Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,588 Bytes
9ba7005 086eb2f a257548 9ba7005 f822986 9ba7005 086eb2f 9ba7005 086eb2f 9ba7005 f822986 9ba7005 086eb2f a257548 086eb2f 8fc33c0 086eb2f 9ba7005 086eb2f 9ba7005 086eb2f 9ba7005 086eb2f 9ba7005 086eb2f 9ba7005 086eb2f 9ba7005 086eb2f 9ba7005 086eb2f 9ba7005 086eb2f 48b208d 9ba7005 086eb2f 9ba7005 086eb2f 9ba7005 086eb2f 9ba7005 086eb2f 9ba7005 086eb2f 9ba7005 086eb2f 9ba7005 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 |
import torch
torch.manual_seed(0)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
import random
random.seed(0)
import numpy as np
np.random.seed(0)
import librosa
from copy import deepcopy
from huggingface_hub import hf_hub_download
import spaces
import yaml
import re
import numpy as np
import torch
import torch.nn.functional as F
import torchaudio
from ipa_uk import ipa
from unicodedata import normalize
from ukrainian_word_stress import Stressifier, StressSymbol
stressify = Stressifier()
from models import *
from utils import *
from text_utils import TextCleaner
textclenaer = TextCleaner()
device = 'cuda' if torch.cuda.is_available() else 'cpu'
to_mel = torchaudio.transforms.MelSpectrogram(
n_mels=80, n_fft=2048, win_length=1200, hop_length=300)
mean, std = -4, 4
def length_to_mask(lengths):
mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths)
mask = torch.gt(mask+1, lengths.unsqueeze(1))
return mask
def load_state_dict(model, params):
for key in model:
if key in params:
print('%s loaded' % key)
try:
model[key].load_state_dict(params[key])
except:
from collections import OrderedDict
state_dict = params[key]
new_state_dict = OrderedDict()
for k, v in state_dict.items():
name = k[7:] # remove `module.`
new_state_dict[name] = v
model[key].load_state_dict(new_state_dict, strict=False)
config = yaml.safe_load(open('config.yml'))
# load pretrained ASR model
ASR_config = config.get('ASR_config', False)
ASR_path = config.get('ASR_path', False)
text_aligner = load_ASR_models(ASR_path, ASR_config)
# load pretrained F0 model
F0_path = config.get('F0_path', False)
pitch_extractor = load_F0_models(F0_path)
# load BERT model
from Utils.PLBERT.util import load_plbert
plbert = load_plbert('weights/plbert.bin', 'Utils/PLBERT/config.yml')
model_single = build_model(recursive_munch(config['model_params_single']), text_aligner, pitch_extractor, plbert)
model_multi = build_model(recursive_munch(config['model_params_multi']), deepcopy(text_aligner), deepcopy(pitch_extractor), deepcopy(plbert))
multi_path = hf_hub_download(repo_id='patriotyk/styletts2_ukrainian_multispeaker', filename="pytorch_model.bin")
params_multi = torch.load(multi_path, map_location='cpu')
single_path = hf_hub_download(repo_id='patriotyk/styletts2_ukrainian_single', filename="pytorch_model.bin")
params_single = torch.load(single_path, map_location='cpu')
load_state_dict(model_single, params_single)
_ = [model_single[key].eval() for key in model_single]
_ = [model_single[key].to(device) for key in model_single]
load_state_dict(model_multi, params_multi)
_ = [model_multi[key].eval() for key in model_multi]
_ = [model_multi[key].to(device) for key in model_multi]
models = {
'multi': model_multi,
'single': model_single
}
def preprocess(wave):
wave_tensor = torch.from_numpy(wave).float()
mel_tensor = to_mel(wave_tensor)
mel_tensor = (torch.log(1e-5 + mel_tensor.unsqueeze(0)) - mean) / std
return mel_tensor
def compute_style(voice_audio):
wave, sr = librosa.load(voice_audio, sr=24000)
