
|
141 |
-
if isinstance(m, nn.Linear):
|
142 |
-
nn.init.kaiming_uniform_(m.weight)
|
143 |
-
if m.bias is not None:
|
144 |
-
nn.init.constant_(m.bias, 0)
|
145 |
-
elif isinstance(m, nn.Conv2d):
|
146 |
-
nn.init.xavier_normal_(m.weight)
|
147 |
-
elif isinstance(m, nn.LSTM) or isinstance(m, nn.LSTMCell):
|
148 |
-
for p in m.parameters():
|
149 |
-
if p.data is None:
|
150 |
-
continue
|
151 |
-
|
152 |
-
if len(p.shape) >= 2:
|
153 |
-
nn.init.orthogonal_(p.data)
|
154 |
-
else:
|
155 |
-
nn.init.normal_(p.data)
|
156 |
-
|
157 |
-
|
158 |
-
class ResBlock(nn.Module):
|
159 |
-
def __init__(self, in_channels: int, out_channels: int, leaky_relu_slope=0.01):
|
160 |
-
super().__init__()
|
161 |
-
self.downsample = in_channels != out_channels
|
162 |
-
|
163 |
-
# BN / LReLU / MaxPool layer before the conv layer - see Figure 1b in the paper
|
164 |
-
self.pre_conv = nn.Sequential(
|
165 |
-
nn.BatchNorm2d(num_features=in_channels),
|
166 |
-
nn.LeakyReLU(leaky_relu_slope, inplace=True),
|
167 |
-
nn.MaxPool2d(kernel_size=(1, 2)), # apply downsampling on the y axis only
|
168 |
-
)
|
169 |
-
|
170 |
-
# conv layers
|
171 |
-
self.conv = nn.Sequential(
|
172 |
-
nn.Conv2d(in_channels=in_channels, out_channels=out_channels,
|
173 |
-
kernel_size=3, padding=1, bias=False),
|
174 |
-
nn.BatchNorm2d(out_channels),
|
175 |
-
nn.LeakyReLU(leaky_relu_slope, inplace=True),
|
176 |
-
nn.Conv2d(out_channels, out_channels, 3, padding=1, bias=False),
|
177 |
-
)
|
178 |
-
|
179 |
-
# 1 x 1 convolution layer to match the feature dimensions
|
180 |
-
self.conv1by1 = None
|
181 |
-
if self.downsample:
|
182 |
-
self.conv1by1 = nn.Conv2d(in_channels, out_channels, 1, bias=False)
|
183 |
-
|
184 |
-
def forward(self, x):
|
185 |
-
x = self.pre_conv(x)
|
186 |
-
if self.downsample:
|
187 |
-
x = self.conv(x) + self.conv1by1(x)
|
188 |
-
else:
|
189 |
-
x = self.conv(x) + x
|
190 |
-
return x
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Utils/PLBERT/config.yml
DELETED
@@ -1,30 +0,0 @@
|
|
1 |
-
log_dir: "Checkpoint"
|
2 |
-
mixed_precision: "fp16"
|
3 |
-
data_folder: "wikipedia_20220301.en.processed"
|
4 |
-
batch_size: 192
|
5 |
-
save_interval: 5000
|
6 |
-
log_interval: 10
|
7 |
-
num_process: 1 # number of GPUs
|
8 |
-
num_steps: 1000000
|
9 |
-
|
10 |
-
dataset_params:
|
11 |
-
tokenizer: "transfo-xl-wt103"
|
12 |
-
token_separator: " " # token used for phoneme separator (space)
|
13 |
-
token_mask: "M" # token used for phoneme mask (M)
|
14 |
-
word_separator: 3039 # token used for word separator (<formula>)
|
15 |
-
token_maps: "token_maps.pkl" # token map path
|
16 |
-
|
17 |
-
max_mel_length: 512 # max phoneme length
|
18 |
-
|
19 |
-
word_mask_prob: 0.15 # probability to mask the entire word
|
20 |
-
phoneme_mask_prob: 0.1 # probability to mask each phoneme
|
21 |
-
replace_prob: 0.2 # probablity to replace phonemes
|
22 |
-
|
23 |
-
model_params:
|
24 |
-
vocab_size: 198
|
25 |
-
hidden_size: 768
|
26 |
-
num_attention_heads: 12
|
27 |
-
intermediate_size: 2048
|
28 |
-
max_position_embeddings: 512
|
29 |
-
num_hidden_layers: 12
|
30 |
-
dropout: 0.1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Utils/PLBERT/util.py
DELETED
@@ -1,24 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import yaml
|
3 |
-
import torch
|
4 |
-
from transformers import AlbertConfig, AlbertModel
|
5 |
-
|
6 |
-
class CustomAlbert(AlbertModel):
|
7 |
-
def forward(self, *args, **kwargs):
|
8 |
-
# Call the original forward method
|
9 |
-
outputs = super().forward(*args, **kwargs)
|
10 |
-
|
11 |
-
# Only return the last_hidden_state
|
12 |
-
return outputs.last_hidden_state
|
13 |
-
|
14 |
-
|
15 |
-
def load_plbert(wights_path, config_path):
|
16 |
-
plbert_config = yaml.safe_load(open(config_path))
|
17 |
-
|
18 |
-
albert_base_configuration = AlbertConfig(**plbert_config['model_params'])
|
19 |
-
bert = CustomAlbert(albert_base_configuration)
|
20 |
-
|
21 |
-
state_dict = torch.load(wights_path, map_location='cpu')
|
22 |
-
bert.load_state_dict(state_dict, strict=False)
|
23 |
-
|
24 |
-
return bert
