Spaces:
Build error
Build error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,232 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import json
|
| 3 |
+
import chromadb
|
| 4 |
+
import numpy as np
|
| 5 |
+
from dotenv import load_dotenv
|
| 6 |
+
from fastapi import FastAPI, HTTPException
|
| 7 |
+
from pydantic import BaseModel
|
| 8 |
+
import torch
|
| 9 |
+
from transformers import AutoTokenizer, AutoModel
|
| 10 |
+
from groq import Groq
|
| 11 |
+
import gradio as gr
|
| 12 |
+
import httpx # Used to make async HTTP requests to FastAPI
|
| 13 |
+
|
| 14 |
+
# Load environment variables
|
| 15 |
+
load_dotenv()
|
| 16 |
+
|
| 17 |
+
# List of API keys for Groq
|
| 18 |
+
api_keys = [
|
| 19 |
+
os.getenv("GROQ_API_KEY"),
|
| 20 |
+
os.getenv("GROQ_API_KEY_2"),
|
| 21 |
+
os.getenv("GROQ_API_KEY_3"),
|
| 22 |
+
os.getenv("GROQ_API_KEY_4"),
|
| 23 |
+
]
|
| 24 |
+
|
| 25 |
+
if not any(api_keys):
|
| 26 |
+
raise ValueError("At least one GROQ_API_KEY environment variable must be set.")
|
| 27 |
+
|
| 28 |
+
# Initialize Groq client with the first API key
|
| 29 |
+
current_key_index = 0
|
| 30 |
+
client = Groq(api_key=api_keys[current_key_index])
|
| 31 |
+
|
| 32 |
+
# FastAPI app
|
| 33 |
+
app = FastAPI()
|
| 34 |
+
|
| 35 |
+
# Define Groq-based model with fallback
|
| 36 |
+
class GroqChatbot:
|
| 37 |
+
def __init__(self, api_keys):
|
| 38 |
+
self.api_keys = api_keys
|
| 39 |
+
self.current_key_index = 0
|
| 40 |
+
self.client = Groq(api_key=self.api_keys[self.current_key_index])
|
| 41 |
+
|
| 42 |
+
def switch_key(self):
|
| 43 |
+
"""Switch to the next API key in the list."""
|
| 44 |
+
self.current_key_index = (self.current_key_index + 1) % len(self.api_keys)
|
| 45 |
+
self.client = Groq(api_key=self.api_keys[self.current_key_index])
|
| 46 |
+
print(f"Switched to API key index {self.current_key_index}")
|
| 47 |
+
|
| 48 |
+
def get_response(self, prompt):
|
| 49 |
+
"""Get a response from the API, switching keys on failure."""
|
| 50 |
+
while True:
|
| 51 |
+
try:
|
| 52 |
+
response = self.client.chat.completions.create(
|
| 53 |
+
messages=[
|
| 54 |
+
{"role": "system", "content": "You are a helpful AI assistant."},
|
| 55 |
+
{"role": "user", "content": prompt}
|
| 56 |
+
],
|
| 57 |
+
model="llama3-70b-8192",
|
| 58 |
+
)
|
| 59 |
+
return response.choices[0].message.content
|
| 60 |
+
except Exception as e:
|
| 61 |
+
print(f"Error: {e}")
|
| 62 |
+
self.switch_key()
|
| 63 |
+
if self.current_key_index == 0:
|
| 64 |
+
return "All API keys have been exhausted. Please try again later."
|
| 65 |
+
|
| 66 |
+
def text_to_embedding(self, text):
|
| 67 |
+
"""Convert text to embedding using the current model."""
