diff --git "a/final roBERTA model.ipynb" "b/final roBERTA model.ipynb"
new file mode 100644--- /dev/null
+++ "b/final roBERTA model.ipynb"
@@ -0,0 +1,6271 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "6f64925a",
+ "metadata": {
+ "papermill": {
+ "duration": 0.00924,
+ "end_time": "2024-08-16T07:45:52.868042",
+ "exception": false,
+ "start_time": "2024-08-16T07:45:52.858802",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "source": [
+ "
\n",
+ "
![](https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcSQzJzIHdangJTrH2mFXFgsLjuLCjpfXXwbxg&usqp=CAU)
\n",
+ "
Sharif University of Technology
\n",
+ "
Natural Language Processing
\n",
+ "
Final Project
\n",
+ "
Spoiler classification and summary generation
\n",
+ "
Authors: Ali Nikkhah, Ramtin Khoshnevis, Sarina Zahedi
\n",
+ "
(Equal Contribution)
\n",
+ "
\n",
+ "
\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "id": "6e2de46e",
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2024-08-16T07:45:52.886824Z",
+ "iopub.status.busy": "2024-08-16T07:45:52.886483Z",
+ "iopub.status.idle": "2024-08-16T07:45:54.562125Z",
+ "shell.execute_reply": "2024-08-16T07:45:54.561046Z"
+ },
+ "papermill": {
+ "duration": 1.687399,
+ "end_time": "2024-08-16T07:45:54.564146",
+ "exception": false,
+ "start_time": "2024-08-16T07:45:52.876747",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "[nltk_data] Downloading package stopwords to /usr/share/nltk_data...\n",
+ "[nltk_data] Package stopwords is already up-to-date!\n"
+ ]
+ },
+ {
+ "data": {
+ "text/plain": [
+ "True"
+ ]
+ },
+ "execution_count": 1,
+ "metadata": {},
+ "output_type": "execute_result"
+ }
+ ],
+ "source": [
+ "import nltk\n",
+ "from nltk.corpus import stopwords\n",
+ "from collections import Counter\n",
+ "import string\n",
+ "\n",
+ "# Download NLTK stopwords if not already downloaded\n",
+ "nltk.download('stopwords')\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "7353bc32",
+ "metadata": {
+ "papermill": {
+ "duration": 0.008673,
+ "end_time": "2024-08-16T07:45:54.581724",
+ "exception": false,
+ "start_time": "2024-08-16T07:45:54.573051",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "source": [
+ "--------------------------------------------------------------------------------------------------------------------------------------\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "17777ee2",
+ "metadata": {
+ "papermill": {
+ "duration": 0.008532,
+ "end_time": "2024-08-16T07:45:54.598982",
+ "exception": false,
+ "start_time": "2024-08-16T07:45:54.590450",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "source": [
+ "### **1. Load the Dataset**\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "id": "38d202ff",
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2024-08-16T07:45:54.618490Z",
+ "iopub.status.busy": "2024-08-16T07:45:54.617690Z",
+ "iopub.status.idle": "2024-08-16T07:46:16.729821Z",
+ "shell.execute_reply": "2024-08-16T07:46:16.728787Z"
+ },
+ "papermill": {
+ "duration": 22.124693,
+ "end_time": "2024-08-16T07:46:16.732387",
+ "exception": false,
+ "start_time": "2024-08-16T07:45:54.607694",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [],
+ "source": [
+ "import pandas as pd\n",
+ "import json\n",
+ "import torch\n",
+ "\n",
+ "\n",
+ "device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')\n",
+ "\n",
+ "# Load the dataset\n",
+ "file_path = '/kaggle/input/imdb-spoiler-dataset/IMDB_reviews.json'\n",
+ "data = []\n",
+ "with open(file_path, 'r') as file:\n",
+ " for line in file:\n",
+ " data.append(json.loads(line))\n",
+ "\n",
+ "df = pd.DataFrame(data)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "d7af684e",
+ "metadata": {
+ "papermill": {
+ "duration": 0.009082,
+ "end_time": "2024-08-16T07:46:16.751134",
+ "exception": false,
+ "start_time": "2024-08-16T07:46:16.742052",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "source": [
+ "### **2. Exploratory Data Analysis (EDA)**"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "id": "2aa679c4",
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2024-08-16T07:46:16.772714Z",
+ "iopub.status.busy": "2024-08-16T07:46:16.772150Z",
+ "iopub.status.idle": "2024-08-16T07:46:17.283393Z",
+ "shell.execute_reply": "2024-08-16T07:46:17.282410Z"
+ },
+ "papermill": {
+ "duration": 0.524028,
+ "end_time": "2024-08-16T07:46:17.285525",
+ "exception": false,
+ "start_time": "2024-08-16T07:46:16.761497",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "RangeIndex: 573913 entries, 0 to 573912\n",
+ "Data columns (total 7 columns):\n",
+ " # Column Non-Null Count Dtype \n",
+ "--- ------ -------------- ----- \n",
+ " 0 review_date 573913 non-null object\n",
+ " 1 movie_id 573913 non-null object\n",
+ " 2 user_id 573913 non-null object\n",
+ " 3 is_spoiler 573913 non-null bool \n",
+ " 4 review_text 573913 non-null object\n",
+ " 5 rating 573913 non-null object\n",
+ " 6 review_summary 573913 non-null object\n",
+ "dtypes: bool(1), object(6)\n",
+ "memory usage: 26.8+ MB\n"
+ ]
+ }
+ ],
+ "source": [
+ "from tabulate import tabulate\n",
+ "import numpy as np\n",
+ "\n",
+ "# Basic info\n",
+ "info = df.info()\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "id": "da47eb9f",
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2024-08-16T07:46:17.304674Z",
+ "iopub.status.busy": "2024-08-16T07:46:17.304341Z",
+ "iopub.status.idle": "2024-08-16T07:46:21.358313Z",
+ "shell.execute_reply": "2024-08-16T07:46:21.357521Z"
+ },
+ "papermill": {
+ "duration": 4.066309,
+ "end_time": "2024-08-16T07:46:21.360809",
+ "exception": false,
+ "start_time": "2024-08-16T07:46:17.294500",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [],
+ "source": [
+ "# Describe the dataset\n",
+ "description = df.describe()\n",
+ "\n",
+ "\n",
+ "# Check for missing values\n",
+ "missing_values = df.isnull().sum()\n",
+ "\n",
+ "\n",
+ "# Distribution of spoiler vs. non-spoiler\n",
+ "spoiler_distribution = df['is_spoiler'].value_counts(normalize=True)\n",
+ "\n",
+ "# Length of reviews\n",
+ "df['review_length'] = df['review_text'].apply(len)\n",
+ "review_length_description = df['review_length'].describe()\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "id": "628c8001",
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2024-08-16T07:46:21.380435Z",
+ "iopub.status.busy": "2024-08-16T07:46:21.380103Z",
+ "iopub.status.idle": "2024-08-16T07:46:21.388769Z",
+ "shell.execute_reply": "2024-08-16T07:46:21.387870Z"
+ },
+ "papermill": {
+ "duration": 0.021244,
+ "end_time": "2024-08-16T07:46:21.391172",
+ "exception": false,
+ "start_time": "2024-08-16T07:46:21.369928",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ "Missing Values:\n",
+ "+----------------+----------------+\n",
+ "| Column | Missing Values |\n",
+ "+----------------+----------------+\n",
+ "| review_date | 0 |\n",
+ "| movie_id | 0 |\n",
+ "| user_id | 0 |\n",
+ "| is_spoiler | 0 |\n",
+ "| review_text | 0 |\n",
+ "| rating | 0 |\n",
+ "| review_summary | 0 |\n",
+ "+----------------+----------------+\n",
+ "\n",
+ "Spoiler vs. Non-Spoiler Distribution:\n",
+ "+------------+---------------------+\n",
+ "| Is Spoiler | Proportion |\n",
+ "+------------+---------------------+\n",
+ "| False | 0.7370263437141169 |\n",