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Utils/__init__.py
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
|
|
|
|
models.py
DELETED
@@ -1,717 +0,0 @@
|
|
1 |
-
#coding:utf-8
|
2 |
-
|
3 |
-
import os
|
4 |
-
import os.path as osp
|
5 |
-
|
6 |
-
import copy
|
7 |
-
import math
|
8 |
-
|
9 |
-
import numpy as np
|
10 |
-
import torch
|
11 |
-
import torch.nn as nn
|
12 |
-
import torch.nn.functional as F
|
13 |
-
from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
|
14 |
-
|
15 |
-
from Utils.ASR.models import ASRCNN
|
16 |
-
from Utils.JDC.model import JDCNet
|
17 |
-
|
18 |
-
from Modules.diffusion.sampler import KDiffusion, LogNormalDistribution, DiffusionSampler, ADPM2Sampler, KarrasSchedule
|
19 |
-
from Modules.diffusion.modules import Transformer1d, StyleTransformer1d
|
20 |
-
from Modules.diffusion.diffusion import AudioDiffusionConditional
|
21 |
-
|
22 |
-
from Modules.discriminators import MultiPeriodDiscriminator, MultiResSpecDiscriminator, WavLMDiscriminator
|
23 |
-
|
24 |
-
from munch import Munch
|
25 |
-
import yaml
|
26 |
-
|
27 |
-
class LearnedDownSample(nn.Module):
|
28 |
-
def __init__(self, layer_type, dim_in):
|
29 |
-
super().__init__()
|
30 |
-
self.layer_type = layer_type
|
31 |
-
|
32 |
-
if self.layer_type == 'none':
|
33 |
-
self.conv = nn.Identity()
|
34 |
-
elif self.layer_type == 'timepreserve':
|
35 |
-
self.conv = spectral_norm(nn.Conv2d(dim_in, dim_in, kernel_size=(3, 1), stride=(2, 1), groups=dim_in, padding=(1, 0)))
|
36 |
-
elif self.layer_type == 'half':
|
37 |
-
self.conv = spectral_norm(nn.Conv2d(dim_in, dim_in, kernel_size=(3, 3), stride=(2, 2), groups=dim_in, padding=1))
|
38 |
-
else:
|
39 |
-
raise RuntimeError('Got unexpected donwsampletype %s, expected is [none, timepreserve, half]' % self.layer_type)
|
40 |
-
|
41 |
-
def forward(self, x):
|
42 |
-
return self.conv(x)
|
43 |
-
|
44 |
-
class LearnedUpSample(nn.Module):
|
45 |
-
def __init__(self, layer_type, dim_in):
|
46 |
-
super().__init__()
|
47 |
-
self.layer_type = layer_type
|
48 |
-
|
49 |
-
if self.layer_type == 'none':
|
50 |
-
self.conv = nn.Identity()
|
51 |
-
elif self.layer_type == 'timepreserve':
|
52 |
-
self.conv = nn.ConvTranspose2d(dim_in, dim_in, kernel_size=(3, 1), stride=(2, 1), groups=dim_in, output_padding=(1, 0), padding=(1, 0))
|
53 |
-
elif self.layer_type == 'half':
|
54 |
-
self.conv = nn.ConvTranspose2d(dim_in, dim_in, kernel_size=(3, 3), stride=(2, 2), groups=dim_in, output_padding=1, padding=1)
|
55 |
-
else:
|
56 |
-
raise RuntimeError('Got unexpected upsampletype %s, expected is [none, timepreserve, half]' % self.layer_type)
|
57 |
-
|
58 |
-
|
59 |
-
def forward(self, x):
|
60 |
-
return self.conv(x)
|
61 |
-
|
62 |
-
class DownSample(nn.Module):
|
63 |
-
def __init__(self, layer_type):
|
64 |
-
super().__init__()
|
65 |
-
self.layer_type = layer_type
|
66 |
-
|
67 |
-
def forward(self, x):
|
68 |
-
if self.layer_type == 'none':
|
69 |
-
return x
|
70 |
-
elif self.layer_type == 'timepreserve':
|
71 |
-
return F.avg_pool2d(x, (2, 1))
|
72 |
-
elif self.layer_type == 'half':
|
73 |
-
if x.shape[-1] % 2 != 0:
|
74 |
-
x = torch.cat([x, x[..., -1].unsqueeze(-1)], dim=-1)
|
75 |
-
return F.avg_pool2d(x, 2)
|
76 |
-
else:
|
77 |
-
raise RuntimeError('Got unexpected donwsampletype %s, expected is [none, timepreserve, half]' % self.layer_type)
|
78 |
-
|
79 |
-
|
80 |
-
class UpSample(nn.Module):
|
81 |
-
def __init__(self, layer_type):
|
82 |
-
super().__init__()
|
83 |
-
self.layer_type = layer_type
|
84 |
-
|
85 |
-
def forward(self, x):
|
86 |
-
if self.layer_type == 'none':
|
87 |
-
return x
|
88 |
-
elif self.layer_type == 'timepreserve':
|
89 |
-
return F.interpolate(x, scale_factor=(2, 1), mode='nearest')
|
90 |
-
elif self.layer_type == 'half':
|
91 |
-
return F.interpolate(x, scale_factor=2, mode='nearest')
|
92 |
-
else:
|
93 |
-
raise RuntimeError('Got unexpected upsampletype %s, expected is [none, timepreserve, half]' % self.layer_type)
|
94 |
-
|
95 |
-
|
96 |
-
class ResBlk(nn.Module):
|
97 |
-
def __init__(self, dim_in, dim_out, actv=nn.LeakyReLU(0.2),