|
| 68 |
+
try:
|
| 69 |
+
# Load the model and tokenizer
|
| 70 |
+
tokenizer = AutoTokenizer.from_pretrained("NousResearch/Llama-3.2-1B")
|
| 71 |
+
model = AutoModel.from_pretrained("NousResearch/Llama-3.2-1B")
|
| 72 |
+
|
| 73 |
+
# Move model to GPU if available
|
| 74 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 75 |
+
model = model.to(device)
|
| 76 |
+
model.eval()
|
| 77 |
+
|
| 78 |
+
# Ensure tokenizer has a padding token
|
| 79 |
+
if tokenizer.pad_token is None:
|
| 80 |
+
tokenizer.pad_token = tokenizer.eos_token
|
| 81 |
+
|
| 82 |
+
# Tokenize the text
|
| 83 |
+
encoded_input = tokenizer(
|
| 84 |
+
text,
|
| 85 |
+
padding=True,
|
| 86 |
+
truncation=True,
|
| 87 |
+
max_length=512,
|
| 88 |
+
return_tensors='pt'
|
| 89 |
+
).to(device)
|
| 90 |
+
|
| 91 |
+
# Generate embeddings
|
| 92 |
+
with torch.no_grad():
|
| 93 |
+
model_output = model(**encoded_input)
|
| 94 |
+
sentence_embeddings = model_output.last_hidden_state
|
| 95 |
+
|
| 96 |
+
# Mean pooling
|
| 97 |
+
attention_mask = encoded_input['attention_mask']
|
| 98 |
+
mask = attention_mask.unsqueeze(-1).expand(sentence_embeddings.size()).float()
|
| 99 |
+
masked_embeddings = sentence_embeddings * mask
|
| 100 |
+
summed = torch.sum(masked_embeddings, dim=1)
|
| 101 |
+
summed_mask = torch.clamp(torch.sum(attention_mask, dim=1).unsqueeze(-1), min=1e-9)
|
| 102 |
+
mean_pooled = (summed / summed_mask).squeeze()
|
| 103 |
+
|
| 104 |
+
# Move to CPU and convert to numpy
|
| 105 |
+
embedding = mean_pooled.cpu().numpy()
|
| 106 |
+
|
| 107 |
+
# Normalize the embedding vector
|
| 108 |
+
embedding = embedding / np.linalg.norm(embedding)
|
| 109 |
+
|
| 110 |
+
print(f"Generated embedding for text: {text}")
|
| 111 |
+
return embedding
|
| 112 |
+
except Exception as e:
|
| 113 |
+
print(f"Error generating embedding: {e}")
|
| 114 |
+
return None
|
| 115 |
+
|
| 116 |
+
# Modify LocalEmbeddingStore to use ChromaDB
|
| 117 |
+
class LocalEmbeddingStore:
|
| 118 |
+
def __init__(self, storage_dir="./chromadb_storage"):
|
| 119 |
+
self.client = chromadb.PersistentClient(path=storage_dir) # Use ChromaDB client with persistent storage
|
| 120 |
+
self.collection_name = "chatbot_docs" # Collection for storing embeddings
|
| 121 |
+
self.collection = self.client.get_or_create_collection(name=self.collection_name)
|
| 122 |
+
|
| 123 |
+
def add_embedding(self, doc_id, embedding, metadata):
|
| 124 |
+
"""Add a document and its embedding to ChromaDB."""
|
| 125 |
+
self.collection.add(
|
| 126 |
+
documents=[doc_id], # Document ID for identification
|
| 127 |
+
embeddings=[embedding], # Embedding for the document
|
| 128 |
+
metadatas=[metadata], # Optional metadata
|
| 129 |
+
ids=[doc_id] # Same ID as document ID
|
| 130 |
+
)
|
| 131 |
+
print(f"Added embedding for document ID: {doc_id}")
|
| 132 |
+
|
| 133 |
+
def search_embedding(self, query_embedding, num_results=3):
|
| 134 |
+
"""Search for the most relevant document based on embedding similarity."""
|
| 135 |
+
results = self.collection.query(
|
| 136 |
+
query_embeddings=[query_embedding],
|
| 137 |
+
n_results=num_results
|
| 138 |
+
)
|
| 139 |
+
print(f"Search results: {results}")
|
| 140 |
+
return results['documents'], results['distances'] # Returning both document IDs and distances
|
| 141 |
+
|
| 142 |
+
# Modify RAGSystem to integrate ChromaDB search
|
| 143 |
+
class RAGSystem:
|
| 144 |
+
def __init__(self, groq_client, embedding_store):
|
| 145 |
+
self.groq_client = groq_client
|
| 146 |
+
self.embedding_store = embedding_store
|
| 147 |
+
|
| 148 |
+
def get_most_relevant_document(self, query_embedding):
|
| 149 |
+
"""Retrieve the most relevant document based on cosine similarity."""
|
| 150 |
+
docs, distances = self.embedding_store.search_embedding(query_embedding)
|
| 151 |
+
if docs:
|
| 152 |
+
return docs[0], distances[0][0] # Return the most relevant document and the first distance value
|
| 153 |
+
return None, None
|
| 154 |
+
|
| 155 |
+
def chat_with_rag(self, user_input):
|
| 156 |
+
"""Handle the RAG process."""
