import pandas as pd from openpyxl import Workbook import gradio as gr import os import warnings # Suppress warnings warnings.filterwarnings("ignore", category=UserWarning, module="openpyxl") # Hardcoded mapping logic (from reference file) MAPPING = [ {"Sheet Name": "Sheet1", "Input Column": "A", "PO Output Column": "Order Number", "Start Row": 2}, {"Sheet Name": "Sheet1", "Input Column": "B", "PO Output Column": "Customer Name", "Start Row": 2}, {"Sheet Name": "Sheet2", "Input Column": "C", "PO Output Column": "Product Code", "Start Row": 2}, {"Sheet Name": "Sheet2", "Input Column": "D", "PO Output Column": "Quantity", "Start Row": 2}, # Add more mappings as needed ] # Function to extract and map data from the input workbook def transform_data(input_path): # Load the input workbook input_workbook = pd.ExcelFile(input_path) # Initialize a dictionary to store data for output output_data = {} # Iterate through each mapping rule for mapping in MAPPING: output_column = mapping["PO Output Column"] input_sheet = mapping["Sheet Name"] input_column = mapping["Input Column"] start_row = mapping.get("Start Row", 2) # Default start row is 2 if not specified # Extract data from the specified sheet and column if input_sheet in input_workbook.sheet_names: sheet_data = pd.read_excel(input_path, sheet_name=input_sheet, usecols=[input_column], skiprows=start_row - 1) output_data[output_column] = sheet_data.iloc[:, 0].tolist() else: output_data[output_column] = [] # If sheet is missing, add empty column # Ensure all columns have the same number of rows by filling with blanks max_rows = max(len(col_data) for col_data in output_data.values()) for key in output_data: while len(output_data[key]) < max_rows: output_data[key].append("") return pd.DataFrame(output_data) # Main processing function def process_files(input_workbook): try: # Validate input file if not os.path.exists(input_workbook): return None, "Input workbook file does not exist." # Transform the data transformed_data = transform_data(input_workbook) # Create a new workbook for the output output_workbook = Workbook() output_sheet = output_workbook.active output_sheet.title = "Generated Output" # Write headers headers = transformed_data.columns.tolist() for col_idx, header in enumerate(headers, start=1): output_sheet.cell(row=1, column=col_idx, value=header) # Write data rows for row_idx, row_data in enumerate(transformed_data.itertuples(index=False), start=2): for col_idx, value in enumerate(row_data, start=1): output_sheet.cell(row=row_idx, column=col_idx, value=value) # Save the generated output file output_file_path = "Generated_Output_Final.xlsx" output_workbook.save(output_file_path) return output_file_path, None except Exception as e: return None, f"An error occurred during file generation: {e}" # Define the Gradio interface def generate_excel(input_workbook): file_path, error = process_files(input_workbook.name) if error: return None, error return file_path, "File generated successfully." with gr.Blocks() as app: gr.Markdown("# Excel Sheet Generator") gr.Markdown("Upload the input workbook to generate the final Excel file.") with gr.Row(): input_workbook = gr.File(label="Input Workbook", file_types=[".xlsx"]) output_file = gr.File(label="Generated Excel File") status_message = gr.Textbox(label="Status", interactive=False) generate_button = gr.Button("Generate Excel File") generate_button.click(generate_excel, inputs=[input_workbook], outputs=[output_file, status_message]) # Launch the app app.launch()