|
98 |
-
normalize=False, downsample='none'):
|
99 |
-
super().__init__()
|
100 |
-
self.actv = actv
|
101 |
-
self.normalize = normalize
|
102 |
-
self.downsample = DownSample(downsample)
|
103 |
-
self.downsample_res = LearnedDownSample(downsample, dim_in)
|
104 |
-
self.learned_sc = dim_in != dim_out
|
105 |
-
self._build_weights(dim_in, dim_out)
|
106 |
-
|
107 |
-
def _build_weights(self, dim_in, dim_out):
|
108 |
-
self.conv1 = spectral_norm(nn.Conv2d(dim_in, dim_in, 3, 1, 1))
|
109 |
-
self.conv2 = spectral_norm(nn.Conv2d(dim_in, dim_out, 3, 1, 1))
|
110 |
-
if self.normalize:
|
111 |
-
self.norm1 = nn.InstanceNorm2d(dim_in, affine=True)
|
112 |
-
self.norm2 = nn.InstanceNorm2d(dim_in, affine=True)
|
113 |
-
if self.learned_sc:
|
114 |
-
self.conv1x1 = spectral_norm(nn.Conv2d(dim_in, dim_out, 1, 1, 0, bias=False))
|
115 |
-
|
116 |
-
def _shortcut(self, x):
|
117 |
-
if self.learned_sc:
|
118 |
-
x = self.conv1x1(x)
|
119 |
-
if self.downsample:
|
120 |
-
x = self.downsample(x)
|
121 |
-
return x
|
122 |
-
|
123 |
-
def _residual(self, x):
|
124 |
-
if self.normalize:
|
125 |
-
x = self.norm1(x)
|
126 |
-
x = self.actv(x)
|
127 |
-
x = self.conv1(x)
|
128 |
-
x = self.downsample_res(x)
|
129 |
-
if self.normalize:
|
130 |
-
x = self.norm2(x)
|
131 |
-
x = self.actv(x)
|
132 |
-
x = self.conv2(x)
|
133 |
-
return x
|
134 |
-
|
135 |
-
def forward(self, x):
|
136 |
-
x = self._shortcut(x) + self._residual(x)
|
137 |
-
return x / math.sqrt(2) # unit variance
|
138 |
-
|
139 |
-
class StyleEncoder(nn.Module):
|
140 |
-
def __init__(self, dim_in=48, style_dim=48, max_conv_dim=384):
|
141 |
-
super().__init__()
|
142 |
-
blocks = []
|
143 |
-
blocks += [spectral_norm(nn.Conv2d(1, dim_in, 3, 1, 1))]
|
144 |
-
|
145 |
-
repeat_num = 4
|
146 |
-
for _ in range(repeat_num):
|
147 |
-
dim_out = min(dim_in*2, max_conv_dim)
|
148 |
-
blocks += [ResBlk(dim_in, dim_out, downsample='half')]
|
149 |
-
dim_in = dim_out
|
150 |
-
|
151 |
-
blocks += [nn.LeakyReLU(0.2)]
|
152 |
-
blocks += [spectral_norm(nn.Conv2d(dim_out, dim_out, 5, 1, 0))]
|
153 |
-
blocks += [nn.AdaptiveAvgPool2d(1)]
|
154 |
-
blocks += [nn.LeakyReLU(0.2)]
|
155 |
-
self.shared = nn.Sequential(*blocks)
|
156 |
-
|
157 |
-
self.unshared = nn.Linear(dim_out, style_dim)
|
158 |
-
|
159 |
-
def forward(self, x):
|
160 |
-
h = self.shared(x)
|
161 |
-
h = h.view(h.size(0), -1)
|
162 |
-
s = self.unshared(h)
|
163 |
-
|
164 |
-
return s
|
165 |
-
|
166 |
-
class LinearNorm(torch.nn.Module):
|
167 |
-
def __init__(self, in_dim, out_dim, bias=True, w_init_gain='linear'):
|
168 |
-
super(LinearNorm, self).__init__()
|
169 |
-
self.linear_layer = torch.nn.Linear(in_dim, out_dim, bias=bias)
|
170 |
-
|
171 |
-
torch.nn.init.xavier_uniform_(
|
172 |
-
self.linear_layer.weight,
|
173 |
-
gain=torch.nn.init.calculate_gain(w_init_gain))
|
174 |
-
|
175 |
-
def forward(self, x):
|
176 |
-
return self.linear_layer(x)
|
177 |
-
|
178 |
-
class Discriminator2d(nn.Module):
|
179 |
-
def __init__(self, dim_in=48, num_domains=1, max_conv_dim=384, repeat_num=4):
|
180 |
-
super().__init__()
|
181 |
-
blocks = []
|
182 |
-
blocks += [spectral_norm(nn.Conv2d(1, dim_in, 3, 1, 1))]
|
183 |
-
|
184 |
-
for lid in range(repeat_num):
|
185 |
-
dim_out = min(dim_in*2, max_conv_dim)
|
186 |
-
blocks += [ResBlk(dim_in, dim_out, downsample='half')]
|
187 |
-
dim_in = dim_out
|
188 |
-
|
189 |
-
blocks += [nn.LeakyReLU(0.2)]
|
190 |
-
blocks += [spectral_norm(nn.Conv2d(dim_out, dim_out, 5, 1, 0))]
|
191 |
-
blocks += [nn.LeakyReLU(0.2)]
|
192 |
-
blocks += [nn.AdaptiveAvgPool2d(1)]
|
193 |
-
blocks += [spectral_norm(nn.Conv2d(dim_out, num_domains, 1, 1, 0))]
|
194 |
-
self.main = nn.Sequential(*blocks)
|
195 |
-
|
196 |
-
def get_feature(self, x):
|
197 |
-
features = []
|
198 |
-
for l in self.main:
|
199 |
-
x = l(x)
|
200 |
-
features.append(x)
|
201 |
-
out = features[-1]
|
202 |
-
out = out.view(out.size(0), -1) # (batch, num_domains)
|
203 |
-
return out, features
|
204 |
-
|
205 |
-
def forward(self, x):
|
206 |
-
out, features = self.get_feature(x)
|
