patrickligardes commited on
Commit
cfebc5c
ยท
verified ยท
1 Parent(s): 37277a1

Update utils_mask.py

Browse files
Files changed (1) hide show
  1. utils_mask.py +4 -14
utils_mask.py CHANGED
@@ -83,30 +83,20 @@ def get_mask_location(model_type, category, model_parse: Image.Image, keypoint:
83
  (parse_array == 12).astype(np.float32) + \
84
  (parse_array == 13).astype(np.float32) + \
85
  (parse_array == 5).astype(np.float32)
86
- parser_mask_fixed_lower_cloth = (parse_array == label_map["skirt"]).astype(np.float32) + \
87
- (parse_array == label_map["pants"]).astype(np.float32)
88
- parser_mask_fixed += parser_mask_fixed_lower_cloth
89
 
90
- parse_mask = np.logical_or(parse_mask_upper, parse_mask_lower)
91
-
92
- # Dilate the leg mask to ensure coverage and fill gaps
93
- parse_mask_legs = np.logical_or.reduce((parse_array == label_map["left_leg"],
94
- parse_array == label_map["right_leg"],
95
- parse_array == label_map["skirt"],
96
- parse_array == label_map["pants"])).astype(np.float32)
97
  parse_mask_legs_dilated = cv2.dilate(parse_mask_legs.astype(np.uint8), np.ones((5, 5), np.uint8), iterations=6)
98
  parse_mask_lower = np.maximum(parse_mask_lower, parse_mask_legs_dilated)
99
 
100
- # Only fill the gaps between the legs
101
  fill_gap_between_legs = cv2.morphologyEx(parse_mask_lower.astype(np.uint8), cv2.MORPH_CLOSE, np.ones((15, 15), np.uint8))
102
 
103
  parse_mask = np.logical_or(parse_mask_upper, fill_gap_between_legs)
104
 
105
  elif category == 'upper_body':
106
  parse_mask = (parse_array == 4).astype(np.float32) + (parse_array == 7).astype(np.float32)
107
- parser_mask_fixed_lower_cloth = (parse_array == label_map["skirt"]).astype(np.float32) + \
108
- (parse_array == label_map["pants"]).astype(np.float32)
109
- parser_mask_fixed += parser_mask_fixed_lower_cloth
110
  parser_mask_changeable += np.logical_and(parse_array, np.logical_not(parser_mask_fixed))
111
  elif category == 'lower_body':
112
  parse_mask = (parse_array == 6).astype(np.float32) + \
 
83
  (parse_array == 12).astype(np.float32) + \
84
  (parse_array == 13).astype(np.float32) + \
85
  (parse_array == 5).astype(np.float32)
 
 
 
86
 
87
+ # Fill only the gaps between the legs
88
+ parse_mask_legs = (parse_array == label_map["left_leg"]).astype(np.float32) + \
89
+ (parse_array == label_map["right_leg"]).astype(np.float32)
 
 
 
 
90
  parse_mask_legs_dilated = cv2.dilate(parse_mask_legs.astype(np.uint8), np.ones((5, 5), np.uint8), iterations=6)
91
  parse_mask_lower = np.maximum(parse_mask_lower, parse_mask_legs_dilated)
92
 
93
+ # Close the gap between the legs
94
  fill_gap_between_legs = cv2.morphologyEx(parse_mask_lower.astype(np.uint8), cv2.MORPH_CLOSE, np.ones((15, 15), np.uint8))
95
 
96
  parse_mask = np.logical_or(parse_mask_upper, fill_gap_between_legs)
97
 
98
  elif category == 'upper_body':
99
  parse_mask = (parse_array == 4).astype(np.float32) + (parse_array == 7).astype(np.float32)
 
 
 
100
  parser_mask_changeable += np.logical_and(parse_array, np.logical_not(parser_mask_fixed))
101
  elif category == 'lower_body':
102
  parse_mask = (parse_array == 6).astype(np.float32) + \