Spaces:
Running
on
Zero
Running
on
Zero
| import torch | |
| torch.manual_seed(0) | |
| torch.backends.cudnn.benchmark = False | |
| torch.backends.cudnn.deterministic = True | |
| import random | |
| random.seed(0) | |
| import numpy as np | |
| np.random.seed(0) | |
| import spaces | |
| import yaml | |
| import re | |
| import numpy as np | |
| import torch | |
| import torch.nn.functional as F | |
| import torchaudio | |
| from ipa_uk import ipa | |
| from unicodedata import normalize | |
| from ukrainian_word_stress import Stressifier, StressSymbol | |
| stressify = Stressifier(stress_symbol=StressSymbol.CombiningAcuteAccent) | |
| from models import * | |
| from utils import * | |
| from text_utils import TextCleaner | |
| textclenaer = TextCleaner() | |
| device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
| to_mel = torchaudio.transforms.MelSpectrogram( | |
| n_mels=80, n_fft=2048, win_length=1200, hop_length=300) | |
| mean, std = -4, 4 | |
| def length_to_mask(lengths): | |
| mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths) | |
| mask = torch.gt(mask+1, lengths.unsqueeze(1)) | |
| return mask | |
| config = yaml.safe_load(open('styletts_config.yml')) | |
| # load pretrained ASR model | |
| ASR_config = config.get('ASR_config', False) | |
| ASR_path = config.get('ASR_path', False) | |
| text_aligner = load_ASR_models(ASR_path, ASR_config) | |
| # load pretrained F0 model | |
| F0_path = config.get('F0_path', False) | |
| pitch_extractor = load_F0_models(F0_path) | |
| # load BERT model | |
| from Utils.PLBERT.util import load_plbert | |
| BERT_path = config.get('PLBERT_dir', False) | |
| plbert = load_plbert(BERT_path) | |
| model = build_model(recursive_munch(config['model_params']), text_aligner, pitch_extractor, plbert) | |
| _ = [model[key].eval() for key in model] | |
| _ = [model[key].to(device) for key in model] | |
| params_whole = torch.load('epoch_2nd_00027_filatov_whisp_cont.pth', map_location='cpu') | |
| params = params_whole['net'] | |
| for key in model: | |
| if key in params: | |
| print('%s loaded' % key) | |
| try: | |
| model[key].load_state_dict(params[key]) | |
| except: | |
| from collections import OrderedDict | |
| state_dict = params[key] | |
| new_state_dict = OrderedDict() | |
| for k, v in state_dict.items(): | |
| name = k[7:] # remove `module.` | |
| new_state_dict[name] = v | |
| # load params | |
| model[key].load_state_dict(new_state_dict, strict=False) | |
| # except: | |
| # _load(params[key], model[key]) | |
| _ = [model[key].eval() for key in model] | |
| from Modules.diffusion.sampler import DiffusionSampler, ADPM2Sampler, KarrasSchedule | |
| sampler = DiffusionSampler( | |
| model.diffusion.diffusion, | |
| sampler=ADPM2Sampler(), | |
| sigma_schedule=KarrasSchedule(sigma_min=0.0001, sigma_max=3.0, rho=9.0), # empirical parameters | |
| clamp=False | |
| ) | |
| def split_to_parts(text): | |
| split_symbols = '.?!:' | |
| parts = [''] | |
| index = 0 | |
| for s in text: | |
| parts[index] += s | |
| if s in split_symbols and len(parts[index]) > 150: | |
| index += 1 | |
| parts.append('') | |
| return parts | |
| def _inf(text, s_prev, noise, alpha, diffusion_steps, embedding_scale): | |
| text = text.strip() | |
| text = text.replace('"', '') | |
| text = text.replace('+', 'Λ') | |
| text = normalize('NFKC', text) | |
| text = re.sub(r'[α βββββββ»βββΈΊβΈ»]', '-', text) | |
| text = re.sub(r' - ', ': ', text) | |
| ps = ipa(stressify(text)) | |
| #ps = text | |
| print(ps) | |
| tokens = textclenaer(ps) | |
| tokens.insert(0, 0) | |
| tokens = torch.LongTensor(tokens).to(device).unsqueeze(0) | |
| with torch.no_grad(): | |
| input_lengths = torch.LongTensor([tokens.shape[-1]]).to(tokens.device) | |
| text_mask = length_to_mask(input_lengths).to(tokens.device) | |
| t_en = model.text_encoder(tokens, input_lengths, text_mask) | |
| bert_dur = model.bert(tokens, attention_mask=(~text_mask).int()) | |
| d_en = model.bert_encoder(bert_dur).transpose(-1, -2) | |
| s_pred = sampler(noise, | |
| embedding=bert_dur[0].unsqueeze(0), num_steps=diffusion_steps, | |
| embedding_scale=embedding_scale).squeeze(0) | |
| if s_prev is not None: | |
| # convex combination of previous and current style | |
| s_pred = alpha * s_prev + (1 - alpha) * s_pred | |
| s = s_pred[:, 128:] | |
| ref = s_pred[:, :128] | |
| d = model.predictor.text_encoder(d_en, s, input_lengths, text_mask) | |
| x, _ = model.predictor.lstm(d) | |
| duration = model.predictor.duration_proj(x) | |
| duration = torch.sigmoid(duration).sum(axis=-1) | |
| pred_dur = torch.round(duration.squeeze()).clamp(min=1) | |
| pred_aln_trg = torch.zeros(input_lengths, int(pred_dur.sum().data)) | |
| c_frame = 0 | |
| for i in range(pred_aln_trg.size(0)): | |
| pred_aln_trg[i, c_frame:c_frame + int(pred_dur[i].data)] = 1 | |
| c_frame += int(pred_dur[i].data) | |
| # encode prosody | |
| en = (d.transpose(-1, -2) @ pred_aln_trg.unsqueeze(0).to(device)) | |
| F0_pred, N_pred = model.predictor.F0Ntrain(en, s) | |
| out = model.decoder((t_en @ pred_aln_trg.unsqueeze(0).to(device)), | |
| F0_pred, N_pred, ref.squeeze().unsqueeze(0)) | |
| return out.squeeze().cpu().numpy(), s_pred, ps | |
| def inference(text, progress, alpha=0.7, diffusion_steps=10, embedding_scale=1.2): | |
| wavs = [] | |
| s_prev = None | |
| #sentences = text.split('|') | |
| sentences = split_to_parts(text) | |
| print(sentences) | |
| phonemes = '' | |
| noise = torch.randn(1,1,256).to(device) | |
| for text in progress.tqdm(sentences): | |
| if text.strip() == "": continue | |
| wav, s_prev, ps = _inf(text, s_prev, noise, alpha=alpha, diffusion_steps=diffusion_steps, embedding_scale=embedding_scale) | |
| wavs.append(wav) | |
| phonemes += ' ' + ps | |
| return np.concatenate(wavs), phonemes | |