207 |
-
out = out.squeeze() # (batch)
|
208 |
-
return out, features
|
209 |
-
|
210 |
-
class ResBlk1d(nn.Module):
|
211 |
-
def __init__(self, dim_in, dim_out, actv=nn.LeakyReLU(0.2),
|
212 |
-
normalize=False, downsample='none', dropout_p=0.2):
|
213 |
-
super().__init__()
|
214 |
-
self.actv = actv
|
215 |
-
self.normalize = normalize
|
216 |
-
self.downsample_type = downsample
|
217 |
-
self.learned_sc = dim_in != dim_out
|
218 |
-
self._build_weights(dim_in, dim_out)
|
219 |
-
self.dropout_p = dropout_p
|
220 |
-
|
221 |
-
if self.downsample_type == 'none':
|
222 |
-
self.pool = nn.Identity()
|
223 |
-
else:
|
224 |
-
self.pool = weight_norm(nn.Conv1d(dim_in, dim_in, kernel_size=3, stride=2, groups=dim_in, padding=1))
|
225 |
-
|
226 |
-
def _build_weights(self, dim_in, dim_out):
|
227 |
-
self.conv1 = weight_norm(nn.Conv1d(dim_in, dim_in, 3, 1, 1))
|
228 |
-
self.conv2 = weight_norm(nn.Conv1d(dim_in, dim_out, 3, 1, 1))
|
229 |
-
if self.normalize:
|
230 |
-
self.norm1 = nn.InstanceNorm1d(dim_in, affine=True)
|
231 |
-
self.norm2 = nn.InstanceNorm1d(dim_in, affine=True)
|
232 |
-
if self.learned_sc:
|
233 |
-
self.conv1x1 = weight_norm(nn.Conv1d(dim_in, dim_out, 1, 1, 0, bias=False))
|
234 |
-
|
235 |
-
def downsample(self, x):
|
236 |
-
if self.downsample_type == 'none':
|
237 |
-
return x
|
238 |
-
else:
|
239 |
-
if x.shape[-1] % 2 != 0:
|
240 |
-
x = torch.cat([x, x[..., -1].unsqueeze(-1)], dim=-1)
|
241 |
-
return F.avg_pool1d(x, 2)
|
242 |
-
|
243 |
-
def _shortcut(self, x):
|
244 |
-
if self.learned_sc:
|
245 |
-
x = self.conv1x1(x)
|
246 |
-
x = self.downsample(x)
|
247 |
-
return x
|
248 |
-
|
249 |
-
def _residual(self, x):
|
250 |
-
if self.normalize:
|
251 |
-
x = self.norm1(x)
|
252 |
-
x = self.actv(x)
|
253 |
-
x = F.dropout(x, p=self.dropout_p, training=self.training)
|
254 |
-
|
255 |
-
x = self.conv1(x)
|
256 |
-
x = self.pool(x)
|
257 |
-
if self.normalize:
|
258 |
-
x = self.norm2(x)
|
259 |
-
|
260 |
-
x = self.actv(x)
|
261 |
-
x = F.dropout(x, p=self.dropout_p, training=self.training)
|
262 |
-
|
263 |
-
x = self.conv2(x)
|
264 |
-
return x
|
265 |
-
|
266 |
-
def forward(self, x):
|
267 |
-
x = self._shortcut(x) + self._residual(x)
|
268 |
-
return x / math.sqrt(2) # unit variance
|
269 |
-
|
270 |
-
class LayerNorm(nn.Module):
|
271 |
-
def __init__(self, channels, eps=1e-5):
|
272 |
-
super().__init__()
|
273 |
-
self.channels = channels
|
274 |
-
self.eps = eps
|
275 |
-
|
276 |
-
self.gamma = nn.Parameter(torch.ones(channels))
|
277 |
-
self.beta = nn.Parameter(torch.zeros(channels))
|
278 |
-
|
279 |
-
def forward(self, x):
|
280 |
-
x = x.transpose(1, -1)
|
281 |
-
x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
|
282 |
-
return x.transpose(1, -1)
|
283 |
-
|
284 |
-
class TextEncoder(nn.Module):
|
285 |
-
def __init__(self, channels, kernel_size, depth, n_symbols, actv=nn.LeakyReLU(0.2)):
|
286 |
-
super().__init__()
|
287 |
-
self.embedding = nn.Embedding(n_symbols, channels)
|
288 |
-
|
289 |
-
padding = (kernel_size - 1) // 2
|
290 |
-
self.cnn = nn.ModuleList()
|
291 |
-
for _ in range(depth):
|
292 |
-
self.cnn.append(nn.Sequential(
|
293 |
-
weight_norm(nn.Conv1d(channels, channels, kernel_size=kernel_size, padding=padding)),
|
294 |
-
LayerNorm(channels),
|
295 |
-
actv,
|
296 |
-
nn.Dropout(0.2),
|
297 |
-
))
|
298 |
-
# self.cnn = nn.Sequential(*self.cnn)
|
299 |
-
|
300 |
-
self.lstm = nn.LSTM(channels, channels//2, 1, batch_first=True, bidirectional=True)
|
301 |
-
|
302 |
-
def forward(self, x, input_lengths, m):
|
303 |
-
x = self.embedding(x) # [B, T, emb]
|
304 |
-
x = x.transpose(1, 2) # [B, emb, T]
|
305 |
-
m = m.to(input_lengths.device).unsqueeze(1)
|
306 |
-
x.masked_fill_(m, 0.0)
|
307 |
-
|
308 |
-
for c in self.cnn:
|
309 |
-
x = c(x)
|
310 |
-
x.masked_fill_(m, 0.0)
|
311 |
-
|
312 |
-
x = x.transpose(1, 2) # [B, T, chn]
|
313 |
-
|
314 |
-
input_lengths = input_lengths.cpu().numpy()
|
315 |
-
x = nn.utils.rnn.pack_padded_sequence(
|
316 |
-
x, input_lengths, batch_first=True, enforce_sorted=False)
|
317 |
-
|
318 |
-
