File size: 7,588 Bytes
9ba7005
 
 
 
 
 
 
 
 
 
086eb2f
 
a257548
9ba7005
 
 
 
 
 
 
 
 
 
 
f822986
9ba7005
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
086eb2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ba7005
086eb2f
 
9ba7005
 
 
 
 
 
 
 
 
 
 
 
f822986
 
9ba7005
086eb2f
 
 
 
a257548
 
 
086eb2f
8fc33c0
 
086eb2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ba7005
 
 
 
 
 
 
 
 
 
 
 
 
 
 
086eb2f
 
9ba7005
 
086eb2f
9ba7005
 
 
 
086eb2f
 
9ba7005
 
 
086eb2f
9ba7005
086eb2f
9ba7005
 
 
 
 
 
 
 
086eb2f
 
 
 
 
 
 
 
 
 
 
9ba7005
 
 
 
 
 
 
086eb2f
 
 
 
9ba7005
 
 
 
 
086eb2f
48b208d
9ba7005
086eb2f
 
 
 
9ba7005
 
 
 
 
 
 
 
 
 
086eb2f
 
 
 
 
9ba7005
 
 
 
086eb2f
9ba7005
 
 
 
 
 
086eb2f
9ba7005
 
086eb2f
9ba7005
 
086eb2f
9ba7005
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
import torch
torch.manual_seed(0)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True

import random
random.seed(0)

import numpy as np
np.random.seed(0)
import librosa
from copy import deepcopy
from huggingface_hub import hf_hub_download

import spaces
import yaml
import re
import numpy as np
import torch
import torch.nn.functional as F
import torchaudio
from ipa_uk import ipa
from unicodedata import normalize
from ukrainian_word_stress import Stressifier, StressSymbol
stressify = Stressifier()



from models import *
from utils import *
from text_utils import TextCleaner
textclenaer = TextCleaner()


device = 'cuda' if torch.cuda.is_available() else 'cpu'

to_mel = torchaudio.transforms.MelSpectrogram(
    n_mels=80, n_fft=2048, win_length=1200, hop_length=300)
mean, std = -4, 4

def length_to_mask(lengths):
    mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
    mask = torch.gt(mask+1, lengths.unsqueeze(1))
    return mask


def load_state_dict(model, params):
    for key in model:
        if key in params:
            print('%s loaded' % key)
            try:
                model[key].load_state_dict(params[key])
            except:
                from collections import OrderedDict
                state_dict = params[key]
                new_state_dict = OrderedDict()
                for k, v in state_dict.items():
                    name = k[7:] # remove `module.`
                    new_state_dict[name] = v

                model[key].load_state_dict(new_state_dict, strict=False)

 
config = yaml.safe_load(open('config.yml'))

# load pretrained ASR model
ASR_config = config.get('ASR_config', False)
ASR_path = config.get('ASR_path', False)
text_aligner = load_ASR_models(ASR_path, ASR_config)

# load pretrained F0 model
F0_path = config.get('F0_path', False)
pitch_extractor = load_F0_models(F0_path)

# load BERT model
from Utils.PLBERT.util import load_plbert

plbert = load_plbert('weights/plbert.bin', 'Utils/PLBERT/config.yml')

model_single = build_model(recursive_munch(config['model_params_single']), text_aligner, pitch_extractor, plbert)
model_multi = build_model(recursive_munch(config['model_params_multi']), deepcopy(text_aligner), deepcopy(pitch_extractor), deepcopy(plbert))


multi_path = hf_hub_download(repo_id='patriotyk/styletts2_ukrainian_multispeaker', filename="pytorch_model.bin")
params_multi = torch.load(multi_path, map_location='cpu')


single_path = hf_hub_download(repo_id='patriotyk/styletts2_ukrainian_single', filename="pytorch_model.bin")
params_single = torch.load(single_path, map_location='cpu')


load_state_dict(model_single, params_single)
_ = [model_single[key].eval() for key in model_single]
_ = [model_single[key].to(device) for key in model_single]


load_state_dict(model_multi, params_multi)
_ = [model_multi[key].eval() for key in model_multi]
_ = [model_multi[key].to(device) for key in model_multi]



models = {
    'multi': model_multi,
    'single': model_single
}



def preprocess(wave):
    wave_tensor = torch.from_numpy(wave).float()
    mel_tensor = to_mel(wave_tensor)
    mel_tensor = (torch.log(1e-5 + mel_tensor.unsqueeze(0)) - mean) / std
    return mel_tensor

def compute_style(voice_audio):
    wave, sr = librosa.load(voice_audio, sr=24000)
    audio, index = librosa.effects.trim(wave, top_db=30)
    if sr != 24000:
        audio = librosa.resample(audio, sr, 24000)
    mel_tensor = preprocess(audio).to(device)