+ "| True | 0.26297365628588304 |\n",
+ "+------------+---------------------+\n",
+ "\n",
+ "Review Length Description:\n",
+ "+-----------+--------------------+\n",
+ "| Statistic | Value |\n",
+ "+-----------+--------------------+\n",
+ "| count | 573913.0 |\n",
+ "| mean | 1460.5535246631457 |\n",
+ "| std | 1125.577018615146 |\n",
+ "| min | 18.0 |\n",
+ "| 25% | 719.0 |\n",
+ "| 50% | 1052.0 |\n",
+ "| 75% | 1815.0 |\n",
+ "| max | 14963.0 |\n",
+ "+-----------+--------------------+\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Display the results\n",
+ "\n",
+ "print(\"\\nMissing Values:\")\n",
+ "print(tabulate(missing_values.items(), headers=[\"Column\", \"Missing Values\"], tablefmt=\"pretty\"))\n",
+ "\n",
+ "print(\"\\nSpoiler vs. Non-Spoiler Distribution:\")\n",
+ "print(tabulate(spoiler_distribution.items(), headers=[\"Is Spoiler\", \"Proportion\"], tablefmt=\"pretty\"))\n",
+ "\n",
+ "print(\"\\nReview Length Description:\")\n",
+ "print(tabulate(review_length_description.items(), headers=[\"Statistic\", \"Value\"], tablefmt=\"pretty\"))"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "id": "d2373a0f",
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2024-08-16T07:46:21.411027Z",
+ "iopub.status.busy": "2024-08-16T07:46:21.410348Z",
+ "iopub.status.idle": "2024-08-16T07:46:24.167676Z",
+ "shell.execute_reply": "2024-08-16T07:46:24.166699Z"
+ },
+ "papermill": {
+ "duration": 2.769727,
+ "end_time": "2024-08-16T07:46:24.169882",
+ "exception": false,
+ "start_time": "2024-08-16T07:46:21.400155",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAADDAAAAYuCAYAAAAHFD2RAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdebhX4/4//teuNM/zICVSqYSQSgolzpH56MhQxDEWh8xDMpexYzrGMoQMmVMJkThkyNgklSlUhEQa7t8ffr0/vdt7t3fpLed8H4/r2tdlzfe611r3Wm/dz7XyUkopAAAAAAAAAAAAAAAAcqjExi4AAAAAAAAAAAAAAADwv0+AAQAAAAAAAAAAAAAAyDkBBgAAAAAAAAAAAAAAIOcEGAAAAAAAAAAAAAAAgJwTYAAAAAAAAAAAAAAAAHJOgAEAAAAAAAAAAAAAAMg5AQYAAAAAAAAAAAAAACDnBBgAAAAAAAAAAAAAAICcE2AAAAAAAAAAAAAAAAByToABAAAAAICcycvLi4suumhjF2ODaNy4cfTp02djF6PYhgwZEs2bN4+VK1du7KJERP76mzBhQuTl5cWECRM2WpnIrYKOcZ8+faJx48YbdDvLli2Lhg0bxs0337xB1wsAAAAAwIYnwAAAAAAA8Cf3/vvvx8EHHxyNGjWKsmXLRoMGDaJbt25xww03bOyi/eEaN24ceXl5mb8KFSrETjvtFPfcc8/GLtqfyg8//BCDBw+Os846K0qU+L9/Cli8eHEMHDgwWrVqFRUqVIgaNWrEtttuG6ecckp8+eWXG7HE/92GDx8eeXl5UbZs2fjiiy/yTe/SpUu0atVqI5TsN//rbcgmm2wSp512Wlx22WXxyy+/bOziAAAAAACwFqU2dgEAAAAAACjcq6++Grvttltsttlmceyxx0bdunXjs88+i//85z8xdOjQ6Nev38Yu4h9u2223jdNPPz0iIubNmxd33HFH9O7dO5YuXRrHHntszrY7ffr0rDDAn9ldd90Vy5cvj0MPPTQzbtmyZbHrrrvGtGnTonfv3tGvX79YvHhxfPjhh3H//ffHAQccEPXr189Zmf6b6m99LV26NK688so/VTBgY7Yhu+66a/z8889RunTpnG1jlaOOOirOPvvsuP/+++Poo4/O+fYAAAAAAFg/AgwAAAAAAH9il112WVSpUiUmT54cVatWzZr2zTffbJxCbWQNGjSIww8/PDPcp0+faNKkSVx33XU5DTCUKVMmZ+ve0IYNGxb77rtvlC1bNjPu8ccfj3feeSdGjBgRvXr1ypr/l19+iV9//TWnZcp1/f30009RoUKFnG6jKNtuu23cfvvtcc455+Q0DLIuNmYbUqJEiaxzcENLKcUvv/wS5cqVi6pVq8aee+4Zw4cPF2AAAAAAAPgT+99+1REAAAAAwH+5WbNmRcuWLfN1PI6IqF27dtbwsGHDYvfdd4/atWtHmTJlYuutt45bbrkl33KNGzeOffbZJyZMmBA77LBDlCtXLlq3bh0TJkyIiIhRo0ZF69ato2zZstG2bdt45513spbv06dPVKxYMT755JPo3r17VKhQIerXrx8XX3xxpJSK3Kcvvvgijj766KhTp06UKVMmWrZsGXfddVfxK2UNtWrViubNm8esWbOyxq9cuTKuv/76aNmyZZQtWzbq1KkTxx13XHz33XeZefbZZ59o0qRJgett37597LDDDpnhxo0bR58+fbLmWbRoUZx66qnRsGHDKFOmTGy55ZYxePDgWLlyZWae7bffPg488MCs5Vq3bh15eXnx3nvvZcaNHDky8vLyYurUqRER8eOPP8app54ajRs3jjJlykTt2rWjW7du8fbbb6+1PmbPnh3vvfdedO3aNWv8qvrp2LFjvmXKli0blStXzgyvyzH+6aef4vTTT8/UQbNmzeLqq6/ON19B9VeQ119/Pfbaa6+oUqVKlC9fPjp37hyTJk3Kmueiiy6KvLy8+Oijj6JXr15RrVq12GWXXQpc35tvvhl5eXlx991355s2duzYyMvLi6effjoi1r/OVzn33HNjxYoVceWVVxY57/Lly+OSSy6JLbbYIsqUKRONGzeOc889N5YuXZo136rr9ZVXXomddtopypYtG02aNIl77rmnWGValzYkLy8vTj755BgxYkQ0a9Ys0wa8/PLL+ZZ95513Yu+9947KlStHxYoVY4899oj//Oc/WfNMmDAh8vLyMm1LYYpzra5eF2PHjs20Xbfeemtmerdu3eKVV16Jb7/9tohaAQAAAABgYxFgAAAAAAD4E2vUqFG89dZb8cEHHxQ57y233BKNGjWKc889N6655ppo2LBhnHjiiXHTTTflm/fjjz+OXr16RY8ePeKKK66I7777Lnr06BEjRoyIf/7zn3H44YfHoEGDYtasWXHIIYdkdciPiFixYkXstddeUadOnRgyZEi0bds2Bg4cGAMHDlxrGb/++uvYeeedY/z48XHyySfH0KFDY8stt4y+ffvG9ddfv051s8ry5cvj888/j2rVqmWNP+644+KMM86Ijh07xtChQ+Ooo46KESNGRPfu3WPZsmUREdGzZ8+YPXt2TJ48OWvZuXPnxn/+85/4+9//Xuh2lyxZEp07d4777rsvjjzyyPjXv/4VHTt2jHPOOSdOO+20zHydOnWKV155JTP87bffxocffhglSpSIiRMnZsZPnDgxatWqFS1atIiIiOOPPz5uueWWOOigg+Lmm2+OAQMGRLly5TIBh8K8+uqrEfFbcGJ1jRo1ioiIe+65p1hBk+Ic45RS7LvvvnHdddfFXnvtFddee200a9YszjjjjKw6KK4XXnghdt111/jhhx9i4MCBcfnll8eiRYti9913jzfeeCPf/H/7299iyZIlcfnllxf69Y0ddtghmjRpEg899FC+aSNHjoxq1apF9+7dI2L963yVzTffPI488si4/fbb48svv1zrvMccc0xceOGFsf3228d1110XnTt3jiuuuKLAc+7jjz+Ogw8+OLp16xbXXHNNVKtWLfr06RMffvhhkWValzYkIuKll16KU089NQ4//PC4+OKLY+HChbHXXntlLf/hhx9Gp06d4t13340zzzwzLrjggpg9e3Z06dIlXn/99WJtZ3XFuVZXmT59ehx66KHRrVu3GDp0aGy77baZaW3bto2UUuYaAAAAAADgTygBAAAAAPCnNW7cuFSyZMlUsmTJ1L59+3TmmWemsWPHpl9//TXfvEuWLMk3rnv37qlJkyZZ4xo1apQiIr366quZcWPHjk0RkcqVK5fmzp2bGX/rrbemiEgvvvhiZlzv3r1TRKR+/fplxq1cuTL99a9/TaVLl07z58/PjI+INHDgwMxw3759U7169dKCBQuyyvT3v/89ValSpcB9WLPse+65Z5o/f36aP39+ev/999MRRxyRIiKddNJJmfkmTpyYIiKNGDEia/kxY8Zkjf/+++9TmTJl0umnn54135AhQ1JeXl5WXTRq1Cj17t07M3zJJZekChUqpBkzZmQte/bZZ6eSJUumTz/9NKWU0sMPP5wiIn300UcppZSefPLJVKZMmbTvvvumnj17ZpbbZptt0gEHHJAZrlKlStY+Fdf555+fIiL9+OOPWeOXLFmSmjVrliIiNWrUKPXp0yfdeeed6euvv863juIe48cffzxFRLr00kuzlj/44INTXl5e+vjjjzPj1qy/F198MevcWrlyZWratGnq3r17WrlyZVa5N99889StW7fMuIEDB6aISIceemix6uScc85Jm2yySfr2228z45YuXZqqVq2ajj766My49a3zYcOGpYhIkydPTrNmzUqlSpVK/fv3z0zv3LlzatmyZWZ4ypQpKSLSMccck7WeAQMGpIhIL7zwQmbcquv15Zdfzoz75ptvCjxvC7IubUhEpIhIb775Zmbc3LlzU9myZbPOzf333z+VLl06zZo1KzPuyy+/TJUqVUq77rprZtyaxzil386tRo0aZYaLe62uXhdjxowpcF+//PLLFBFp8ODBRdYLAAAAAAAbhy8wAAAAAAD8iXXr1i1ee+212HfffePdd9+NIUOGRPfu3aNBgwbx5JNPZs1brly5zH9///33sWDBgujcuXN88skn8f3332fNu/XWW0f79u0zw+3atYuIiN133z0222yzfOM/+eSTfGU7+eSTM/+dl5cXJ598cvz6668xfvz4AvclpRSPPvpo9OjRI1JKsWDBgsxf9+7d4/vvv4+33367yDoZN25c1KpVK2rVqhWtW7eOe++9N4466qi46qqrMvM8/PDDUaVKlejWrVvWdtq2bRsVK1aMF198MSIiKleuHHvvvXc89NBDWV8lGDlyZOy8885ZdbGmhx9+ODp16hTVqlXL2kbXrl1jxYoV8fLLL0fEb19giIjM8MSJE2PHHXeMbt26Zb7AsGjRovjggw8y80ZEVK1aNV5//fUi3+S/poULF0apUqWiYsWKWePLlSsXr7/+epxxxhkRETF8+PDo27dv1KtXL/r16xdLly7Nt66ijvHo0aOjZMmS0b9//6zlTj/99EgpxbPPPlvsck+ZMiVmzpwZvXr1ioULF2bq86effoo99tgjXn755XxfAjn++OOLte6ePXvGsmXLYtSoUZlx48aNi0WLFkXPnj0z49a3zlfXpEmTOOKII+K2226LefPmFTjP6NGjIyLyfaXi9NNPj4iIZ555Jmv81ltvnXVu1KpVK5o1a1bgdbmmdWlDIiLat28fbdu2zQxvttlmsd9++8XYsWNjxYoVsWLFihg3blzsv//+0aRJk8x89erVi169esUrr7wSP/zwQ5HlWqW41+oqm2++eeaLGWta9RWWBQsWFHv7AAAAAAD8sQQYAAAAAAD+5HbccccYNWpUfPfdd/HGG2/EOeecEz/++GMcfPDB8dFHH2XmmzRpUnTt2jUqVKgQVatWjVq1asW5554bEZEvwLBmx/wqVapERETDhg0LHP/dd99ljS9RokRW5+WIiK222ioiIubMmVPgfsyfPz8WLVoUt912WyaAsOrvqKOOioiIb775psj6aNeuXTz33HMxZsyYuPrqq6Nq1arx3XffRenSpTPzzJw5M77//vuoXbt2vm0tXrw4azs9e/aMzz77LF577bWIiJg1a1a89dZbWR3bCzJz5swYM2ZMvvV37do1a1/q1KkTTZs2zYQVJk6cGJ06dYpdd901vvzyy/jkk09i0qRJsXLlyqxO6kOGDIkPPvggGjZsGDvttFNcdNFFxeqwvjZVqlSJIUOGxJw5c2LOnDlx5513RrNmzeLGG2+MSy65JGve4hzjuXPnRv369aNSpUpZ87Vo0SIzvbhmzpwZERG9e/fOV6d33HFHLF26NN95vPnmmxdr3W3atInmzZvHyJEjM+NGjhwZNWvWjN133z0zbkPV+fnnnx/Lly+PK6+8ssDpc+fOjRIlSsSWW26ZNb5u3bpRtWrVfPVWUJCmWrVqmetyxYoV8dVXX2X9/frrr5l5i9uGREQ0bdo037a22mqrWLJkScyfPz/mz58fS5YsiWbNmuWbr0WLFrFy5cr47LPPCqmZ/NblWo1Y+zFfFULKy8sr9vYBAAAAAPhjldrYBQAAAAAAoHhKly4dO+64Y+y4446x1VZbxVFHHRUPP/xwDBw4MGbNmhV77LFHNG/ePK699tpo2LBhlC5dOkaPHh3XXXddvjfXlyxZssBtFDZ+9a8TrK9VZTj88MOjd+/eBc6zzTbbFLmemjVrZkIC3bt3j+bNm8c+++wTQ4cOzbzRfuXKlVG7du0YMWJEgeuoVatW5r979OgR5cuXj4ceeig6dOgQDz30UJQoUSL+9re/Fbk/3bp1izPPPLPA6as6+0dE7LLLLvH888/Hzz//HG+99VZceOGF0apVq6hatWpMnDgxpk6dGhUrVoztttsus8whhxwSnTp1isceeyzGjRsXV111VQwePDhGjRoVe++9d6HlqlGjRixfvjx+/PHHfMGC1TVq1CiOPvroOOCAA6JJkyYxYsSIuPTSS9e6z7m06vy46qqrYtttty1wnoK+KlFcPXv2jMsuuywWLFgQlSpViieffDIOPfTQKFXq//6pZH3rfE1NmjSJww8/PG677bY4++yzC52vuB3ti7ouP/vss3wd+1988cXo0qVL1ri1tSEby7pcqxFrP+arAh01a9bccAUEAAAAAGCDEmAAAAAAAPgvtMMOO0RExLx58yIi4qmnnoqlS5fGk08+mfW29hdffDEn21+5cmV88sknWZ30Z8yYERERjRs3LnCZWrVqRaVKlWLFihWZAMKG8Ne//jU6d+4cl19+eRx33HFRoUKF2GKLLWL8+PHRsWPHIju5V6hQIfbZZ594+OGH49prr42RI0dGp06don79+mtdbosttojFixcXa186deoUw4YNiwcffDBWrFgRHTp0iBIlSsQuu+ySCTB06NAhX0f1evXqxYknnhgnnnhifPPNN7H99tvHZZddttbO9M2bN4+IiNmzZxcrEFKtWrXYYost4oMPPsgaX5xj3KhRoxg/fny+sMS0adMy04triy22iIiIypUrb9DzY5WePXvGoEGD4tFHH406derEDz/8EH//+9/zzbc+dV6Q888/P+67774YPHhwvmmNGjWKlStXxsyZMzNfq4iI+Prrr2PRokXrVG8Rv3254bnnnssa16ZNm7Uus2YbssqqL2GsbsaMGVG+fPlMmKB8+fIxffr0fPNNmzYtSpQoke9LLmuzLtdqUWbPnh0RkVWnAAAAAAD8uZTY2AUAAAAAAKBwL774YoFfPxg9enRERDRr1iwi/u8N7avP+/3338ewYcNyVrYbb7wx898ppbjxxhtjk002iT322KPA+UuWLBkHHXRQPProo/k6y0dEzJ8/f73LctZZZ8XChQvj9ttvj4jf3qS/YsWKuOSSS/LNu3z58li0aFHWuJ49e8aXX34Zd9xxR7z77rvRs2fPIrd5yCGHxGuvvRZjx47NN23RokWxfPnyzHCnTp0iImLw4MGxzTbbRJUqVTLjn3/++XjzzTcz80RErFixIr7//vusddauXTvq168fS5cuXWu52rdvHxERb775Ztb4d999NxYsWJBv/rlz58ZHH32UOZdWV9Qx/stf/hIrVqzImi8i4rrrrou8vLx16vTftm3b2GKLLeLqq6+OxYsX55v+e86PiN86tbdu3TpGjhwZI0eOjHr16sWuu+6amf576rwgW2yxRRx++OFx6623xldffZU17S9/+UtERFx//fVZ46+99tqI+C2Usy7Kli0bXbt2zfqrVq1aRBS/DVnltddei7fffjsz/Nlnn8UTTzwRe+65Z5QsWTJKliwZe+65ZzzxxBMxZ86czHxff/113H///bHLLrtE5cqVi132db1W1+att96KvLy8zDUAAAAAAMCfjy8wAAAAAAD8ifXr1y+WLFkSBxxwQDRv3jx+/fXXePXVV2PkyJHRuHHjOOqooyIiYs8994zSpUtHjx494rjjjovFixfH7bffHrVr1873hvUNoWzZsjFmzJjo3bt3tGvXLp599tl45pln4txzz828pb0gV155Zbz44ovRrl27OPbYY2PrrbeOb7/9Nt5+++0YP358fPvtt+tVnr333jtatWoV1157bZx00knRuXPnOO644+KKK66IKVOmxJ577hmbbLJJzJw5Mx5++OEYOnRoHHzwwZnl//KXv0SlSpViwIABmaBFUc4444x48sknY5999ok+ffpE27Zt46effor3338/HnnkkZgzZ07UrFkzIiK23HLLqFu3bkyfPj369euXWceuu+4aZ511VkREVoDhxx9/jE033TQOPvjgaNOmTVSsWDHGjx8fkydPjmuuuWat5WrSpEm0atUqxo8fH0cffXRm/HPPPRcDBw6MfffdN3beeeeoWLFifPLJJ3HXXXfF0qVL46KLLspaT3GOcY8ePWK33XaL8847L+bMmRNt2rSJcePGxRNPPBGnnnpq5qsKxVGiRIm44447Yu+9946WLVvGUUcdFQ0aNIgvvvgiXnzxxahcuXI89dRTxV5fQXr27BkXXnhhlC1bNvr27RslSvzfe55+T50X5rzzzot77703pk+fHi1btsyMb9OmTfTu3Ttuu+22WLRoUXTu3DneeOONuPvuu2P//feP3Xbb7Xft5+qK24as0qpVq+jevXv0798/ypQpEzfffHNERAwaNCgzz6WXXhrPPfdc7LLLLnHiiSdGqVKl4tZbb42lS5fGkCFD1ql863qtrs1zzz0XHTt2jBo1aqxTGQAAAAAA+OMIMAAAAAAA/IldffXV8fDDD8fo0aPjtttui19//TU222yzOPHEE+P888+PqlWrRsRvb1F/5JFH4vzzz48BAwZE3bp144QTTohatWpldWLfUEqWLBljxoyJE044Ic4444yoVKlSDBw4MC688MK1LlenTp1444034uKLL45Ro0bFzTffHDVq1IiWLVvG4MGDf1eZBgwYEH369IkRI0ZEnz594t///ne0bds2br311jj33HOjVKlS0bhx4zj88MOjY8eOWcuWLVs29t133xgxYkR07do1ateuXeT2ypcvHy+99FJcfvnl8fDDD8c999wTlStXjq222ioGDRqU+crCKp06dYqHH344dtlll8y4tm3bRvny5WP58uXRrl27rHWfeOKJMW7cuBg1alSsXLkyttxyy7j55pvjhBNOKLJsRx99dFx44YXx888/R7ly5SIi4qCDDooff/wxxo0bFy+88EJ8++23Ua1atdhpp53i9NNPz9dpvjjHuESJEvHkk0/GhRdeGCNHjoxhw4ZF48aN46qrrorTTz+9yHKuqUuXLvHaa6/FJZdcEjfeeGMsXrw46tatG+3atYvjjjtunde3pp49e8b5558fS5YsyfeVjd9b5wXZcsst4/DDD4+7774737Q77rgjmjRpEsOHD4/HHnss6tatG+ecc04MHDhwvbZVmOK2Iat07tw52rdvH4MGDYpPP/00tt566xg+fHhss802mXlatmwZEydOjHPOOSeuuOKKWLlyZbRr1y7uu+++rPO4uNblWi3M999/H+PGjcsELgAAAAAA+HPKSwV9NxgAAAAAAArRp0+feOSRR2Lx4sUbuygU4vvvv48mTZrEkCFDom/fvuu8vGP8/6a8vLw46aST4sYbb9zYRVln119/fQwZMiRmzZqVCe0AAAAAAPDnU6LoWQAAAAAAgP8mVapUiTPPPDOuuuqqWLly5cYuDuTUsmXL4tprr43zzz9feAEAAAAA4E+u1MYuAAAAAAAAsOGdddZZcdZZZ23sYkDObbLJJvHpp59u7GIAAAAAAFAMvsAAAAAAAAAAAAAAAADkXF5KKW3sQgAAAAAAAAAAAAAAAP/bfIEBAAAAAAAAAAAAAADIOQEGAAAAAAAAAAAAAAAg5wQYAAAAAAAAAAAAAACAnBNgAAAAgP9yffr0if333z8z3KVLlzj11FM3Wnl+r4suuii23XbbjV2M/ynFOScaN24c119//R9Snj+zr776Krp16xYVKlSIqlWrbuzirJf1OZZz5syJvLy8mDJlSqHzDB8+/L+yTjZEm5iXlxePP/74BinPhlTUsS7OcSU3/luvlz+DP/I5IKUU//jHP6J69eob9Vrx7PPHyVVdr297+7/aVkyYMCHy8vJi0aJFhc6zPsciF8+rf7bfTn+28qxy2223RcOGDaNEiRJx/fXX/1e0W3+W57dcPo/9rz7r/a+2jQAAAMD/EWAAAACAHJk/f36ccMIJsdlmm0WZMmWibt260b1795g0adIG3c7QoUNj+PDhG3SdBVnVOWLVX/Xq1aNz584xceLEDbqdAQMGxPPPP79B17k2v/zyS/Tp0ydat24dpUqVygqDrIs1O1kMHz48unTpskHK+EeYPHly/OMf/1jv5VesWBEdOnSIAw88MGv8999/Hw0bNozzzjvv9xbxD3HdddfFvHnzYsqUKTFjxoyNXZycWDP0VFw9e/b8r6yTUaNGxSWXXPK71jFv3rzYe++9N1CJ1t36duJq2LBhzJs3L1q1arXhC7Wa/5XOcxu7s9ya12afPn3ioosu2mjl2VjWfA5Y3zarOMaMGRPDhw+Pp59++g+5Vsi9P2vn74iCO99vrHvrhmy317fO/+hn/o2tuG3Zms8tvze08fnnn0fp0qULbN+Ke9/74Ycf4uSTT46zzjorvvjii/jHP/6xQY5fcc+doub7bwhTFGVDPesVJzwEAAAA8GcgwAAAAAA5ctBBB8U777wTd999d8yYMSOefPLJ6NKlSyxcuHCDbqdKlSobtMPlihUrYuXKlYVOHz9+fMybNy9efvnlqF+/fuyzzz7x9ddfb7DtV6xYMWrUqLHB1leUFStWRLly5aJ///7RtWvXP2y7fza1atWK8uXLr/fyJUuWjOHDh8eYMWNixIgRmfH9+vWL6tWrx8CBAzdEMXNu1qxZ0bZt22jatGnUrl17YxfnT6VcuXL/lXVSvXr1qFSp0u9aR926daNMmTIbqER/nJIlS0bdunWjVKlSG7soUGx/5HPArFmzol69etGhQwfXChvFf+u9dUP4o5/5/1tsiOeW1Q0fPjwOOeSQ+OGHH+L1119fr3V8+umnsWzZsvjrX/8a9erVi/Llyxd5/H799df1LTLrwLMeAAAA8N9KgAEAAAByYNGiRTFx4sQYPHhw7LbbbtGoUaPYaaed4pxzzol99903M19eXl7ccsstsffee0e5cuWiSZMm8cgjj2St6/3334/dd989ypUrFzVq1Ih//OMfsXjx4sz0ot7muXTp0hgwYEA0aNAgKlSoEO3atYsJEyZkpq962+OTTz4ZW2+9dZQpUyY+/fTTQtdXo0aNqFu3brRq1SrOPffcfJ1hPvjgg9h7772jYsWKUadOnTjiiCNiwYIFERFx2223Rf369fMFJPbbb784+uijI6LgN2jecccd0aJFiyhbtmw0b948br755sy0gw8+OE4++eTM8Kmnnhp5eXkxbdq0iPit80yFChVi/PjxBe5PhQoV4pZbboljjz026tatW+h+/16rjtPll18ederUiapVq8bFF18cy5cvjzPOOCOqV68em266aQwbNmyt6xkzZkzssssuUbVq1ahRo0bss88+MWvWrCK3v3z58jj55JOjSpUqUbNmzbjgggsipZSZvubbXadNmxa77LJLlC1bNrbeeusYP3585OXlxeOPP17oNrbaaqu48soro1+/fjFv3rx44okn4sEHH4x77rknSpcuXeAyq94A/NBDD0WnTp2iXLlyseOOO8aMGTNi8uTJscMOO0TFihVj7733jvnz52ctu7bzYtV6R40aFbvttluUL18+2rRpE6+99lqh5W/cuHE8+uijcc8990ReXl706dMnIiKuvfbaaN26dVSoUCEaNmwYJ554YtY1uOoaGjt2bLRo0SIqVqwYe+21V8ybN6/Qba1YsSL69u0bm2++eZQrVy6aNWsWQ4cOzZpn1Tlz9dVXR7169aJGjRpx0kknxbJlyzLzfPPNN9GjR48oV65cbL755lnhkYJcdNFFcffdd8cTTzyR+ZrK6u3BJ598Umh9rflm2HfffTd22223qFSpUlSuXDnatm0bb775ZqHbzsvLi1tvvTX22WefKF++fLRo0SJee+21+Pjjj6NLly5RoUKF6NChQ77z+ZZbboktttgiSpcuHc2aNYt77703M61Xr17Rs2fPrPmXLVsWNWvWjHvuuSci8r+1t6g2sbCyrzr3f/311zj55JOjXr16UbZs2WjUqFFcccUVhS5bnOP43XffxZFHHhnVqlWL8uXLx9577x0zZ86MiN/epHvUUUfF999/nzlmq7+Vf8mSJXH00UdHpUqVYrPNNovbbrstM23NN2yveivv888/HzvssEOUL18+OnToENOnT88q86WXXhq1a9eOSpUqxTHHHBNnn332736z8drq/ZdffomWLVtmfQVm1qxZUalSpbjrrrsi4v/Ov8cffzyaNm0aZcuWje7du8dnn32WtZ0nnngitt9++yhbtmw0adIkBg0aFMuXL89MX7RoURx33HFRp06dKFu2bLRq1SqefvrptdZzcc6Z4cOHx2abbRbly5ePAw44YIOHFc8999xo165dvvFt2rSJiy++ODO8tnaxII888ki0bt0684zRtWvX+Omnn4q9vs8++ywOOeSQqFq1alSvXj3222+/mDNnTmZ6cc7/Na3+HFBUm7W6db0/9unTJ/r16xeffvpp5OXlRePGjSMiYuXKlXHFFVdk2uc2bdpkPZvtsMMOcfXVV2eG999//9hkk00y94XPP/888vLy4uOPPy5021deeWXUqVMnKlWqFH379o1ffvkla/rkyZOjW7duUbNmzahSpUp07tw53n777cz0o48+OvbZZ5+sZZYtWxa1a9eOO++8MyKKPrarK849afny5dG/f/9M/Z511lnRu3fvrGfQpUuXRv/+/aN27dpRtmzZ2GWXXWLy5MmF1kNExM0335y5puvUqRMHH3zw71pfcd17773RuHHjqFKlSvz973+PH3/8MTOtOOfSG2+8Edttt12ULVs2dthhh3jnnXfWur0uXbrE3Llz45///GfmXI7If29ddf7fddddsdlmm0XFihXjxBNPjBUrVsSQIUOibt26Ubt27bjsssuy1r9o0aI45phjolatWlG5cuXYfffd49133y20PJtvvnlERGy33XaRl5eX+WrYypUr4+KLL45NN900ypQpE9tuu22MGTOm0PX06dMnXnrppRg6dGhmv1ZvA956661C7zdrPvOvT3txxx13RNWqVQv9EsDChQvj0EMPjQYNGkT58uWjdevW8cADD+Sbr6jn5LXdpwval4iI66+/PtOurEtbtvpzS2HnTXGllGLYsGFxxBFHRK9evTLtQ0TRzxerDB8+PFq3bh0REU2aNMkc48KO32WXXRb169ePZs2aRUTh13hR505xDR8+PAYNGhTvvvtuZj2rf51wwYIFccABB0T58uWjadOm8eSTT2Yt/9JLL8VOO+0UZcqUiXr16sXZZ5+d9dxQ0Bcwtt1226y6Ku7vpsKes4t7LAqy+rPenDlzYrfddouIiGrVqmX9nlldSilq1aqVdW/bdttto169epnhV155JcqUKRNLliyJiKJ/D82dOzd69OgR1apViwoVKkTLli1j9OjRhZa7qGtqTfPnz48ddtghDjjggFi6dGnMmjUr9ttvv6hTp05UrFgxdtxxx6zf+xdffHGBXx3Zdttt44ILLih0OwAAAMAfKAEAAAAb3LJly1LFihXTqaeemn755ZdC54uIVKNGjXT77ben6dOnp/PPPz+VLFkyffTRRymllBYvXpzq1auXDjzwwPT++++n559/Pm2++eapd+/emXX07t077bfffpnhzp07p1NOOSUzfMwxx6QOHTqkl19+OX388cfpqquuSmXKlEkzZsxIKaU0bNiwtMkmm6QOHTqkSZMmpWnTpqWffvopX1lnz56dIiK98847KaWUlixZkgYMGJAiIj377LMppZS+++67VKtWrXTOOeekqVOnprfffjt169Yt7bbbbimllL799ttUunTpNH78+Mx6Fy5cmDVu4MCBqU2bNpnp9913X6pXr1569NFH0yeffJIeffTRVL169TR8+PCUUkr/+te/UsuWLTPzb7vttqlmzZrplltuSSml9Morr6RNNtmkwH1a05p1uea+v/jii4UuO2zYsFSlSpWs4c6dO2etu1KlSumkk05K06ZNS3feeWeKiNS9e/d02WWXpRkzZqRLLrkkbbLJJumzzz4rdDuPPPJIevTRR9PMmTPTO++8k3r06JFat26dVqxYUegynTt3ThUrVkynnHJKmjZtWrrvvvtS+fLl02233ZaZp1GjRum6665LKaW0fPny1KxZs9StW7c0ZcqUNHHixLTTTjuliEiPPfZYodtJKaWVK1emLl26pD322CPVrl07XXLJJWudf1XdNm/ePI0ZMyZ99NFHaeedd05t27ZNXbp0Sa+88kp6++2305ZbbpmOP/74zHJFnRerr/fpp59O06dPTwcffHBq1KhRWrZsWYFl+eabb9Jee+2VDjnkkDRv3ry0aNGilFJK1113XXrhhRfS7Nmz0/PPP5+aNWuWTjjhhMxyq66hrl27psmTJ6e33nortWjRIvXq1avQ/f7111/ThRdemCZPnpw++eSTzDEZOXJkZp7evXunypUrp+OPPz5NnTo1PfXUU/mO2957753atGmTXnvttfTmm2+mDh06pHLlymWO5Zp+/PHHdMghh6S99torzZs3L82bNy8tXbq0WPW15jnesmXLdPjhh6epU6emGTNmpIceeihNmTKl0H2OiNSgQYM0cuTINH369LT//vunxo0bp9133z3r2O+1116ZZUaNGpU22WSTdNNNN6Xp06ena665JpUsWTK98MILKaWUnn766VSuXLn0448/ZpZ56qmnUrly5dIPP/yQUlr3NrGwsq8696+66qrUsGHD9PLLL6c5c+akiRMnpvvvv7/QZYtzHPfdd9/UokWL9PLLL6cpU6ak7t27py233DL9+uuvaenSpen6669PlStXzhyzVfvbqFGjVL169XTTTTelmTNnpiuuuCKVKFEiTZs2LaWUv91+8cUXU0Skdu3apQkTJqQPP/wwderUKXXo0CFTlvvuuy+VLVs23XXXXWn69Olp0KBBqXLlylnt8prW3E5Biqr3d955J5UuXTo9/vjjafny5WnnnXdOBxxwQGb5VdfZDjvskF599dX05ptvpp122imr7C+//HKqXLlyGj58eJo1a1YaN25caty4cbroootSSimtWLEi7bzzzqlly5Zp3LhxadasWempp55Ko0ePXms9F1X2//znP6lEiRJp8ODBafr06Wno0KGpatWqWddLcax5D+rdu3caOHBgSimlDz74IEVE+vjjjzPTV42bOXNmSqnodnFNX375ZSpVqlS69tpr0+zZs9N7772Xbrrppsx+F7W+X3/9NbVo0SIdffTR6b333ksfffRR6tWrV2rWrFlaunRpZh+KOv/XtPpzQGFtVkHW9f64aNGidPHFF6dNN900zZs3L33zzTcppZQuvfTSzD1p1qxZadiwYalMmTJpwoQJKaWUTjvttPTXv/41pfTbPa969eqpZs2amWeh++67LzVo0KDQ/Rs5cmQqU6ZMuuOOO9K0adPSeeedlypVqpR1jT3//PPp3nvvTVOnTk0fffRR6tu3b6pTp06mXZs0aVIqWbJk+vLLLzPLjBo1KlWoUCH9+OOPRR7bNRXnnnTppZem6tWrp1GjRqWpU6em448/PlWuXDnrnO3fv3+qX79+Gj16dPrwww9T7969U7Vq1dLChQsL3O7kyZNTyZIl0/3335/mzJmT3n777TR06ND1Xl9K+dv8NQ0cODBVrFgx82z98ssvp7p166Zzzz03M09R59KPP/6YatWqlXr16pU++OCD9NRTT6UmTZqstR1cuHBh2nTTTdPFF1+cOZdTyn9vXVW+gw8+OH344YfpySefTKVLl07du3dP/fr1S9OmTUt33XVXioj0n//8J7Nc165dU48ePdLkyZPTjBkz0umnn55q1KhRaF298cYbKSLS+PHj07x58zLzXXvttaly5crpgQceSNOmTUtnnnlm2mSTTQq9Ry5atCi1b98+HXvssZn9Wr58ebHuN2s+8xenvVj9eXXw4MGpRo0a6fXXXy+wbCml9Pnnn6errroqvfPOO2nWrFnpX//6VypZsmTWMsV5Tl7bfbqgfUnpt+fHRo0apZTWrS1b/Rwu7Lwprueffz7VrVs3LV++PL3//vupUqVKafHixSmltNb73uqWLFmSxo8fnyIivfHGG5ljXNDxq1ixYjriiCPSBx98kD744IO1XuOFnTtF1UlB5Tv99NNTy5YtM+tZsmRJSum357dNN9003X///WnmzJmpf//+qWLFipnz/fPPP0/ly5dPJ554Ypo6dWp67LHHUs2aNTP33pSyz7lV2rRpk5mnOL+binrOLu6xKMjqz2DLly9Pjz76aIqINH369KzfM2s68MAD00knnZRS+r/f6FWqVElTp05NKf3W5nfs2DEzf1G/h/7617+mbt26pffeey/zfPXSSy8VWu6irqnV28ZPP/00NWvWLPXu3TtzjkyZMiX9+9//Tu+//36aMWNGOv/881PZsmXT3LlzU0opffbZZ6lEiRLpjTfeyGzz7bffTnl5eWnWrFnFqlsAAAAgtwQYAAAAIEceeeSRVK1atVS2bNnUoUOHdM4556R33303a56IyOqUnVJK7dq1y3QGuO2221K1atUyHU1SSumZZ55JJUqUSF999VVKae0Bhrlz56aSJUumL774Imsbe+yxRzrnnHNSSr91DoiItXY8Tun/OkeUK1cuVahQIeXl5aWISG3bts10NLjkkkvSnnvumbXcZ599lulEkVJK++23Xzr66KMz02+99dZUv379TKewNTvDbLHFFvk6B19yySWpffv2KaWU3nvvvZSXl5e++eabTOeLSy65JPXs2TOl9Fvni9U7S61NYQGGzz//PDVr1mytHaTW7IBW0LobNWqU1ZGyWbNmqVOnTpnh5cuXpwoVKqQHHnigWOVNKaX58+eniEjvv/9+ofN07tw5tWjRIq1cuTIz7qyzzkotWrTIDK/eOefZZ59NpUqVyuok9dxzzxUrwJBSSlOnTk0RkVq3bl1oWGCVVefVHXfckRn3wAMPpIhIzz//fGbcFVdckZo1a5YZLuq8KGi9H374YYqITMecguy3335ZAaGCPPzww6lGjRqZ4VXX0Oodi2+66aZUp06dta5nTSeddFI66KCDMsOrzpnVO3P97W9/y5zb06dPz3QmW2VV3RcWYFi13jXP8+LU15rneKVKlQrtGF2QiEjnn39+Zvi1115LEZHuvPPOzLgHHngglS1bNjPcoUOHdOyxx2at529/+1v6y1/+klL6LSxWs2bNdM8992SmH3rooZk6Smnd28TCyr7q3O/Xr1/afffds66ntSnqOM6YMSNFRJo0aVJm+oIFC1K5cuXSQw89lFIqvH1p1KhROvzwwzPDK1euTLVr184EuAoLMKweInvmmWdSRKSff/45pfTbPWhVh7ZVOnbs+LsCDMWt9yFDhqSaNWumk08+OdWrVy8tWLAgM23VdbZ6h91V5/uqtnmPPfZIl19+edY27r333lSvXr2UUkpjx45NJUqUyNyP1lRQPRen7IceemjmnFylZ8+evzvAsKY2bdqkiy++ODN8zjnnpHbt2mWGi2oX1/TWW2+liEhz5swpcHpR67v33ntTs2bNsq6FpUuXpnLlyqWxY8dm9mlt539BCuoUu7Z6KUxx7o+rdzBOKaVffvkllS9fPr366qtZ8/Xt2zcdeuihKaWUnnzyyVSlSpW0fPnyNGXKlFS3bt10yimnpLPOOiul9FvgZW0Btvbt26cTTzwxa1y7du3Weo2tWLEiVapUKT311FOZcVtvvXUaPHhwZrhHjx6pT58+KaWij21xrHlPqlOnTrrqqqsyw8uXL0+bbbZZ5tgsXrw4bbLJJmnEiBGZeX799ddUv379NGTIkAK38eijj6bKlStnghmrW5/1pVS8AEP58uWztnnGGWdkXUtrWvNcuvXWW1ONGjUy7WZKKd1yyy1FBrkK6ghdUIBhzfJ17949NW7cON8z5BVXXJFSSmnixImpcuXK+ULTW2yxRbr11lsLLEth7Xb9+vXTZZddljVuxx13zHfOrq6gOi/O/aaga72o9mJVHZ555pmpXr166YMPPii0XIX561//mk4//fSs8q/tObk49+miAgyr9q84bdma9VnQeVNcvXr1SqeeempmuE2bNmnYsGGZ4aJ+v6zyzjvvpIhIs2fPzowr6PjVqVMnK5ixtms8paKv1+LOV1D9p5T/2XPx4sVZ4ftzzz03333spptuShUrVsxcb0UFGIrzu2l9nrOLq7Bnve+++26ty63+EoDHH388tWvXLu23336ZZ8iuXbtmBbvWtObvodatW2cCo0VZl2ffadOmpYYNG6b+/fsX+ezdsmXLdMMNN2SG995776yQRb9+/VKXLl2KVUYAAAAg90r8jo83AAAAAGtx0EEHxZdffhlPPvlk7LXXXjFhwoTYfvvtY/jw4VnztW/fPt/w1KlTIyJi6tSp0aZNm6hQoUJmeseOHWPlypUxffr0Isvw/vvvx4oVK2KrrbaKihUrZv5eeumlmDVrVma+0qVLxzbbbFOs/Ro5cmS888478eijj8aWW24Zw4cPj0022SQiIt5999148cUXs7bVvHnziIjM9g477LB49NFHY+nSpRERMWLEiPj73/8eJUrk/98UP/30U8yaNSv69u2btc5LL700s75WrVpF9erV46WXXoqJEyfGdtttF/vss0+89NJLERHx0ksvRZcuXYq1b4Vp0KBBTJs2LXbaaafftZ6WLVtm7WedOnWidevWmeGSJUtGjRo14ptvvil0HTNnzoxDDz00mjRpEpUrV47GjRtHRMSnn3661m3vvPPOkZeXlxlu3759zJw5M1asWJFv3unTp0fDhg2jbt26mXHrsu933XVXlC9fPmbPnh2ff/55Zvzxxx+fdRxXt/r5V6dOnYiIrLqpU6dOpl6Kc14UtN569epFRKy1fgsyfvz42GOPPaJBgwZRqVKlOOKII2LhwoWxZMmSzDzly5ePLbbYImtbRW3npptuirZt20atWrWiYsWKcdttt+U7ji1btoySJUsWuN6pU6dGqVKlom3btpnpzZs3j6pVq67T/q1uXerrtNNOi2OOOSa6du0aV155Zb66L2r9hR3nX375JX744YeI+G0fO3bsmLWOjh07ZtrIUqVKxSGHHBIjRoyIiN/OjSeeeCIOO+ywArdf3DZxbfr06RNTpkyJZs2aRf/+/WPcuHFFLlOc49iuXbvM9Bo1akSzZs0y+7k2q9dpXl5e1K1bt8hzb23Hefr06fmu99/b9hW33k8//fTYaqut4sYbb4y77roratSokbWeUqVKxY477pgZXnW+r6qnd999Ny6++OKsbRx77LExb968WLJkSUyZMiU23XTT2GqrrTZo2adOnZp1/CLy39s3hMMOOyzuv//+iIhIKcUDDzyQOdfXpV1cpU2bNrHHHntE69at429/+1vcfvvt8d133xV7fe+++258/PHHUalSpcz06tWrxy+//JK1zbWd/xvS+t4fV/fxxx/HkiVLolu3bln7fc8992T2qVOnTvHjjz/GO++8Ey+99FJ07tw5unTpEhMmTIiIop87inO+fP3113HsscdG06ZNo0qVKlG5cuVYvHhx1r4cc8wxMWzYsMz8zz77bBx99NERsfZjW5i13ZO+//77+Prrr7PagpIlS2bdf2bNmhXLli3LarM32WST2GmnnQpty7p16xaNGjWKJk2axBFHHBEjRozI3FvXZ33F1bhx46hUqVJmeM1zsqhzaerUqbHNNttE2bJlM8tsyGt+zfLVqVMntt5663zPkKvK/O6778bixYujRo0aWeft7Nmzi31vi4j44Ycf4ssvv1zrfXddretzWHHai2uuuSZuv/32eOWVV6Jly5Zr3f6KFSvikksuidatW0f16tWjYsWKMXbs2Hztwtqek3/vfXpjWbRoUYwaNSoOP/zwzLjDDz887rzzzpxts3Xr1lG6dOnM8Nqu8T/K6udghQoVonLlylnPYO3bt8869h07dozFixdn/YZZm3X53bQhfpdsKJ07d46PPvoo5s+fn7lvrbqXLVu2LF599dWse1lRv4f69+8fl156aXTs2DEGDhwY7733XqHbLu419fPPP0enTp3iwAMPjKFDh2Ydp8WLF8eAAQOiRYsWUbVq1ahYsWJMnTo169o+9thj44EHHohffvklfv3117j//vsz90kAAABg4yu1sQsAAAAA/8vKli0b3bp1i27dusUFF1wQxxxzTAwcODD69Onzh2x/8eLFUbJkyXjrrbeyOgNFRFYH8nLlymV1CFibhg0bRtOmTaNp06axfPnyOOCAA+KDDz6IMmXKxOLFi6NHjx4xePDgfMut6qTRo0ePSCnFM888EzvuuGNMnDgxrrvuukLLHxFx++235+vst2p/8vLyYtddd40JEyZEmTJlokuXLrHNNtvE0qVL44MPPohXX301BgwYUKx9y7VVQY9V8vLyChy3cuXKQtfRo0ePaNSoUdx+++1Rv379WLlyZbRq1Sp+/fXXnJR5Xb366qtx3XXXxbhx4+LSSy+Nvn37xvjx4yMvLy8uvvjiQo/F6vWw6lxcc9yqeinOebG29a6tftc0Z86c2GeffeKEE06Iyy67LKpXrx6vvPJK9O3bN3799dcoX758vu2s2lZKqdD1PvjggzFgwIC45ppron379lGpUqW46qqr4vXXXy+0/KvWuy7lX1frUl8XXXRR9OrVK5555pl49tlnY+DAgfHggw/GAQccsE7r/73H6LDDDovOnTvHN998E88991yUK1cu9tprrwLnLW6buDbbb799zJ49O5599tkYP358HHLIIdG1a9d45JFHCl0ml8dxfdb9e+t8XRW33r/55puYMWNGlCxZMmbOnFnocVzbdgYNGhQHHnhgvmlly5aNcuXK5azsf4RDDz00zjrrrHj77bfj559/js8++yx69uyZKWdE8drF1cc/99xz8eqrr8a4cePihhtuiPPOOy9ef/31TNu2tvUtXrw42rZtmwkQra5WrVqZ//6j2rENcX9cVY/PPPNMNGjQIGtamTJlIiKiatWq0aZNm5gwYUK89tpr0a1bt9h1112jZ8+eMWPGjJg5c2Z07tz5d+1L7969Y+HChTF06NBo1KhRlClTJtq3b5+1L0ceeWScffbZ8dprr8Wrr74am2++eXTq1Cki1n5sN99883zbK+49aUOrVKlSvP322zFhwoQYN25cXHjhhXHRRRfF5MmTc7rdos7Jjf2sta7Pi4sXL4569eplQjSr+z2hxg1hXe83xWkvOnXqFM8880w89NBDcfbZZ691+1dddVUMHTo0rr/++mjdunVUqFAhTj311A1+LEuUKJHvuW/ZsmUbdBvr6v77749ffvklqw1PKcXKlStjxowZ6xTmK67VQ/cRa7/G/6hz8/fegzbksf2jn7/WZlWo56WXXoqXXnopLrvssqhbt24MHjw4Jk+eHMuWLYsOHTpERPF+Dx1zzDHRvXv3eOaZZ2LcuHFxxRVXxDXXXBP9+vVb7zKWKVMmunbtGk8//XScccYZWfflAQMGxHPPPRdXX311bLnlllGuXLk4+OCDs67tHj16RJkyZeKxxx6L0qVLx7Jly+Lggw9e/0oDAAAANihfYAAAAIA/0NZbbx0//fRT1rj//Oc/+YZbtGgREREtWrSId999N2uZSZMmRYkSJaJZs2ZFbm+77baLFStWxDfffBNbbrll1t/qb4lcXwcffHCUKlUqbr755oj4rWPvhx9+GI0bN863vVUdWsqWLRsHHnhgjBgxIh544IFo1qxZbL/99gWuv06dOlG/fv345JNP8q1v9Q54nTt3jgkTJsSECROiS5cuUaJEidh1113jqquuiqVLl+Z7k+x/q4ULF8b06dPj/PPPjz322CNatGhR5BuVV1mzE+J//vOfaNq0aYEdW5s1axafffZZfP3115lxxelMuGTJkujTp0+ccMIJsdtuu8Wdd94Zb7zxRvz73/+OiIjatWtnHcP1VdzzYkN46623YuXKlXHNNdfEzjvvHFtttVV8+eWXv3u9kyZNig4dOsSJJ54Y2223XWy55Zbr9JbkiN/ePr98+fJ46623MuOmT58eixYtWutypUuXLvDLG+tjq622in/+858xbty4OPDAAzNvA99QWrRoEZMmTcoaN2nSpNh6660zwx06dIiGDRvGyJEjY8SIEfG3v/0tX2e1VTZUm1i5cuXo2bNn3H777TFy5Mh49NFH49tvv13vfVy+fHnWNbrqWl+1nxvymBWlWbNm+a7339uZuLj1fvTRR0fr1q3j7rvvjrPOOivfm62XL18eb775ZmZ41fm+6p65/fbbx/Tp0/NtY8stt4wSJUrENttsE59//nnMmDGjwHIWVM/FKXuLFi0KbGM3tE033TQ6d+4cI0aMiBEjRkS3bt2idu3aEbH+7WJeXl507NgxBg0aFO+8806ULl06HnvssWKtb/vtt4+ZM2fma9u33HLLqFKlygbb7+Kc/7/n/ri6rbfeOsqUKROffvppvn1q2LBhZr7OnTvHiy++GC+//HJ06dIlqlevHi1atIjLLrss6tWrt9aOwcU5XyZNmhT9+/ePv/zlL9GyZcsoU6ZMLFiwIGueGjVqxP777x/Dhg2L4cOHx1FHHZU1vbBjW5Ci7klVqlSJOnXqZLUFK1asiLfffjszvMUWW0Tp0qWz2uxly5bF5MmTs9rsNZUqVSq6du0aQ4YMiffeey/mzJkTL7zwwnqv7/cqzrnUokWLeO+99+KXX37JjCvONZ+rtnz77bePr776KkqVKpXvvK1Zs2ahZYmIrPJUrlw56tevX+R9t6B1/VH3qIjf3m7/7LPPxuWXXx5XX331WuedNGlS7LfffnH44YdHmzZtokmTJgXeA9b2nFyc+3StWrXiq6++yuroPmXKlKx1rm89re9yd955Z5x++ukxZcqUzN+7774bnTp1irvuuut3rXtdFHaNb8jtr+96WrRoEa+99lrWcZs0aVJUqlQpNt1004j47djOmzcvM/2HH36I2bNnZ4bX93fThtqHgtYTEUWuKy8vLzp16hRPPPFEfPjhh7HLLrtkXgJw6623xg477JD5/V7c30MNGzaM448/PkaNGhWnn3563H777QVuuzjXVMRv4ZF777032rZtG7vttlvWNidNmhR9+vSJAw44IFq3bh1169aNOXPmZG2nVKlS0bt37xg2bFgMGzYs/v73v69XmBUAAADIDQEGAAAAyIGFCxfG7rvvHvfdd1+89957MXv27Hj44YdjyJAhsd9++2XN+/DDD8ddd90VM2bMiIEDB8Ybb7wRJ598ckT89mbxsmXLRu/eveODDz6IF198Mfr16xdHHHFE1KlTp8hybLXVVnHYYYfFkUceGaNGjYrZs2fHG2+8EVdccUU888wzv3s/8/Lyon///nHllVfGkiVL4qSTTopvv/02Dj300Jg8eXLMmjUrxo4dG0cddVRWJ4rDDjssnnnmmbjrrrvisMMOW+s2Bg0aFFdccUX861//ihkzZsT7778fw4YNi2uvvTYzT5cuXeKjjz7KdL5YNW7EiBFZnS8K89FHH8WUKVPi22+/je+//z7TyWeVL774Ipo3bx5vvPHGetTShlOtWrWoUaNG3HbbbfHxxx/HCy+8EKeddlqxlv3000/jtNNOi+nTp8cDDzwQN9xwQ5xyyikFztutW7fYYostonfv3vHee+/FpEmT4vzzz4+IWOuXOs4555xIKcWVV14ZERGNGzeOq6++Os4888x8HUp+r+KcFxvClltuGcuWLYsbbrghPvnkk7j33nszgYzfo2nTpvHmm2/G2LFjY8aMGXHBBResc2enZs2axV577RXHHXdcvP766/HWW2/FMcccU2THnMaNG8d7770X06dPjwULFqzXW2R//vnnOPnkk2PChAkxd+7cmDRpUkyePDnTkXxDOeOMM2L48OFxyy23xMyZM+Paa6+NUaNG5fuSR69eveLf//53PPfcc2ttUzZEm3jttdfGAw88ENOmTYsZM2bEww8/HHXr1l3vNwk3bdo09ttvvzj22GPjlVdeiXfffTcOP/zwaNCgQeZ+0bhx41i8eHE8//zzsWDBgliyZMl6bas4+vXrF3feeWfcfffdMXPmzLj00kvjvffeK/ZXegpSnHq/6aab4rXXXou77747DjvssNh///3jsMMOy3qT7iabbBL9+vXLnO99+vSJnXfeOXbaaaeIiLjwwgvjnnvuiUGDBsWHH34YU6dOjQcffDDTfnXu3Dl23XXXOOigg+K5557LfEljzJgxEVFwPRen7P37948xY8bE1VdfHTNnzowbb7wxs85V3njjjWjevHl88cUX612PEb/dPx988MF4+OGH853r69ouvv7663H55ZfHm2++GZ9++mmMGjUq5s+fn7mOi1rfYYcdFjVr1oz99tsvJk6cGLNnz44JEyZE//794/PPP/9d+7m64rRZv+f+uLpKlSrFgAED4p///GfcfffdMWvWrHj77bfjhhtuiLvvvjszX5cuXWLs2LFRqlSpaN68eWbciBEjivz6wimnnBJ33XVXDBs2LPPs9+GHH2bN07Rp07j33ntj6tSp8frrr8dhhx1WYNt+zDHHxN133x1Tp06N3r17Z8YXdWzXVJx7Ur9+/eKKK66IJ554IqZPnx6nnHJKfPfdd5m2oUKFCnHCCSfEGWecEWPGjImPPvoojj322FiyZEn07du3wO0+/fTT8a9//SumTJkSc+fOjXvuuSdWrlwZzZo1W6/1bQjFOZd69eoVeXl5ceyxx8ZHH30Uo0ePLrIjfcRv5/LLL78cX3zxRb5Ayu/RtWvXaN++fey///4xbty4mDNnTrz66qtx3nnnZYW+Vle7du0oV65cjBkzJr7++uv4/vvvI+K3++7gwYNj5MiRMX369Dj77LNjypQphT4zrtqv119/PebMmRMLFiz4Q94o36FDhxg9enQMGjQorr/++kLna9q0aeZrJFOnTo3jjjsuq6P5Kmt7Ti7OfbpLly4xf/78GDJkSMyaNStuuummePbZZ7O2sb7PXwWdN0X9NpkyZUq8/fbbccwxx0SrVq2y/g499NC4++67Y/ny5Tl/vljbNb5q3zbEudO4ceOYPXt2TJkyJRYsWBBLly4t1nInnnhifPbZZ9GvX7+YNm1aPPHEEzFw4MA47bTTokSJ3/4Jfffdd4977703Jk6cGO+//3707t07KwC+vr+bCtqHDXEsGjVqFHl5efH000/H/PnzM18WKkiXLl3igQceiG233TYqVqyYeQnAmvey4vweOvXUU2Ps2LExe/bsePvtt+PFF19c6z2nqGtqlZIlS8aIESOiTZs2sfvuu8dXX32VWceoUaMywZxevXoVeP4cc8wx8cILL8SYMWPi6KOPjoiIxx57LHPvXqV58+ZZIb9zzjknjjzyyELrDgAAAPj9BBgAAAAgBypWrBjt2rWL6667Lnbddddo1apVXHDBBXHsscfGjTfemDXvoEGD4sEHH4xtttkm7rnnnnjggQcybx4sX758jB07Nr799tvYcccd4+CDD4499tgj3zrWZtiwYXHkkUfG6aefHs2aNYv9998/Jk+eHJttttkG2dfevXvHsmXL4sYbb8y8tXXFihWx5557RuvWrePUU0+NqlWrZjqBRPzWEaR69eoxffr06NWr11rXf8wxx8Qdd9wRw4YNi9atW0fnzp1j+PDhWW+Ubt26dVStWjXT+SLitw4ZK1asiC5duhS5D3/5y19iu+22i6eeeiomTJgQ2223XWy33XaZ6cuWLYvp06fntNNwcZQoUSIefPDBeOutt6JVq1bxz3/+M6666qpiLXvkkUfGzz//HDvttFOcdNJJccopp8Q//vGPAuctWbJkPP7447F48eLYcccd45hjjonzzjsvIn77gkZBXnrppbjpppti2LBhUb58+cz44447Ljp06BB9+/bNervp71Wc82JDaNOmTVx77bUxePDgaNWqVYwYMSKuuOKK373e4447Lg488MDo2bNntGvXLhYuXBgnnnjiOq9n2LBhUb9+/ejcuXMceOCB8Y9//CPzRvbCHHvssdGsWbPYYYcdolatWvnetFwcJUuWjIULF8aRRx4ZW221VRxyyCGx9957x6BBg9Z5XWuz//77x9ChQ+Pqq6+Oli1bxq233hrDhg3Ld10fdthh8dFHH0WDBg2K/OLK720TK1WqFEOGDIkddtghdtxxx5gzZ06MHj06q41bV8OGDYu2bdvGPvvsE+3bt4+UUowePTrzJYkOHTrE8ccfHz179oxatWrFkCFD1ntbRTnssMPinHPOiQEDBsT2228fs2fPjj59+hR67RfX2up92rRpccYZZ8TNN9+cecv9zTffHAsWLIgLLrggs47y5cvHWWedFb169YqOHTtGxYoVY+TIkZnp3bt3j6effjrGjRsXO+64Y+y8885x3XXXRaNGjTLzPProo7HjjjvGoYceGltvvXWceeaZmYBdYfVc1Dmz8847x+233x5Dhw6NNm3axLhx4zKdF1dZsmRJTJ8+fb0CQ6s7+OCDY+HChbFkyZLYf//9s6ata7tYuXLlePnll+Mvf/lLbLXVVnH++efHNddcE3vvvXex1le+fPl4+eWXY7PNNosDDzwwWrRoEX379o1ffvklKleu/Lv2c3XFabN+z/1xTZdccklccMEFccUVV0SLFi1ir732imeeeSarHjt16hQrV67M6uBZ3OeOnj17xgUXXBBnnnlmtG3bNubOnRsnnHBC1jx33nlnfPfdd7H99tvHEUccEf379y+wbe/atWvUq1cvunfvHvXr18+ML+rYrqk496SzzjorDj300DjyyCOjffv2UbFixejevXtW23DllVfGQQcdFEcccURsv/328fHHH8fYsWOjWrVqBW63atWqMWrUqNh9992jRYsW8e9//zseeOCBaNmy5Xqtb0MozrlUsWLFeOqpp+L999+P7bbbLs4777wYPHhwkeu++OKLY86cObHFFltErVq1NliZ8/LyYvTo0bHrrrvGUUcdFVtttVX8/e9/j7lz5xYaeC5VqlT861//iltvvTXq16+f6TTcv3//OO200+L000+P1q1bx5gxY+LJJ5+Mpk2bFrr9AQMGRMmSJWPrrbeOWrVqxaeffrrB9m1tdtlll3jmmWfi/PPPjxtuuKHAec4///zYfvvto3v37tGlS5eoW7duvrYzoujn5KLu0y1atIibb745brrppmjTpk288cYb+cKW6/v8VdB5U9RvkzvvvDO23nrrfJ20IyIOOOCA+Oabb2L06NE5f74o6hrfUOfOQQcdFHvttVfstttuUatWrXjggQeKtVyDBg1i9OjR8cYbb0SbNm3i+OOPj759+2bdw88555zo3Llz7LPPPvHXv/419t9//9hiiy0y09fnd1NBCjsWF110UTRu3LjY62nQoEEMGjQozj777KhTp07mxQgF6dy5c777VkH3suL8HlqxYkWcdNJJmfvmVlttlflKY0GKuqZWV6pUqcx5s/vuu8c333wT1157bVSrVi06dOgQPXr0iO7duxf4VcemTZtGhw4donnz5tGuXbuIiPj+++9j+vTpWfNNnz49E+SKiJg3b94f1pYBAADA/6vy0ob8l2MAAABgneTl5cVjjz1WYEca+DOZNGlS7LLLLvHxxx9nddoB/vd169Yt6tatG/fee+9GK8Pw4cPj1FNPjUWLFm