self.lstm.flatten_parameters()
|
319 |
-
x, _ = self.lstm(x)
|
320 |
-
x, _ = nn.utils.rnn.pad_packed_sequence(
|
321 |
-
x, batch_first=True)
|
322 |
-
|
323 |
-
x = x.transpose(-1, -2)
|
324 |
-
x_pad = torch.zeros([x.shape[0], x.shape[1], m.shape[-1]])
|
325 |
-
|
326 |
-
x_pad[:, :, :x.shape[-1]] = x
|
327 |
-
x = x_pad.to(x.device)
|
328 |
-
|
329 |
-
x.masked_fill_(m, 0.0)
|
330 |
-
|
331 |
-
return x
|
332 |
-
|
333 |
-
def inference(self, x):
|
334 |
-
x = self.embedding(x)
|
335 |
-
x = x.transpose(1, 2)
|
336 |
-
x = self.cnn(x)
|
337 |
-
x = x.transpose(1, 2)
|
338 |
-
self.lstm.flatten_parameters()
|
339 |
-
x, _ = self.lstm(x)
|
340 |
-
return x
|
341 |
-
|
342 |
-
def length_to_mask(self, lengths):
|
343 |
-
mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
|
344 |
-
mask = torch.gt(mask+1, lengths.unsqueeze(1))
|
345 |
-
return mask
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
class AdaIN1d(nn.Module):
|
350 |
-
def __init__(self, style_dim, num_features):
|
351 |
-
super().__init__()
|
352 |
-
self.norm = nn.InstanceNorm1d(num_features, affine=False)
|
353 |
-
self.fc = nn.Linear(style_dim, num_features*2)
|
354 |
-
|
355 |
-
def forward(self, x, s):
|
356 |
-
h = self.fc(s)
|
357 |
-
h = h.view(h.size(0), h.size(1), 1)
|
358 |
-
gamma, beta = torch.chunk(h, chunks=2, dim=1)
|
359 |
-
return (1 + gamma) * self.norm(x) + beta
|
360 |
-
|
361 |
-
class UpSample1d(nn.Module):
|
362 |
-
def __init__(self, layer_type):
|
363 |
-
super().__init__()
|
364 |
-
self.layer_type = layer_type
|
365 |
-
|
366 |
-
def forward(self, x):
|
367 |
-
if self.layer_type == 'none':
|
368 |
-
return x
|
369 |
-
else:
|
370 |
-
return F.interpolate(x, scale_factor=2, mode='nearest')
|
371 |
-
|
372 |
-
class AdainResBlk1d(nn.Module):
|
373 |
-
def __init__(self, dim_in, dim_out, style_dim=64, actv=nn.LeakyReLU(0.2),
|
374 |
-
upsample='none', dropout_p=0.0):
|
375 |
-
super().__init__()
|
376 |
-
self.actv = actv
|
377 |
-
self.upsample_type = upsample
|
378 |
-
self.upsample = UpSample1d(upsample)
|
379 |
-
self.learned_sc = dim_in != dim_out
|
380 |
-
self._build_weights(dim_in, dim_out, style_dim)
|
381 |
-
self.dropout = nn.Dropout(dropout_p)
|
382 |
-
|
383 |
-
if upsample == 'none':
|
384 |
-
self.pool = nn.Identity()
|
385 |
-
else:
|
386 |
-
self.pool = weight_norm(nn.ConvTranspose1d(dim_in, dim_in, kernel_size=3, stride=2, groups=dim_in, padding=1, output_padding=1))
|
387 |
-
|
388 |
-
|
389 |
-
def _build_weights(self, dim_in, dim_out, style_dim):
|
390 |
-
self.conv1 = weight_norm(nn.Conv1d(dim_in, dim_out, 3, 1, 1))
|
391 |
-
self.conv2 = weight_norm(nn.Conv1d(dim_out, dim_out, 3, 1, 1))
|
392 |
-
self.norm1 = AdaIN1d(style_dim, dim_in)
|
393 |
-
self.norm2 = AdaIN1d(style_dim, dim_out)
|
394 |
-
if self.learned_sc:
|
395 |
-
self.conv1x1 = weight_norm(nn.Conv1d(dim_in, dim_out, 1, 1, 0, bias=False))
|
396 |
-
|
397 |
-
def _shortcut(self, x):
|
398 |
-
x = self.upsample(x)
|
399 |
-
if self.learned_sc:
|
400 |
-
x = self.conv1x1(x)
|
401 |
-
return x
|
402 |
-
|
403 |
-
def _residual(self, x, s):
|
404 |
-
x = self.norm1(x, s)
|
405 |
-
x = self.actv(x)
|
406 |
-
x = self.pool(x)
|
407 |
-
x = self.conv1(self.dropout(x))
|
408 |
-
x = self.norm2(x, s)
|
409 |
-
x = self.actv(x)
|
410 |
-
x = self.conv2(self.dropout(x))
|
411 |
-
return x
|
412 |
-
|
413 |
-
def forward(self, x, s):
|
414 |
-
out = self._residual(x, s)
|
415 |
-
out = (out + self._shortcut(x)) / math.sqrt(2)
|
416 |
-
return out
|
417 |
-
|
418 |
-
class AdaLayerNorm(nn.Module):
|
419 |
-
def __init__(self, style_dim, channels, eps=1e-5):
|
420 |
-
super().__init__()
|
421 |
-
self.channels = channels
|
422 |
-
self.eps = eps
|
423 |
-
|
424 |
-
self.fc = nn.Linear(style_dim, channels*2)
|
425 |
-
|
426 |
-
def forward(self, x, s):
|
427 |
-
x = x.transpose(-1, -2)
|
428 |
-
x = x.transpose(1, -1)
|
429 |
-
|
430 |
-
h = self.fc(s)
|
431 |
-
h = h.view(h.size(0), h.size(1), 1)
|
432 |
-
gamma, beta = torch.chunk(h, chunks=2, dim=1)
|
433 |
-
gamma, beta = gamma.transpose(1, -1), beta.transpose(1, -1)
|
434 |
-
|
435 |
-
|