|
| 157 |
+
query_embedding = self.groq_client.text_to_embedding(user_input)
|
| 158 |
+
if query_embedding is None or query_embedding.size == 0:
|
| 159 |
+
return "Failed to generate embeddings."
|
| 160 |
+
|
| 161 |
+
context_document_id, similarity_score = self.get_most_relevant_document(query_embedding)
|
| 162 |
+
if not context_document_id:
|
| 163 |
+
return "No relevant documents found."
|
| 164 |
+
|
| 165 |
+
# Assuming metadata retrieval works
|
| 166 |
+
context_metadata = f"Metadata for {context_document_id}" # Placeholder, implement as needed
|
| 167 |
+
|
| 168 |
+
prompt = f"""Context (similarity score {similarity_score:.2f}):
|
| 169 |
+
{context_metadata}
|
| 170 |
+
|
| 171 |
+
User: {user_input}
|
| 172 |
+
AI:"""
|
| 173 |
+
return self.groq_client.get_response(prompt)
|
| 174 |
+
|
| 175 |
+
# Initialize components
|
| 176 |
+
embedding_store = LocalEmbeddingStore(storage_dir="./chromadb_storage")
|
| 177 |
+
chatbot = GroqChatbot(api_keys=api_keys)
|
| 178 |
+
rag_system = RAGSystem(groq_client=chatbot, embedding_store=embedding_store)
|
| 179 |
+
|
| 180 |
+
# Pydantic models for API request and response
|
| 181 |
+
class UserInput(BaseModel):
|
| 182 |
+
input_text: str
|
| 183 |
+
|
| 184 |
+
class ChatResponse(BaseModel):
|
| 185 |
+
response: str
|
| 186 |
+
|
| 187 |
+
@app.get("/")
|
| 188 |
+
async def read_root():
|
| 189 |
+
return {"message": "Welcome to the Groq and ChromaDB integration API!"}
|
| 190 |
+
|
| 191 |
+
@app.post("/chat", response_model=ChatResponse)
|
| 192 |
+
async def chat(user_input: UserInput):
|
| 193 |
+
"""Handle chat interactions with Groq and ChromaDB."""
|
| 194 |
+
ai_response = rag_system.chat_with_rag(user_input.input_text)
|
| 195 |
+
return ChatResponse(response=ai_response)
|
| 196 |
+
|
| 197 |
+
@app.post("/embed", response_model=ChatResponse)
|
| 198 |
+
async def embed_text(user_input: UserInput):
|
| 199 |
+
"""Handle text embedding."""
|
| 200 |
+
embedding = chatbot.text_to_embedding(user_input.input_text)
|
| 201 |
+
if embedding is not None:
|
| 202 |
+
return ChatResponse(response="Text embedded successfully.")
|
| 203 |
+
else:
|
| 204 |
+
raise HTTPException(status_code=400, detail="Embedding generation failed.")
|
| 205 |
+
|
| 206 |
+
@app.post("/add_document", response_model=ChatResponse)
|
| 207 |
+
async def add_document(user_input: UserInput):
|
| 208 |
+
"""Add a document embedding to ChromaDB."""
|
| 209 |
+
embedding = chatbot.text_to_embedding(user_input.input_text)
|
| 210 |
+
if embedding is not None:
|
| 211 |
+
doc_id = "sample_document" # You can generate or pass a doc ID
|
| 212 |
+
embedding_store.add_embedding(doc_id, embedding, metadata={"source": "user_input"})
|
| 213 |
+
return ChatResponse(response="Document added to the database.")
|
| 214 |
+
else:
|
| 215 |
+
raise HTTPException(status_code=400, detail="Embedding generation failed.")
|
| 216 |
+
|
| 217 |
+
# Gradio Interface for querying the FastAPI /chat endpoint
|
| 218 |
+
async def gradio_chatbot(input_text: str):
|
| 219 |
+
async with httpx.AsyncClient() as client:
|
| 220 |
+
response = await client.post(
|
| 221 |
+
"http://127.0.0.1:7860/chat", # FastAPI endpoint
|
| 222 |
+
json={"input_text": input_text}
|
| 223 |
+
)
|
| 224 |
+
response_data = response.json()
|
| 225 |
+
return response_data["response"]
|
| 226 |
+
|
| 227 |
+
# Gradio Interface
|
| 228 |
+
iface = gr.Interface(fn=gradio_chatbot, inputs="text", outputs="text")
|
| 229 |
+
|
| 230 |
+
if __name__ == "__main__":
|
| 231 |
+
# Launch the Gradio interface
|
| 232 |
+
iface.launch()
|