20MsCfzeLFi6NBgwYxbNiwOPDAA//Qba9cuTJatGgRhxxySFxyySV/6LYB/sw25O+m3r17R15eXgwfPnzDFO7/MSmlaNq0aZx44onr9WUmAAAAIHdKbewCAAAAAPDn89hjj0XFihWjadOm8fHHH8cpp5wSHTt2FF6A/3FLliyJf//739G9e/coWbJkPPDAAzF+/Ph47rnnNnbRgP/fypUrY8GCBXHNNddE1apVY9999835NufOnRvjxo2Lzp07x9KlS+PGG2+M2bNnF/klLYD/dbn63ZRSigkTJsQrr7yygUr6/5b58+fHgw8+GF999VUcddRRG7s4AAAAwBoEGAAAAADI58cff4yzzjorPv3006hZs2Z07do1rrnmmo1dLCDH8vLyYvTo0XHZZZfFL7/8Es2aNYtHH300unbturGLBvz/Pv3009h8881j0003jeHDh0epUrn/p54SJUrE8OHDY8CAAZFSilatWsX48eOjRYsWOd82wJ9Zrn435eXlxdy5czdACf/fVLt27ahZs2bcdtttUa1atY1dHAAAAGANeSmltLELAQAAAAAAAAAAAAAA/G8rsbELAAAAAAAAAAAAAAAA/O8TYAAAAAAAAAAAAAAAAHJOgAEAAAAAAAAAAAAAAMg5AQYAAAAAAAAAAAAAACDnBBgAAAAAAAAAAAAAAICcE2AAAAAAAAAAAAAAAAByToABAAAAAAAAAAAAAADIOQEGAAAAAAAAAAAAAAAg5wQYAAAAAAAAAAAAAACAnBNgAAAAAAAAAAAAAAAAck6AAQAAAAAAAAAAAAAAyDkBBgAAAAAAAAAAAAAAIOcEGAAAAAAAAAAAAAAAgJwTYAAAAAAAAAAAAAAAAHJOgAEAAAAAAAAAAAAAAMg5AQYAAAAAAAAAAAAAACDnBBgAAAAAAAAAAAAAAICcE2AAAAAAAAAAAAAAAAByToABAAAAAAAAAAAAAADIOQEGAAAAAAAAAAAAAAAg5wQYAAAAAAAAAAAAAACAnBNgAAAAAAAAAAAAAAAAck6AAQAAAAAAAAAAAAAAyDkBBgAAAAAAAAAAAAAAIOcEGAAAAAAAAAAAAAAAgJwTYAAAAAAAAAAAAAAAAHJOgAEAAAAAAAAAAAAAAMg5AQYAAAAAAAAAAAAAACDnBBgAAAAAAAAAAAAAAICcE2AAAAAAAAAAAAAAAAByToABAAAAAAAAAAAAAADIOQEGAAAAAAAAAAAAAAAg5wQYAAAAAAAAAAAAAACAnBNgAAAAAAAAAAAAAAAAck6AAQAAAAAAAAAAAAAAyDkBBgAAAAAAAAAAAAAAIOcEGAAAAAAAAAAAAAAAgJwTYAAAAAAAAAAAAAAAAHJOgAEAAAAAAAAAAAAAAMg5AQYAAAAAAAAAAAAAACDnBBgAAAAAAAAAAAAAAICcE2AAAAAAAAAAAAAAAAByToABAAAAAAAAAAAAAADIOQEGAAAAAAAAAAAAAAAg5wQYAAAAAAAAAAAAAACAnBNgAAAAAAAAAAAAAAAAck6AAQAAAAAAAAAAAAAAyDkBBgAAAAAAAAAAAAAAIOcEGAAAAAAAAAAAAAAAgJwTYAAAAAAAAAAAAAAAAHJOgAEAAAAAAAAAAAAAAMg5AQYAAAAAAAAAAAAAACDnBBgAAAAAAAAAAAAAAICcE2AAAAAAAAAAAAAAAAByToABAAAAAAAAAAAAAADIOQEGAAAAAAAAAAAAAAAg5wQYAAAAAAAAAAAAAACAnBNgAAAAAAAAAAAAAAAAck6AAQAAAAAAAAAAAAAAyDkBBgAAAAAAAAAAAAAAIOcEGAAAAAAAAAAAAAAAgJwTYAAAAAAAAAAAAAAAAHJOgAEAAAAAAAAAAAAAAMg5AQYAAAAAAAAAAAAAACDnBBgAAAAAAAAAAAAAAICcE2AAAAAAAAAAAAAAAAByToABAAAAAAAAAAAAAADIOQEGAAAAAAAAAAAAAAAg5wQYAAAAAAAAAAAAAACAnBNgAAAAAAAAAAAAAAAAck6AAQAAAAAAAAAAAAAAyDkBBgAAAAAAAAAAAAAAIOcEGAAAAAAAAAAAAAAAgJwTYAAAAAAAAAAAAAAAAHJOgAEAAAAAAAAAAAAAAMg5AQYAAAAAAAAAAAAAACDnBBgAAAAAAAAAAAAAAICcE2AAAAAAAAAAAAAAAAByToABAAAAAAAAAAAAAADIOQEGAAAAAAAAAAAAAAAg5wQYAAAAAAAAAAAAAACAnBNgAAAAAAAAAAAAAAAAck6AAQAAAAAAAAAAAAAAyDkBBgAAAAAAAAAAAAAAIOcEGAAAAAAAAAAAAAAAgJwTYAAAAAAAAAAAAAAAAHJOgAEAAAAAAAAAAAAAAMg5AQYAAAAAAAAAAAAAACDnBBgAAAAAAAAAAAAAAICcE2AAAAAAAAAAAAAAAAByToABAAAAAAAAAAAAAADIOQEGAAAAAAAAAAAAAAAg5wQYAAAAAAAAAAAAAACAnBNgAAAAAAAAAAAAAAAAck6AAQAAAAAAAAAAAAAAyDkBBgAAAAAAAAAAAAAAIOcEGAAAAAAAAAAAAAAAgJwTYAAAAAAAAAAAAAAAAHJOgAEAAAAAAAAAAAAAAMg5AQYAAAAAAAAAAAAAACDnBBgAAAAAAAAAAAAAAICcE2AAAAAAAAAAAAAAAAByToABAAAAAAAAAAAAAADIOQEGAAAAAAAAAAAAAAAg5wQYAAAAAAAAAAAAAACAnBNgAAAAAAAAAAAAAAAAck6AAQAAAAAAAAAAAAAAyDkBBgAAAAAAAAAAAAAAIOcEGAAAAAAAAAAAAAAAgJwTYAAAAAAAAAAAAAAAAHJOgAEAAAAAAAAAAAAAAMg5AQYAAAAAAAAAAAAAACDnBBgAAAAAAAAAAAAAAICcE2AAAAAAAAAAAAAAAAByToABAAAAAAAAAAAAAADIOQEGAAAAAAAAAAAAAAAg5wQYAAAAAAAAAAAAAACAnBNgAAAAAAAAAAAAAAAAck6AAQAAAAAAAAAAAAAAyDkBBgAAAAAAAAAAAAAAIOcEGAAAAAAAAAAAAAAAgJwTYAAAAAAAAAAAAAAAAHJOgAEAAAAAAAAAAAAAAMg5AQYAAAAAAAAAAAAAACDnBBgAAAAAAAAAAAAAAICcE2AAAAAAAAAAAAAAAAByToABAAAAAAAAAAAAAADIOQEGAAAAAAAAAAAAAAAg5wQYAAAAAAAAAAAAAACAnBNgAAAAAAAAAAAAAAAAck6AAQAAAAAAAAAAAAAAyDkBBgAAAAAAAAAAAAAAIOcEGAAAAAAAAAAAAAAAgJwTYAAAAAAAAAAAAAAAAHJOgAEAAAAAAAAAAAAAAMg5AQYAAAAAAAAAAAAAACDnBBgAAAAAAAAAAAAAAICcE2AAAAAAAAAAAAAAAAByToABAAAAAAAAAAAAAADIOQEGAAAAAAAAAAAAAAAg5wQYAAAAAAAAAAAAAACAnBNgAAAAAAAAAAAAAAAAck6AAQAAAAAAAAAAAAAAyDkBBgAAAAAAAAAAAAAAIOcEGAAAAAAAAAAAAAAAgJwTYAAAAAAAAAAAAAAAAHJOgAEAAAAAAAAAAAAAAMg5AQYAAAAAAAAAAAAAACDnBBgAAAAAAAAAAAAAAICcE2AAAAAAAAAAAAAAAAByToABAAAAAAAAAAAAAADIOQEGAAAAAAAAAAAAAAAg5wQYAAAAAAAAAAAAAACAnBNgAAAAAAAAAAAAAAAAck6AAQAAAAAAAAAAAAAAyDkBBgAAAAAAAAAAAAAAIOcEGAAAAAAAAAAAAAAAgJwTYAAAAAAAAAAAAAAAAHJOgAEAAAAAAAAAAAAAAMg5AQYAAAAAAAAAAAAAACDnBBgAAAAAAAAAAAAAAICcE2AAAAAAAAAAAAAAAAByToABAAAAAAAAAAAAAADIOQEGAAAAAAAAAAAAAAAg5wQYAAAAAAAAAAAAAACAnBNgAAAAAAAAAAAAAAAAck6AAQAAAAAAAAAAAAAAyDkBBgAAAAAAAAAAAAAAIOcEGAAAAAAAAAAAAAAAgJwTYAAAAAAAAAAAAAAAAHJOgAEAAAAAAAAAAAAAAMg5AQYAAAAAAAAAAAAAACDnBBgAAAAAAAAAAAAAAICcE2AAAAAAAAAAAAAAAAByToABAAAAAAAAAAAAAADIOQEGAAAAAAAAAAAAAAAg5wQYAAAAAAAAAAAAAACAnBNgAAAAAAAAAAAAAAAAck6AAQAAAAAAAAAAAAAAyDkBBgAAAAAAAAAAAAAAIOcEGAAAAAAAAAAAAAAAgJwTYAAAAAAAAAAAAAAAAHJOgAEAAAAAAAAAAAAAAMg5AQYAAAAAAAAAAAAAACDnBBgAAAAAAAAAAAAAAICcE2AAAAAAAAAAAAAAAAByToABAAAAAAAAAAAAAADIOQEGAAAAAAAAAAAAAAAg5wQYAAAAAAAAAAAAAACAnBNgAAAAAAAAAAAAAAAAck6AAQAAAAAAAAAAAAAAyDkBBgAAAAAAAAAAAAAAIOcEGAAAAAAAAAAAAAAAgJwTYAAAAAAAAAAAAAAAAHJOgAEAAAAAAAAAAAAAAMg5AQYAAAAAAAAAAAAAACDnBBgAAAAAAAAAAAAAAICcE2AAAAAAAAAAAAAAAAByToABAAAAAAAAAAAAAADIOQEGAAAAAAAAAAAAAAAg5wQYAAAAAAAAAAAAAACAnBNgAAAAAAAAAAAAAAAAck6AAQAAAAAAAAAAAAAAyDkBBgAAAAAAAAAAAAAAIOcEGAAAAAAAAAAAAAAAgJwTYAAAAAAAAAAAAAAAAHJOgAEAAAAAAAAAAAAAAMg5AQYAAAAAAAAAAAAAACDnBBgAAAAAAAAAAAAAAICcE2AAAAAAAAAAAAAAAAByToABAAAAAAAAAAAAAADIOQEGAAAAAAAAAAAAAAAg5wQYAAAAAAAAAAAAAACAnBNgAAAAAAAAAAAAAAAAck6AAQAAAAAAAAAAAAAAyDkBBgAAAAAAAAAAAAAAIOcEGAAAAAAAAAAAAAAAgJwTYAAAAAAAAAAAAAAAAHJOgAEAAAAAAAAAAAAAAMg5AQYAAAAAAAAAAAAAACDnBBgAAAAAAAAAAAAAAICcE2AAAAAAAAAAAAAAAAByToABAAAAAAAAAAAAAADIOQEGAAAAAAAAAAAAAAAg5wQYAAAAAAAAAAAAAACAnBNgAAAAAAAAAAAAAAAAck6AAQAAAAAAAAAAAAAAyDkBBgAAAAAAAAAAAAAAIOcEGAAAAAAAAAAAAAAAgJwTYAAAAAAAAAAAAAAAAHJOgAEAAAAAAAAAAAAAAMg5AQYAAAAAAAAAAAAAACDnBBgAAAAAAAAAAAAAAICcE2AAAAAAAAAAAAAAAAByToABAAAAAAAAAAAAAADIOQEGAAAAAAAAAAAAAAAg5wQYAAAAAAAAAAAAAACAnBNgAAAAAAAAAAAAAAAAck6AAQAAAAAAAAAAAAAAyDkBBgAAAAAAAAAAAAAAIOcEGAAAAAAAAAAAAAAAgJwTYAAAAAAAAAAAAAAAAHJOgAEAAAAAAAAAAAAAAMg5AQYAAAAAAAAAAAAAACDnBBgAAAAAAAAAAAAAAICcE2AAAAAAAAAAAAAAAAByToABAAAAAAAAAAAAAADIOQEGAAAAAAAAAAAAAAAg5wQYAAAAAAAAAAAAAACAnBNgAAAAAAAAAAAAAAAAck6AAQAAAAAAAAAAAAAAyDkBBgAAAAAAAAAAAAAAIOcEGAAAAAAAAAAAAAAAgJwTYAAAAAAAAAAAAAAAAHJOgAEAAAAAAAAAAAAAAMg5AQYAAAAAAAAAAAAAACDnBBgAAAAAAAAAAAAAAICcE2AAAAAAAAAAAAAAAAByToABAAAAAAAAAAAAAADIOQEGAAAAAAAAAAAAAAAg5wQYAAAAAAAAAAAAAACAnBNgAAAAAAAAAAAAAAAAck6AAQAAAAAAAAAAAAAAyDkBBgAAAAAAAAAAAAAAIOcEGAAAAAAAAAAAAAAAgJwTYAAAAAAAAAAAAAAAAHJOgAEAAAAAAAAAAAAAAMg5AQYAAAAAAAAAAAAAACDnBBgAAAAAAAAAAAAAAICcE2AAAAAAAAAAAAAAAAByToABAAAAAAAAAAAAAADIOQEGAAAAAAAAAAAAAAAg5wQYAAAAAAAAAAAAAACAnBNgAAAAAAAAAAAAAAAAck6AAQAAAAAAAAAAAAAAyDkBBgAAAAAAAAAAAAAAIOcEGAAAAAAAAAAAAAAAgJwTYAAAAAAAAAAAAAAAAHJOgAEAAAAAAAAAAAAAAMg5AQYAAAAAAAAAAAAAACDnBBgAAAAAAAAAAAAAAICcE2AAAAAAAAAAAAAA/j/27jx+qzn/H//z3b68W7RoIWVppRRZKimqKUZTY6ehUGYME2OaMY01ZPnYGQxRWRIzE8bQEEYhJExZ2lPCZAtDovX1+8O369e73stVOprlfr/d3rdb13Wd65zXOdfrvF6v6+r1OAcAIHMCDAAAAAAAAAAAAAAAQOYEGAAAAAAAAAAAAAAAgMwJMAAAAAAAAAAAAAAAAJkTYAAAAAAAAAAAAAAAADInwAAAAAAAAAAAAAAAAGROgAEAAAAAAAAAAAAAAMicAAMAAAAAAAAAAAAAAJA5AQYAAAAAAAAAAAAAACBzAgwAAAAAAAAAAAAAAEDmBBgAAAAAAAAAAAAAAIDMCTAAAAAAAAAAAAAAAACZE2AAAACAfwODBg2K/v375x537949zjrrrG1Wnu/qoosuivbt22/rYvA92LjuErF48eIoKCiIGTNmRETE5MmTo6CgID7//PNtUp6pU6dG27Zto2LFitG/f/9NyjN27NioXbv2NilbPv7dy8f/74MPPohevXpF9erVfWYb0E5uHc2aNYvrr7/+e93mf0r7k2U/899ef/8dxtwbjxv+m21pXd0W3y229fjtf0UWbbvvosUrKCiIhx9++Dut4z/pd4t/57IBAAAAAgwAAABQqo8//jhOO+202GmnnaJy5crRsGHD6N27d0ydOnWrbueGG26IsWPHbtV1Fmf9BKn1f3Xq1Ilu3brFc889t1W3M2zYsHj66ae36jpLM3ny5OjXr180atQoqlevHu3bt49x48Zt0bq++OKLOPfcc6NVq1ZRpUqVaNiwYfTs2TMefPDBSCl957JuySS13r17R/ny5WP69Onfeftb2/dVdylqc+rR2WefHe3bt49FixbF2LFjo3PnzrF06dKoVatW9gXdwL9bsOO/zdaYlPZdXXfddbF06dKYMWNGzJs3b5uW