436 |
-
x = F.layer_norm(x, (self.channels,), eps=self.eps)
|
437 |
-
x = (1 + gamma) * x + beta
|
438 |
-
return x.transpose(1, -1).transpose(-1, -2)
|
439 |
-
|
440 |
-
class ProsodyPredictor(nn.Module):
|
441 |
-
|
442 |
-
def __init__(self, style_dim, d_hid, nlayers, max_dur=50, dropout=0.1):
|
443 |
-
super().__init__()
|
444 |
-
|
445 |
-
self.text_encoder = DurationEncoder(sty_dim=style_dim,
|
446 |
-
d_model=d_hid,
|
447 |
-
nlayers=nlayers,
|
448 |
-
dropout=dropout)
|
449 |
-
|
450 |
-
self.lstm = nn.LSTM(d_hid + style_dim, d_hid // 2, 1, batch_first=True, bidirectional=True)
|
451 |
-
self.duration_proj = LinearNorm(d_hid, max_dur)
|
452 |
-
|
453 |
-
self.shared = nn.LSTM(d_hid + style_dim, d_hid // 2, 1, batch_first=True, bidirectional=True)
|
454 |
-
self.F0 = nn.ModuleList()
|
455 |
-
self.F0.append(AdainResBlk1d(d_hid, d_hid, style_dim, dropout_p=dropout))
|
456 |
-
self.F0.append(AdainResBlk1d(d_hid, d_hid // 2, style_dim, upsample=True, dropout_p=dropout))
|
457 |
-
self.F0.append(AdainResBlk1d(d_hid // 2, d_hid // 2, style_dim, dropout_p=dropout))
|
458 |
-
|
459 |
-
self.N = nn.ModuleList()
|
460 |
-
self.N.append(AdainResBlk1d(d_hid, d_hid, style_dim, dropout_p=dropout))
|
461 |
-
self.N.append(AdainResBlk1d(d_hid, d_hid // 2, style_dim, upsample=True, dropout_p=dropout))
|
462 |
-
self.N.append(AdainResBlk1d(d_hid // 2, d_hid // 2, style_dim, dropout_p=dropout))
|
463 |
-
|
464 |
-
self.F0_proj = nn.Conv1d(d_hid // 2, 1, 1, 1, 0)
|
465 |
-
self.N_proj = nn.Conv1d(d_hid // 2, 1, 1, 1, 0)
|
466 |
-
|
467 |
-
|
468 |
-
def forward(self, texts, style, text_lengths, alignment, m):
|
469 |
-
d = self.text_encoder(texts, style, text_lengths, m)
|
470 |
-
|
471 |
-
batch_size = d.shape[0]
|
472 |
-
text_size = d.shape[1]
|
473 |
-
|
474 |
-
# predict duration
|
475 |
-
input_lengths = text_lengths.cpu().numpy()
|
476 |
-
x = nn.utils.rnn.pack_padded_sequence(
|
477 |
-
d, input_lengths, batch_first=True, enforce_sorted=False)
|
478 |
-
|
479 |
-
m = m.to(text_lengths.device).unsqueeze(1)
|
480 |
-
|
481 |
-
self.lstm.flatten_parameters()
|
482 |
-
x, _ = self.lstm(x)
|
483 |
-
x, _ = nn.utils.rnn.pad_packed_sequence(
|
484 |
-
x, batch_first=True)
|
485 |
-
|
486 |
-
x_pad = torch.zeros([x.shape[0], m.shape[-1], x.shape[-1]])
|
487 |
-
|
488 |
-
x_pad[:, :x.shape[1], :] = x
|
489 |
-
x = x_pad.to(x.device)
|
490 |
-
|
491 |
-
duration = self.duration_proj(nn.functional.dropout(x, 0.5, training=self.training))
|
492 |
-
|
493 |
-
en = (d.transpose(-1, -2) @ alignment)
|
494 |
-
|
495 |
-
return duration.squeeze(-1), en
|
496 |
-
|
497 |
-
def F0Ntrain(self, x, s):
|
498 |
-
x, _ = self.shared(x.transpose(-1, -2))
|
499 |
-
|
500 |
-
F0 = x.transpose(-1, -2)
|
501 |
-
for block in self.F0:
|
502 |
-
F0 = block(F0, s)
|
503 |
-
F0 = self.F0_proj(F0)
|
504 |
-
|
505 |
-
N = x.transpose(-1, -2)
|
506 |
-
for block in self.N:
|
507 |
-
N = block(N, s)
|
508 |
-
N = self.N_proj(N)
|
509 |
-
|
510 |
-
return F0.squeeze(1), N.squeeze(1)
|
511 |
-
|
512 |
-
def length_to_mask(self, lengths):
|
513 |
-
mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
|
514 |
-
mask = torch.gt(mask+1, lengths.unsqueeze(1))
|
515 |
-
return mask
|
516 |
-
|
517 |
-
class DurationEncoder(nn.Module):
|
518 |
-
|
519 |
-
def __init__(self, sty_dim, d_model, nlayers, dropout=0.1):
|
520 |
-
super().__init__()
|
521 |
-
self.lstms = nn.ModuleList()
|
522 |
-
for _ in range(nlayers):
|
523 |
-
self.lstms.append(nn.LSTM(d_model + sty_dim,
|
524 |
-
d_model // 2,
|
525 |
-
num_layers=1,
|
526 |
-
batch_first=True,
|
527 |
-
bidirectional=True,
|
528 |
-
dropout=dropout))
|
529 |
-
self.lstms.append(AdaLayerNorm(sty_dim, d_model))
|
530 |
-
|
531 |
-
|
532 |
-
self.dropout = dropout
|
533 |
-
self.d_model = d_model
|
534 |
-
self.sty_dim = sty_dim
|
535 |
-
|
536 |
-
def forward(self, x, style, text_lengths, m):
|
537 |
-
masks = m.to(text_lengths.device)
|
538 |
-
|
539 |
-
x = x.permute(2, 0, 1)
|
540 |
-
s = style.expand(x.shape[0], x.shape[1], -1)
|
541 |
-
x = torch.cat([x, s], axis=-1)
|
542 |
-