audio, index = librosa.effects.trim(wave, top_db=30)
if sr != 24000:
audio = librosa.resample(audio, sr, 24000)
mel_tensor = preprocess(audio).to(device)
with torch.no_grad():
ref_s = models['multi'].style_encoder(mel_tensor.unsqueeze(1))
ref_p = models['multi'].predictor_encoder(mel_tensor.unsqueeze(1))
return torch.cat([ref_s, ref_p], dim=1)
def split_to_parts(text):
split_symbols = '.?!:'
parts = ['']
index = 0
for s in text:
parts[index] += s
if s in split_symbols and len(parts[index]) > 150:
index += 1
parts.append('')
return parts
def _inf(model, text, ref_s, speed, s_prev, noise, alpha, beta, diffusion_steps, embedding_scale):
model = models[model]
text = text.strip()
text = text.replace('"', '')
text = text.replace('+', 'Λ')
text = normalize('NFKC', text)
text = re.sub(r'[α βββββββ»βββΈΊβΈ»]', '-', text)
text = re.sub(r' - ', ': ', text)
ps = ipa(stressify(text))
print(ps)
tokens = textclenaer(ps)
tokens.insert(0, 0)
tokens = torch.LongTensor(tokens).to(device).unsqueeze(0)
with torch.no_grad():
input_lengths = torch.LongTensor([tokens.shape[-1]]).to(tokens.device)
text_mask = length_to_mask(input_lengths).to(tokens.device)
t_en = model.text_encoder(tokens, input_lengths, text_mask)
bert_dur = model.bert(tokens, attention_mask=(~text_mask).int())
d_en = model.bert_encoder(bert_dur).transpose(-1, -2)
if ref_s is None:
s_pred = model.sampler(noise,
embedding=bert_dur[0].unsqueeze(0), num_steps=diffusion_steps,
embedding_scale=embedding_scale).squeeze(0)
else:
s_pred = model.sampler(noise = noise,
embedding=bert_dur,
embedding_scale=embedding_scale,
features=ref_s, # reference from the same speaker as the embedding
num_steps=diffusion_steps).squeeze(1)
if s_prev is not None:
# convex combination of previous and current style
s_pred = alpha * s_prev + (1 - alpha) * s_pred
s = s_pred[:, 128:]
ref = s_pred[:, :128]
if ref_s is not None:
ref = alpha * ref + (1 - alpha) * ref_s[:, :128]
s = beta * s + (1 - beta) * ref_s[:, 128:]
d = model.predictor.text_encoder(d_en, s, input_lengths, text_mask)
x, _ = model.predictor.lstm(d)
duration = model.predictor.duration_proj(x)
duration = torch.sigmoid(duration).sum(axis=-1)/speed
pred_dur = torch.round(duration.squeeze()).clamp(min=1)
if ref_s is not None:
pred_dur[0] = 30
pred_aln_trg = torch.zeros(input_lengths, int(pred_dur.sum().data))
c_frame = 0
for i in range(pred_aln_trg.size(0)):
pred_aln_trg[i, c_frame:c_frame + int(pred_dur[i].data)] = 1
c_frame += int(pred_dur[i].data)
# encode prosody
en = (d.transpose(-1, -2) @ pred_aln_trg.unsqueeze(0).to(device))
F0_pred, N_pred = model.predictor.F0Ntrain(en, s)
asr = (t_en @ pred_aln_trg.unsqueeze(0).to(device))
out = model.decoder(asr, F0_pred, N_pred, ref.squeeze().unsqueeze(0))
if ref_s is not None:
out = out[:,:, 14500:]
return out.squeeze().cpu().numpy(), s_pred, ps
@spaces.GPU
def inference(model, text, voice_audio, progress, speed=1, alpha=0.4, beta=0.4, diffusion_steps=10, embedding_scale=1.2):
wavs = []
s_prev = None
#sentences = text.split('|')
sentences = split_to_parts(text)
phonemes = ''
noise = torch.randn(1,1,256).to(device)
ref_s = compute_style(voice_audio) if voice_audio else None
for text in progress.tqdm(sentences):
if text.strip() == "": continue
wav, s_prev, ps = _inf(model, text, ref_s, speed, s_prev, noise, alpha=alpha, beta=beta, diffusion_steps=diffusion_steps, embedding_scale=embedding_scale)
wavs.append(wav)
phonemes += ' ' + ps
return np.concatenate(wavs), phonemes
|