    with torch.no_grad():
        ref_s = models['multi'].style_encoder(mel_tensor.unsqueeze(1))
        ref_p = models['multi'].predictor_encoder(mel_tensor.unsqueeze(1))

    return torch.cat([ref_s, ref_p], dim=1)


def split_to_parts(text):
    split_symbols = '.?!:'
    parts = ['']
    index = 0
    for s in text:
        parts[index] += s
        if s in split_symbols and len(parts[index]) > 150:
            index += 1
            parts.append('')
    return parts
    


def _inf(model, text, ref_s, speed, s_prev, noise, alpha, beta, diffusion_steps, embedding_scale):
    model = models[model]
    text = text.strip()
    text = text.replace('"', '')
    text = text.replace('+', 'ˈ')
    text = normalize('NFKC', text)

    text = re.sub(r'[α †β€β€‘β€’β€“β€”β€•β»β‚‹βˆ’βΈΊβΈ»]', '-', text)
    text = re.sub(r' - ', ': ', text)
    ps = ipa(stressify(text))
    print(ps)

    tokens = textclenaer(ps)
    tokens.insert(0, 0)

    tokens = torch.LongTensor(tokens).to(device).unsqueeze(0)
        
    with torch.no_grad():
        input_lengths = torch.LongTensor([tokens.shape[-1]]).to(tokens.device)
        text_mask = length_to_mask(input_lengths).to(tokens.device)

        t_en = model.text_encoder(tokens, input_lengths, text_mask)
        bert_dur = model.bert(tokens, attention_mask=(~text_mask).int())
        d_en = model.bert_encoder(bert_dur).transpose(-1, -2) 

        
        if ref_s is None:
            s_pred = model.sampler(noise, 
                  embedding=bert_dur[0].unsqueeze(0), num_steps=diffusion_steps,
                  embedding_scale=embedding_scale).squeeze(0)
        else:
            s_pred = model.sampler(noise = noise,
                            embedding=bert_dur,
                            embedding_scale=embedding_scale,
                            features=ref_s, # reference from the same speaker as the embedding
                            num_steps=diffusion_steps).squeeze(1)
        
        if s_prev is not None:
            # convex combination of previous and current style
            s_pred = alpha * s_prev + (1 - alpha) * s_pred
        
        s = s_pred[:, 128:]
        ref = s_pred[:, :128]
        
        if ref_s is not None:
            ref = alpha * ref + (1 - alpha)  * ref_s[:, :128]
            s = beta * s + (1 - beta)  * ref_s[:, 128:]

        d = model.predictor.text_encoder(d_en, s, input_lengths, text_mask)

        x, _ = model.predictor.lstm(d)
        duration = model.predictor.duration_proj(x)

        duration = torch.sigmoid(duration).sum(axis=-1)/speed
        pred_dur = torch.round(duration.squeeze()).clamp(min=1)
               
        if ref_s is not None:
            pred_dur[0] = 30


        pred_aln_trg = torch.zeros(input_lengths, int(pred_dur.sum().data))
        c_frame = 0
        for i in range(pred_aln_trg.size(0)):
            pred_aln_trg[i, c_frame:c_frame + int(pred_dur[i].data)] = 1
            c_frame += int(pred_dur[i].data)

        # encode prosody
        en = (d.transpose(-1, -2) @ pred_aln_trg.unsqueeze(0).to(device))
        F0_pred, N_pred = model.predictor.F0Ntrain(en, s)
        asr = (t_en @ pred_aln_trg.unsqueeze(0).to(device))

        out = model.decoder(asr, F0_pred, N_pred, ref.squeeze().unsqueeze(0))
        if ref_s is not None:
            out = out[:,:, 14500:]
    return out.squeeze().cpu().numpy(), s_pred, ps


@spaces.GPU
def inference(model, text, voice_audio, progress, speed=1, alpha=0.4, beta=0.4, diffusion_steps=10, embedding_scale=1.2):

    wavs = []
    s_prev = None

    #sentences = text.split('|')
    sentences = split_to_parts(text)

    phonemes = ''
    noise = torch.randn(1,1,256).to(device)
    ref_s = compute_style(voice_audio) if voice_audio else None
    for text in progress.tqdm(sentences):
        if text.strip() == "": continue
        wav, s_prev, ps = _inf(model, text, ref_s, speed, s_prev, noise, alpha=alpha, beta=beta, diffusion_steps=diffusion_steps, embedding_scale=embedding_scale)
        wavs.append(wav)
        phonemes += ' ' + ps
    return  np.concatenate(wavs), phonemes