x.masked_fill_(masks.unsqueeze(-1).transpose(0, 1), 0.0)
|
543 |
-
|
544 |
-
x = x.transpose(0, 1)
|
545 |
-
input_lengths = text_lengths.cpu().numpy()
|
546 |
-
x = x.transpose(-1, -2)
|
547 |
-
|
548 |
-
for block in self.lstms:
|
549 |
-
if isinstance(block, AdaLayerNorm):
|
550 |
-
x = block(x.transpose(-1, -2), style).transpose(-1, -2)
|
551 |
-
x = torch.cat([x, s.permute(1, -1, 0)], axis=1)
|
552 |
-
x.masked_fill_(masks.unsqueeze(-1).transpose(-1, -2), 0.0)
|
553 |
-
else:
|
554 |
-
x = x.transpose(-1, -2)
|
555 |
-
x = nn.utils.rnn.pack_padded_sequence(
|
556 |
-
x, input_lengths, batch_first=True, enforce_sorted=False)
|
557 |
-
block.flatten_parameters()
|
558 |
-
x, _ = block(x)
|
559 |
-
x, _ = nn.utils.rnn.pad_packed_sequence(
|
560 |
-
x, batch_first=True)
|
561 |
-
x = F.dropout(x, p=self.dropout, training=self.training)
|
562 |
-
x = x.transpose(-1, -2)
|
563 |
-
|
564 |
-
x_pad = torch.zeros([x.shape[0], x.shape[1], m.shape[-1]])
|
565 |
-
|
566 |
-
x_pad[:, :, :x.shape[-1]] = x
|
567 |
-
x = x_pad.to(x.device)
|
568 |
-
|
569 |
-
return x.transpose(-1, -2)
|
570 |
-
|
571 |
-
def inference(self, x, style):
|
572 |
-
x = self.embedding(x.transpose(-1, -2)) * math.sqrt(self.d_model)
|
573 |
-
style = style.expand(x.shape[0], x.shape[1], -1)
|
574 |
-
x = torch.cat([x, style], axis=-1)
|
575 |
-
src = self.pos_encoder(x)
|
576 |
-
output = self.transformer_encoder(src).transpose(0, 1)
|
577 |
-
return output
|
578 |
-
|
579 |
-
def length_to_mask(self, lengths):
|
580 |
-
mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
|
581 |
-
mask = torch.gt(mask+1, lengths.unsqueeze(1))
|
582 |
-
return mask
|
583 |
-
|
584 |
-
def load_F0_models(path):
|
585 |
-
# load F0 model
|
586 |
-
|
587 |
-
F0_model = JDCNet(num_class=1, seq_len=192)
|
588 |
-
params = torch.load(path, map_location='cpu')
|
589 |
-
F0_model.load_state_dict(params)
|
590 |
-
_ = F0_model.train()
|
591 |
-
|
592 |
-
return F0_model
|
593 |
-
|
594 |
-
def load_ASR_models(ASR_MODEL_PATH, ASR_MODEL_CONFIG):
|
595 |
-
# load ASR model
|
596 |
-
def _load_config(path):
|
597 |
-
with open(path) as f:
|
598 |
-
config = yaml.safe_load(f)
|
599 |
-
model_config = config['model_params']
|
600 |
-
return model_config
|
601 |
-
|
602 |
-
def _load_model(model_config, model_path):
|
603 |
-
model = ASRCNN(**model_config)
|
604 |
-
params = torch.load(model_path, map_location='cpu')
|
605 |
-
model.load_state_dict(params)
|
606 |
-
return model
|
607 |
-
|
608 |
-
asr_model_config = _load_config(ASR_MODEL_CONFIG)
|
609 |
-
asr_model = _load_model(asr_model_config, ASR_MODEL_PATH)
|
610 |
-
_ = asr_model.train()
|
611 |
-
|
612 |
-
return asr_model
|
613 |
-
|
614 |
-
def build_model(args, text_aligner, pitch_extractor, bert):
|
615 |
-
assert args.decoder.type in ['istftnet', 'hifigan'], 'Decoder type unknown'
|
616 |
-
|
617 |
-
if args.decoder.type == "istftnet":
|
618 |
-
from Modules.istftnet import Decoder
|
619 |
-
decoder = Decoder(dim_in=args.hidden_dim, style_dim=args.style_dim, dim_out=args.n_mels,
|
620 |
-
resblock_kernel_sizes = args.decoder.resblock_kernel_sizes,
|
621 |
-
upsample_rates = args.decoder.upsample_rates,
|
622 |
-
upsample_initial_channel=args.decoder.upsample_initial_channel,
|
623 |
-
resblock_dilation_sizes=args.decoder.resblock_dilation_sizes,
|
624 |
-
upsample_kernel_sizes=args.decoder.upsample_kernel_sizes,
|
625 |
-
gen_istft_n_fft=args.decoder.gen_istft_n_fft, gen_istft_hop_size=args.decoder.gen_istft_hop_size)
|
626 |
-
else:
|
627 |
-
from Modules.hifigan import Decoder
|
628 |
-
decoder = Decoder(dim_in=args.hidden_dim, style_dim=args.style_dim, dim_out=args.n_mels,
|
629 |
-
resblock_kernel_sizes = args.decoder.resblock_kernel_sizes,
|
630 |
-
upsample_rates = args.decoder.upsample_rates,
|
631 |
-
upsample_initial_channel=args.decoder.upsample_initial_channel,
|
632 |
-
resblock_dilation_sizes=args.decoder.resblock_dilation_sizes,
|
633 |
-
upsample_kernel_sizes=args.decoder.upsample_kernel_sizes)
|
634 |
-
|
635 |
-
text_encoder = TextEncoder(channels=args.hidden_dim, kernel_size=5, depth=args.n_layer, n_symbols=args.n_token)
|
636 |
-
|
637 |
-
predictor = ProsodyPredictor(style_dim=args.style_dim, d_hid=args.hidden_dim, nlayers=args.n_layer, max_dur=args.max_dur, dropout=args.dropout)
|
638 |
-
|
639 |
-
style_encoder = StyleEncoder(dim_in=args.dim_in, style_dim=args.style_dim, max_conv_dim=args.hidden_dim) # acoustic style encoder
|
640 |
-
predictor_encoder = StyleEncoder(dim_in=args.dim_in, style_dim=args.style_dim, max_conv_dim=args.hidden_dim) # prosodic style encoder
|
641 |
-
|
642 |
-
# define diffusion model
|
643 |
-
if args.multispeaker:
|
644 |
-
transformer = StyleTransformer1d(channels=args.style_dim*2,
|
645 |
-
context_embedding_features=bert.config.hidden_size,
|
646 |
-
context_features=args.style_dim*2,
|
647 |
-
**args.diffusion.transformer)
|
648 |
-
else:
|
649 |
-
transformer = Transformer1d(channels=args.style_dim*2,
|
650 |
-
context_embedding_features=bert.config.hidden_size,
|
651 |
-
**args.diffusion.transformer)
|
652 |
-
|
653 |
-
diffusion = AudioDiffusionConditional(
|
654 |
-
in_channels=1,
|
655 |
-
embedding_max_length=bert.config.max_position_embeddings,
|
656 |
-
embedding_features=bert.config.hidden_size,
|
657 |
-
embedding_mask_proba=args.diffusion.embedding_mask_proba, # Conditional dropout of batch elements,
|
658 |
-
channels=args.style_dim*2,
|
659 |
-
context_features=args.style_dim*2,
|
660 |
-
)
|
661 |
-
|
662 |
-
diffusion.diffusion = KDiffusion(
|
663 |
-
net=diffusion.unet,
|
664 |
-
sigma_distribution=LogNormalDistribution(mean = args.diffusion.dist.mean, std = args.diffusion.dist.std),
|
665 |
-
sigma_data=args.diffusion.dist.sigma_data, # a placeholder, will be changed dynamically when start training diffusion model
|
666 |
-
dynamic_threshold=0.0
|
667 |
-
)
|
668 |
-
diffusion.diffusion.net = transformer
|
669 |
-
diffusion.unet = transformer
|
670 |
-
|
671 |
-
|
672 |
-
nets = Munch(
|
673 |
-
bert=bert,
|
674 |
-
bert_encoder=nn.Linear(bert.config.hidden_size, args.hidden_dim),
|
675 |
-
|
676 |
-
predictor=predictor,
|
677 |
-
decoder=decoder,
|
678 |
-
text_encoder=text_encoder,
|
679 |
-
|
680 |
-
predictor_encoder=predictor_encoder,
|
681 |
-
style_encoder=style_encoder,
|
682 |
-
diffusion=diffusion,
|
683 |
-
|
684 |
-
text_aligner = text_aligner,
|
685 |
-
pitch_extractor=pitch_extractor,
|
686 |
-
|
687 |
-
mpd = MultiPeriodDiscriminator(),
|
688 |
-
msd = MultiResSpecDiscriminator(),
|
689 |
-
|
690 |
-
# slm discriminator head
|
691 |
-
wd = WavLMDiscriminator(args.slm.hidden, args.slm.nlayers, args.slm.initial_channel),
|
692 |
-
sampler = DiffusionSampler(diffusion.diffusion,
|
693 |
-
sampler=ADPM2Sampler(),
|
694 |
-
sigma_schedule=KarrasSchedule(sigma_min=0.0001, sigma_max=3.0, rho=9.0),
|
695 |
-
clamp=False )
|
696 |
-
)
|
697 |
-
|
698 |
-
return nets
|
699 |
-
|
700 |
-
def load_checkpoint(model, optimizer, path, load_only_params=True, ignore_modules=[]):
|
701 |
-
state = torch.load(path, map_location='cpu')
|
702 |
-
params = state['net']
|
703 |
-
for key in model:
|
704 |
-
if key in params and key not in ignore_modules:
|
705 |
-
print('%s loaded' % key)
|
706 |
-
model[key].load_state_dict(params[key], strict=False)
|
707 |
-
_ = [model[key].eval() for key in model]
|
708 |
-
|
709 |
-
if not load_only_params:
|
710 |
-
epoch = state["epoch"]
|
711 |
-
iters = state["iters"]
|
712 |
-
optimizer.load_state_dict(state["optimizer"])
|
713 |
-
else:
|
714 |
-
epoch = 0
|
715 |
-
iters = 0
|
716 |
-
|
717 |
-
return model, optimizer, epoch, iters
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
weights/asr.bin
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:ee69a5f32c76aff88bafb09f31379dc625e51e3f71d842a4cf30ecd69cb92b56
|
3 |
-
size 31529032
|
|
|
|
|
|
|
|
weights/jdc.bin
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:87aabb4a35814b581d13f4cc6ee352e99e80ede7fb6e7e963ea85b1feee940ac
|
3 |
-
size 21023821
|
|
|
|
|
|
|
|
weights/plbert.bin
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:74284b3d86962b0c4b52f2d3fe8507fc1ad87ae1defd1e7ddf28677380a290ef
|
3 |
-
size 25188799
|
|
|
|
|
|
|
|