5b/Z2LFji/Tlxf0tXrw483KUNEH0P3Uy9rYISGwtW9Ku5zvB97+ln/937nOaNGkSS5cujT322CMiSi7r/8pk3H+H/ixiy86rbenf5bj9O/i+v4tuTVsaGttWbdyDDz4Yl1xyyfe6zY39O7fvAAAAQMkqbOsCAAAAwL+zI444IlatWhV33XVX7LLLLvHhhx/G008/HcuWLduq29naE2PWrl0bBQUFUa5c8dcueOqpp2L33XePTz75JEaOHBmHHXZYzJs3Lxo0aLBVtl9YWBiFhYVbZV35eOGFF6Jdu3ZxzjnnRIMGDeLRRx+NE088MWrVqhWHHXZY3uv5/PPP44ADDoh//etfcemll8Y+++wTFSpUiClTpsRvfvObOPjgg7/3KzEvWbIkXnjhhTjjjDNi9OjRsc8++3yv2y/Lf8qkrv9lCxcujJ/97Gex44475p5r2LDhNiwR661atSoqVaq0rYvxna3fj4ULF8bee+8dzZs3/87romTHHHNM9OnTJ/f48MMPjz322CMuvvji3HP169ffFkVjG1i9enVUqlQps3b9v6GfX7169bYuQonWt3n65X8/PpeSrV69OipWrLiti1Gi7/u7aEop1q5dGxUq/O/9t3udOnW2dREAAACA/1DuwAAAAAAl+Pzzz+O5556LK6+8Mg466KBo2rRp7LvvvjF8+PD40Y9+lFuuoKAgbr311jjkkEOiatWqscsuu8Sf//znIut644034uCDD46qVatG3bp149RTT43ly5fnXi/rSosrV66MYcOGxQ477BDVq1eP/fbbLyZPnpx7fezYsVG7du145JFHok2bNlG5cuVYsmRJieurW7duNGzYMPbYY4/43e9+F1988UVMmzYt9/qbb74ZhxxySBQWFkaDBg3ihBNOiE8++SQiIm6//fZo3LhxrFu3rsg6+/XrFyeffHJEFH9V3zvuuCNat24dVapUiVatWsUtt9ySe+3II4+MM844I/f4rLPOioKCgpgzZ05EfDu5q3r16vHUU08Vuz+/+93v4pJLLonOnTvHrrvuGmeeeWb06dMnHnzwwRKPQUnrWbx4cUybNi0GDhwYbdq0iRYtWsSQIUNixowZuYkw99xzT3Ts2DFq1KgRDRs2jOOPPz4++uij3Ho+++yzGDBgQNSvXz+qVq0azZs3jzFjxkRExM477xwRER06dIiCgoLo3r17qWUaM2ZMHHbYYXHaaafF+PHj4+uvv8691rFjx7j66qtzj/v37x8VK1bM1a333nsvCgoKYsGCBWWWO6UUu+22W5H1RUTMmDGjyDo2tnHd/fOf/xxt27bN1fWePXvGV199Vex7165dG6ecckrsvPPOUbVq1WjZsmXccMMNxa7/6quvjkaNGkXdunXj9NNPL3My4l/+8pfYa6+9okqVKrHLLrvEiBEjYs2aNRERcfHFF0fjxo2LBJF++MMfxkEHHZSr12+99VYcdthhUbNmzahRo0Z07do1Fi5cmFu+tPqcj+effz66du0aVatWjSZNmsTQoUOLHKdmzZrFZZddFieffHLUqFEjdtppp7j99ttzr+dTj9ZfBX3ZsmVx8sknR0FBQYwdO7bMq5SuP39Hjx4dO+20UxQWFsbPf/7zWLt2bfzf//1fNGzYMLbffvsYOXLkZu3zxmU76KCDIiJiu+22i4KCghg0aFCp73niiSeidevWUVhYGH369ImlS5fmXps+fXr06tUr6tWrF7Vq1Ypu3brFa6+9lns9pRQXXXRR7m46jRs3jqFDh5a4rYULF0a/fv2iQYMGUVhYGPvss0+J7c+GLr300th+++2jRo0aMXjw4Pjtb39bpC1cX59HjhwZjRs3jpYtW0ZExLvvvhtHH3101K5dO+rUqRP9+vUrcgX9svavWbNmERHx4x//OAoKCnKPN7a+Ttx///3RuXPnqFKlSuyxxx4xZcqUIsuV1gdEfHsV8DPOOCPOOuusqFevXvTu3TuaNWsWEyZMiLvvvrvI57lkyZLo169fFBYWRs2aNePoo4+ODz/8MLeu9fXtjjvuiJ133jmqVKkSEd/2rbfddlscdthhUa1atWjdunW8+OKLsWDBgujevXtUr149OnfuXOS8zOdzK+vcivi27TzuuOOiTp06Ub169ejYsWORPrK09qU0I0aMiPr160fNmjXjZz/7WaxatSoiIu6+++6oW7durFy5ssjy/fv3jxNOOGGT9VStWjUaNmyY+6tUqVJUq1Yt93jVqlVx+OGHl3nMszzHN5RVW3/HHXdE7dq1c1fZ3pz+Z2Pdu3ePd955J375y1/m7mKxodLan/Vl2Zw+oayyjh49OnbfffeoXLlyNGrUqMgYaf2480c/+lFUr149Ro4cuUm7vn5c+PDDD0fz5s2jSpUq0bt373j33Xdzr48YMSJmzpyZ29+S7rLwXfr50sZD69ujP/7xj7n+cJ999ol58+bF9OnTo2PHjlFYWBiHHHJIfPzxx7l1ltUeFneMhgwZklefc/HFF+fugrCh9u3bx/nnn1/sPm7uWKxZs2ZxySWXxIknnhg1a9aMU089tchdS0rqHwcNGhRTpkyJG264YZM7reTTZg8dOjR+85vfRJ06daJhw4Zx0UUXFbs/m3uc77jjjvjxj38c1apVi+bNm8cjjzxSZJmJEydGixYtomrVqnHQQQeVeXeYsvqze+65J5o1axa1atWKY489Nr788svca+vWrYvLL78819bsueeem3wn29jKlSvjnHPOiSZNmkTlypVjt912izvvvDMiNr2q+/rz6ru0B1nV+9KO26233hq77rprVKpUKVq2bBn33HNPkfLOmTMnDjjggKhSpUq0adMmnnrqqSJ3c1hf5gceeCC6desWVapUiXHjxsWyZcviuOOOix122CGqVasWbdu2jfHjxxdZ9/rxwhlnnBG1atWKevXqxfnnn7/JXe1WrFhRYr988MEHF2kDI769S2KlSpVKvMvCxt9FJ0+eHPvuu29Ur149ateuHV26dIl33nmn2PdGfBuOb9++fVSpUiU6duwYDz/8cLF3Efvb3/4We++9d1SuXDmef/75MutgWf3hRRddFHfddVf85S9/yZ3nG37n3xqWLl1a6u8WZY1JN7bxnWFK+93iiy++iKpVq8bf/va3Iut46KGHokaNGrFixYrNLkNZ3ynWrVtXatv3+eefx+DBg3Pjs4MPPjhmzpxZ8gEEAAAAtp4EAAAAFGv16tWpsLAwnXXWWembb74pcbmISHXr1k2jRo1Kc+fOTeedd14qX758mjVrVkoppeXLl6dGjRqlww8/PL3xxhvp6aefTjvvvHMaOHBgbh0DBw5M/fr1yz3u1q1bOvPMM3OPBw8enDp37pyeffbZtGDBgnTVVVelypUrp3nz5qWUUhozZkyqWLFi6ty5c5o6dWqaM2dO+uqrrzYp66JFi1JEpH/84x8ppZRWrFiRhg0bliIi/e1vf0sppfTZZ5+l+vXrp+HDh6fZs2en1157LfXq1SsddNBBKaWUPv3001SpUqX01FNP5da7bNmyIs9deOGFac8998y9fu+996ZGjRqlCRMmpLfffjtNmDAh1alTJ40dOzallNKNN96Ydt9999zy7du3T/Xq1Uu33nprSiml559/PlWsWLHYfSpJly5d0q9+9avc42eeeSZFRFq0aFGxy69duzZtt9126dRTTy1z3XfeeWeaOHFiWrhwYXrxxRdTp06d0iGHHJJ7/fTTT0/t27dP06dPT4sWLUpPPvlkeuSRR1JKKb388sspItJTTz2Vli5dmpYtW1bidtatW5eaNm2aHn300ZRSSnvvvXe6++67c6+fffbZ6Yc//GFu2Tp16qR69erlPst777037bDDDnmXe+TIkalNmzZFyjB06NB04IEHlljGDevuP//5z1ShQoV07bXXpkWLFqXXX3893XzzzenLL78s9r2rVq1KF1xwQZo+fXp6++2307333puqVauWHnjggSLrr1mzZvrZz36WZs+enf7617+matWqpdtvv73EMj377LOpZs2aaezYsWnhwoVp0qRJqVmzZumiiy5KKaW0Zs2a1KlTp9S/f/+UUkq///3vU+3atdM777yTUkrpvffeS3Xq1EmHH354mj59epo7d24aPXp0mjNnTu64llafNz7P1te9zz77LKWU0oIFC1L16tXTddddl+bNm5emTp2aOnTokAYNGpTbh6ZNm6Y6deqkm2++Oc2fPz9dfvnlqVy5crky5FOP1qxZk5YuXZpq1qyZrr/++rR06dK0YsWKTcozZsyYVKtWrdz7LrzwwlRYWJiOPPLI9NZbb6VHHnkkVapUKfXu3Tv94he/SHPmzEmjR49OEZFeeumlEj+HjW14XNasWZMmTJiQIiLNnTs3LV26NH3++efFvm99+9azZ880ffr09Oqrr6bWrVun448/PrfM008/ne655540e/bsNGvWrHTKKaekBg0apC+++CKllNKf/vSnVLNmzTRx4sT0zjvvpGnTppVah2bMmJH+8Ic/pDfeeCPNmzcvnXfeealKlSq5OlKce++9N1WpUiWNHj06zZ07N40YMSLVrFmzSFs4cODAVFhYmE444YT05ptvpjfffDOtWrUqtW7dOp188snp9ddfT7NmzUrHH398atmyZVq5cmVe+/fRRx+liEhjxoxJS5cuTR999FGpn8GOO+6Y/vznP6dZs2alwYMHpxo1aqRPPvkkpVR2H5DSt31UYWFh+vWvf53mzJmT5syZkz766KPUp0+fdPTRR+c+z7Vr16b27dunAw44IL3yyivppZdeSnvvvXfq1q1bbl0XXnhhql69eurTp0967bXX0syZM1NK3/atO+ywQ3rggQfS3LlzU//+/VOzZs3SwQcfnB5//PE0a9astP/++6c+ffps1udW1rn15Zdfpl122SV17do1Pffcc2n+/PnpgQceSC+88EJKqez2pTjrP/djjjkmvfnmm+nRRx9N9evXT7/73e9SSt/2xbVq1Up//OMfc+/58MMPU4UKFdLf//73Ete74eexfsyQ7zHfGuf4xn39ehu3gVurrW/atGm67rrrUkopXXnllalu3bpp2rRpKaXN7382tmzZsrTjjjumiy++OC1dujQtXbo0pZRf+1NWn7Cxssp6yy23pCpVqqTrr78+zZ07N7388su5/U7p23Nj++23T6NHj04LFy5M77zzTrHtesWKFVPHjh3TCy+8kF555ZW07777ps6dO6eUvq1zv/rVr9Luu++e298VK1YUW97v0s+XNh5aX09atWpV5Jzee++9U/fu3dPzzz+fXnvttbTbbruln/3sZ7l1ltUeFneMFi9eXGKfs+H58+6776Zy5cqll19+Obeu1157LRUUFKSFCxcWu4+bOxZr2rRpqlmzZrr66qvTggUL0oIFC/LqHz///PPUqVOnNGTIkNxntmbNmrzb7Jo1a6aLLroozZs3L911112poKAgTZo0qdh92pzjvOOOO6b77rsvzZ8/Pw0dOjQVFhbmxiRLlixJlStXTmeffXaaM2dOuvfee1ODBg2K1NWNldSfrW+31n+fevbZZ1PDhg1z7WhKKV166aW5+rRw4cI0ZsyYVLly5TR58uQS9/Poo49OTZo0SQ8++GBauHBheuqpp9L999+fUtp0/LY12oOs6n1Jx+3BBx9MFStWTDfffHOaO3duuuaaa1L58uVzfcuaNWtSy5YtU69evdKMGTPSc889l/bdd98UEemhhx4qUuZmzZrl9uuf//xneu+999JVV12V/vGPf6SFCxemG2+8MZUvXz7XLqf0/48XzjzzzFwdKK5tL61fHjduXNpuu+2KfB+/9tprU7NmzdK6deuK/Vw37J9Wr16datWqlYYNG5YWLFiQZs2alcaOHVvimO5f//pXqlOnTvrJT36S3nrrrTRx4sTUokWLYsf27dq1S5MmTUoLFixIy5YtK7MOltUffvnll+noo49Offr0yZ3n68eCZdm4vhanrN8t8hmTftffLY488sj0k5/8pEi5jjjiiNxz+ZRhQ6V9p8in7evZs2fq27dvmj59epo3b1761a9+lerWrVvqd3QAAABg6xBgAAAAgFL8+c9/Ttttt12qUqVK6ty5cxo+fHhucuV6EVFkgklKKe23337ptNNOSymldPvtt6ftttsuLV++PPf6Y489lsqVK5c++OCDlFLpEwHeeeedVL58+fT+++8X2UaPHj3S8OHDU0rfTqiJiDRjxoxS92f9BJSqVaum6tWrp4KCghQRae+9906rVq1KKaV0ySWXpB/84AdF3vfuu+/mJgWklFK/fv3SySefnHv9tttuS40bN05r165NKW06qXHXXXdN9913X5F1XnLJJalTp04ppZRef/31VFBQkD766KNcQOKSSy5JxxxzTErp2wlJ6yfd5eOBBx5IlSpVSm+++WbuuWnTpqWWLVum9957r9j3fPjhhyki0rXXXpv3dtabPn16iojcBL6+ffumk046qdhlN57YWZpJkyal+vXrp9WrV6eUUrruuuuKTEJ95JFHUq1atdKaNWvSjBkzUsOGDdOZZ56ZzjnnnJTStxNINpxUVVa533///SITj1atWpXq1atX4iTMlIrW3VdffTVFRFq8eHGZ+1aS008/PR1xxBFF1t+0adO0Zs2a3HNHHXVUrm4Up0ePHumyyy4r8tw999yTGjVqlHu8cOHCVKNGjXTOOeekqlWrpnHjxuVeGz58eNp5551z58TGyqrPZQUYTjnllE2CMs8991wqV65c+vrrr1NK307m2nByz7p169L222+fC/VsTj2qVatWGjNmTO5xPgGGatWqFZmk2Lt379SsWbPcOZ5SSi1btkyXX355mdtfr6zjUpL17duCBQtyz918882pQYMGJb5n7dq1qUaNGumvf/1rSimla665JrVo0aLEzzQfu+++e7rppptKfH2//fZLp59+epHnunTpskmAoUGDBkUmYN1zzz2pZcuWRSbhrVy5MlWtWjU98cQTxW5r4/1LKRWZbFiS9Z/BFVdckXtu9erVaccdd0xXXnllSim/PqBbt26pQ4cOm6y/X79+RcJ5kyZNSuXLl09LlizJPffWW2+liMhNEL7wwgtTxYoVNwldREQ677zzco9ffPHFFBHpzjvvzD03fvz4VKVKlVL3eePPraxz67bbbks1atQoceJaPu3LxgYOHJjq1KlTJIR36623psLCwtw5ddpppxUJlF1zzTVpl112KXFy5oY2HDPke8y3xjl+4YUXpnLlyqXq1asX+atWrVqZ7dOWtPXrAwy/+c1vUqNGjYr08Vuj/9kwILFePu1PWX3Cxsoqa+PGjdO5555bYjkjIp111llFniuuXd84gDJ79uwUEbk+vqQAysa+Sz+fz3jojjvuyD03fvz4FBHp6aefzj13+eWXp5YtW5a4jZLaw7KO0XobT7495JBDcmP4lFL6xS9+kbp3717i9jd3LNa0adNcgHLjY1FW/7hxWVPKv80+4IADiiyzzz775MqYj5KO84bt9PLly4uEoocPH75JMPacc87Ja5L1xv1Zce3Wr3/967TffvullFL65ptvUrVq1XJhs/VOOeWUdNxxxxW7nblz56aISE8++WSxr5d0Xn2X9iDrer/xcevcuXMaMmRIkeeOOuqodOihh6aUUvrb3/6WKlSokAttpZTSk08+WWyA4frrry+xPOv98Ic/LBIg79atW2rdunWRvuycc85JrVu3zj0uq1/++uuv03bbbVck9NauXbtSg4Mbtm/Lli1LEVFqkGVDt956a6pbt25uTJ5SSqNGjSr2HH344Ydzy2xJHUyp+P5ww98F8pVvgKG03y3yGZN+198tHnrooVRYWJgbE/3rX/9KVapUybUbWzIuLq3NLK3te+6551LNmjU3uVjFrrvumm677bZitwUAAABsPeXyuEkDAAAA/M864ogj4p///Gc88sgj0adPn5g8eXLstddeMXbs2CLLderUaZPHs2fPjoiI2bNnx5577hnVq1fPvd6lS5dYt25dzJ07t8wyvPHGG7F27dpo0aJFFBYW5v6mTJkSCxcuzC1XqVKlaNeuXV779cADD8Q//vGPmDBhQuy2224xduzYqFixYkREzJw5M5555pki22rVqlVERG57AwYMiAkTJsTKlSsjImLcuHFx7LHHRrlym/7U8NVXX8XChQvjlFNOKbLOSy+9NLe+PfbYI+rUqRNTpkyJ5557Ljp06BCHHXZYTJkyJSIipkyZEt27d89r35555pk46aSTYtSoUbH77rvnnt93331jzpw5scMOOxT7vpRSXuuPiHj11Vejb9++sdNOO0WNGjWiW7duERGxZMmSiIg47bTT4v7774/27dvHb37zm3jhhRfyXveGRo8eHcccc0xUqFAhIiKOO+64mDp1au64de3aNb788sv4xz/+EVOmTIlu3bpF9+7dY/LkyRGx6XErq9yNGzeOH/7whzF69OiIiPjrX/8aK1eujKOOOiqv8u65557Ro0ePaNu2bRx11FExatSo+Oyzz0p9z8033xx777131K9fPwoLC+P222/PlWe93XffPcqXL5973KhRo/joo49KXOfMmTPj4osvLlLfhgwZEkuXLo0VK1ZERMQuu+wSV199dVx55ZXxox/9KI4//vjc+2fMmBFdu3bNnRMbyqc+l2XmzJkxduzYIu/v3bt3rFu3LhYtWpRbbsPzuaCgIBo2bFjqfm9NzZo1ixo1auQeN2jQINq0aVPkHG/QoMH3Vp5q1arFrrvumnu8cR348MMPY8iQIdG8efOoVatW1KxZM5YvX56rS0cddVR8/fXXscsuu8SQIUPioYceijVr1pS4veXLl8ewYcOidevWUbt27SgsLIzZs2dvUjc3NHfu3Nh3332LPLfx44iItm3bRqVKlXKPZ86cGQsWLIgaNWrk6kOdOnXim2++ydWpsvZvc23YZ1WoUCE6duyY67Py6QMiIvbee+8ytzN79uxo0qRJNGnSJPdcmzZtonbt2rntRUQ0bdo06tevv8n7NzwHGjRoEBHfHr8Nn/vmm2/iiy++iIj8P7fSzq0ZM2ZEhw4dok6dOsXuUz7tS3H23HPPqFatWu5xp06dYvny5fHuu+9GRMSQIUNi0qRJ8f7770dExNixY2PQoEFRUFBQ4jqLk+8x31rneMuWLWPGjBlF/iZOnLjJclurrb/mmmti1KhR8fzzzxfp47ek/8lXae3PlvQJpZX1o48+in/+85/Ro0ePUsvUsWPHMstdoUKF2GeffXKPW7VqtUk92Fybe5zzGQ/lc55vTnu/Xj7HqDhDhgyJ8ePHxzfffBOrVq2K++67L04++eQSl9/csdh3KVtx8m2zN/6OUNZYKt/jvOF6q1evHjVr1sytd/bs2bHffvsVWX7j70ybY+N2a8N9WLBgQaxYsSJ69epV5FjcfffdJZ6LM2bMiPLly+fGw/nYWu1BVvV+Y7Nnz44uXboUea5Lly65dmDu3LnRpEmTaNiwYe714sYuEZvW27Vr18Yll1wSbdu2jTp16kRhYWE88cQTm5Rp//33L9KXderUKebPnx9r164t9nhs3C9XqVIlTjjhhNz3k9deey3efPPNGDRoUKn7vl6dOnVi0KBB0bt37+jbt2/ccMMNsXTp0hKXnzt3brRr1y6qVKmSey6fY5JvHcynP8xSab9b5DMmLU0+v1sceuihUbFixXjkkUciImLChAlRs2bN6Nmz51Ypw8ZKa/tmzpwZy5cvj7p16xYp76JFi7ZoWwAAAMDmqbCtCwAAAAD/7qpUqRK9evWKXr16xfnnnx+DBw+OCy+8MO9JE9/V8uXLo3z58vHqq68WmdgXEVFYWJj7d9WqVfOe6NikSZNo3rx5NG/ePNasWRM//vGP480334zKlSvH8uXLo2/fvnHllVdu8r5GjRpFRETfvn0jpRSPPfZY7LPPPvHcc8/FddddV2L5IyJGjRq1ySSm9ftTUFAQBx54YEyePDkqV64c3bt3j3bt2sXKlSvjzTffjBdeeCGGDRtW5n5NmTIl+vbtG9ddd12ceOKJeR2L9erXrx+1a9eOOXPmlLrcV199Fb17947evXvHuHHjon79+rFkyZLo3bt3rFq1KiIiDjnkkHjnnXdi4sSJ8eSTT0aPHj3i9NNPj6uvvjrv8nz66afx0EMPxerVq+PWW2/NPb927doYPXp0jBw5MmrXrh177rlnTJ48OV588cXo1atXHHjggXHMMcfEvHnzYv78+blJWfmUOyJi8ODBccIJJ8R1110XY8aMiWOOOabIpNvSlC9fPp588sl44YUXYtKkSXHTTTfFueeeG9OmTYudd955k+Xvv//+GDZsWFxzzTXRqVOnqFGjRlx11VUxbdq0IsttHCQoKCiIdevWlViO5cuXx4gRI+Lwww/f5LUNJyM9++yzUb58+Vi8eHGsWbMmFxSpWrVqqeuOKL0+l2X58uXx05/+NIYOHbrJazvttFPu35u731tTcdv+dyvPhqGjgQMHxrJly+KGG26Ipk2bRuXKlaNTp065ut2kSZOYO3duPPXUU/Hkk0/Gz3/+87jqqqtiypQpxQZVhg0bFk8++WRcffXVsdtuu0XVqlXjyCOPLHKubKkNw2wR39aHvffeO8aNG7fJsusn9Ze1f1tTPn1AxKb78V2UtK4NP5v1/Vtxz62vh/l+bqXV5dLO/4j825fN1aFDh9hzzz3j7rvvjh/84Afx1ltvxWOPPbbF6yvL1jrHK1WqFLvttluR59a3pettzba+a9eu8dhjj8Uf//jH+O1vf5t7fnP7n81RWvuzJX1CaWWtV69eXmXamuff5tjc45zPeCif83zDepBve7ilx6hv375RuXLleOihh6JSpUqxevXqOPLII0tcfnPGYt+1bMXJt83e3PM73+P8fY4NStvW+nPxscce2ySsXLly5WLXV1Z7n28ZtqQ9yKreZ2njenvVVVfFDTfcENdff320bds2qlevHmedddYWlamsejR48OBo3759vPfeezFmzJg4+OCDo2nTpnmvf8yYMTF06NB4/PHH44EHHojzzjsvnnzyydh///03u6wb2vCY5FMH8+0Pt5V8xqRlvb+s3y0qVaoURx55ZNx3331x7LHHxn333VcksP9dy7CxstqNRo0a5QJnG6pdu/ZmbwsAAADYPAIMAAAAsJnatGkTDz/8cJHnXnrppSIT5l966aXo0KFDRES0bt06xo4dG1999VVuksPUqVOjXLly0bJlyzK316FDh1i7dm189NFH0bVr1623I//PkUceGRdccEHccsst8ctf/jL22muvmDBhQjRr1myTSYjrValSJQ4//PAYN25cLFiwIFq2bBl77bVXscs2aNAgGjduHG+//XYMGDCgxHJ069YtRo0aFZUrV46RI0dGuXLl4sADD4yrrroqVq5cucnVQzc2efLkOOyww+LKK6+MU089Nf8D8P+UK1cujj322LjnnnviwgsvjMaNGxd5ffny5VGlSpWYM2dOLFu2LK644orcFa5feeWVTdZXv379GDhwYAwcODC6du0av/71r+Pqq6/OXXl9w6uOFmfcuHGx4447blLXJk2aFNdcc01cfPHFuavGPvPMM/Hyyy/HyJEjo06dOtG6desYOXJkNGrUKFq0aBERkXe5Dz300KhevXrceuut8fjjj8ezzz6b3wH8fwoKCqJLly7RpUuXuOCCC6Jp06bx0EMPxdlnn73JslOnTo3OnTvHz3/+89xzW+Nql3vttVfMnTt3k0m1G3rggQfiwQcfjMmTJ8fRRx8dl1xySYwYMSIivr1S51133RWrV6/eZNJLvvW5rPLNmjWr1PKVJd969O9sa+7D1KlT45ZbbolDDz00IiLefffd+OSTT4osU7Vq1ejbt2/07ds3Tj/99GjVqlW88cYbxbZdU6dOjUGDBsWPf/zjiPj2/F+8eHGpZWjZsmVMnz69SF8wffr0Msu+1157xQMPPBDbb7991KxZc4v3r2LFinkfy5deeikOPPDAiIhYs2ZNvPrqq3HGGWfkylNWH5Cv1q1bx7vvvhvvvvturt2ZNWtWfP7559GmTZvvtO7ibMnntrF27drFHXfcEZ9++mmxd2HIp30pzsyZM+Prr7/OTZh96aWXorCwsMidEgYPHhzXX399vP/++9GzZ88ir+Xr+z7m+diabf2+++4bZ5xxRvTp0ycqVKhQJNy4Of1PcSpVqrTZ7dGW9gmllbVZs2bx9NNPx0EHHbRZZdnYmjVr4pVXXsldOXzu3Lnx+eefR+vWrSNiy/a3rLIXp6Tx0JbKpz0sTr59ToUKFWLgwIExZsyYqFSpUhx77LFlTnTPdyyWr5LKWtxntjXb7A1t6XHeUOvWrXNXWV/vpZdeKvN9m9OfrdemTZuoXLlyLFmyJO87KrRt2zbWrVsXU6ZMyV39/bvYGmPEkmzpOKB169YxderUGDhwYJF1re8PWrZsGe+++258+OGHuTtB5DN2Wb+efv36xU9+8pOI+DZMOG/evE36mo0n57/00kvRvHnzvIO/Ed9+Vh07doxRo0bFfffdF7///e/zfu96HTp0iA4dOsTw4cOjU6dOcd999xUbYGjZsmXce++9sXLlylzwIJ9jkk8dzKc/3NK2OV+l/W6Rz5i0NPn+bjFgwIDo1atXvPXWW/H3v/89Lr300txrW1KGLf1Osddee8UHH3wQFSpUiGbNmm3WewEAAIDvrlzZiwAAAMD/pmXLlsXBBx8c9957b7z++uuxaNGi+NOf/hT/93//F/369Suy7J/+9KcYPXp0zJs3Ly688MJ4+eWXc5NBBwwYEFWqVImBAwfGm2++Gc8880z84he/iBNOOCE3UaQ0LVq0iAEDBsSJJ54YDz74YCxatChefvnluPzyy7fK1ZkLCgpi6NChccUVV8SKFSvi9NNPj08//TSOO+64mD59eixcuDCeeOKJOOmkk4pMChgwYEA89thjMXr06DIn6YwYMSIuv/zyuPHGG2PevHnxxhtvxJgxY+Laa6/NLdO9e/eYNWtWvPXWW3HAAQfknhs3blx07Nix1KvVPvPMM/HDH/4whg4dGkcccUR88MEH8cEHH8Snn36aW+bll1+OVq1axfvvv1/iekaOHBlNmjSJ/fbbL+6+++6YNWtWzJ8/P0aPHh0dOnSI5cuXx0477RSVKlWKm266Kd5+++145JFH4pJLLimyngsuuCD+8pe/xIIFC+Ktt96KRx99NDdhcPvtt4+qVavG448/Hh9++GH861//KrYsd955Zxx55JGxxx57FPk75ZRT4pNPPonHH388d4yeeOKJqFChQrRq1arIcdtw8kw+5Y749gqxgwYNiuHDh0fz5s2jU6dOJR6vjU2bNi0uu+yyeOWVV2LJkiXx4IMPxscff5zb9401b948XnnllXjiiSdi3rx5cf755+c9aao0F1xwQdx9990xYsSIeOutt2L27Nlx//33x3nnnRcREe+9916cdtppceWVV8YBBxwQY8aMicsuuyw3qe6MM86IL774Io499th45ZVXYv78+XHPPffE3LlzIyK/+lyac845J1544YU444wzYsaMGTF//vz4y1/+kmsz8pFvPfo+nXjiiTF8+PC8l2/atGkUFBTEo48+Gh9//HHuyrVbonnz5nHPPffE7NmzY9q0aTFgwIAiE07Hjh0bd955Z7z55pvx9ttvx7333htVq1Yt8eq9zZs3jwcffDBmzJgRM2fOjOOPP77MK0r/4he/iDvvvDPuuuuumD9/flx66aXx+uuvl3lnnAEDBkS9evWiX79+8dxzz8WiRYti8uTJMXTo0Hjvvffy2r+IyE16/uCDD+Kzzz4rdZs333xzPPTQQzFnzpw4/fTT47PPPouTTz45IiLvPiAfPXv2jLZt28aAAQPitddei5dffjlOPPHE6NatW3Ts2HGz1pWPLfncNnbcccdFw4YNo3///jF16tR4++23Y8KECfHiiy9GRNntS0lWrVoVp5xySsyaNSsmTpwYF154YZxxxhlRrtz//xP98ccfH++9916MGjUq93lsru/7mOdja7f1nTt3jokTJ8aIESPi+uuvj4jN73+K06xZs3j22Wfj/fff36yJ2pvbJ5RV1osuuiiuueaauPHGG2P+/Pnx2muvxU033ZR3edarWLFi/OIXv4hp06bFq6++GoMGDYr9998/F2ho1qxZLFq0KGbMmBGffPJJrFy5ssx1bu5xLm08tKXyaQ+Lszl9zuDBg+Pvf/97PP7443mdi/mOxfJVUlmbNWsW06ZNi8WLF8cnn3wS69at26pt9oa29Dhv6Gc/+1nMnz8/fv3rX8fcuXPjvvvui7Fjx5b5vs3pz9arUaNGDBs2LH75y1/GXXfdFQsXLsydO3fddVeJ2xk4cGCcfPLJ8fDDD+f63z/+8Y+bs5tFfNcxYkm2dBzw61//OsaOHRu33nprzJ8/P6699tp48MEHc+GvXr16xa677hoDBw6M119/PaZOnZrrz8oavzRv3jx3R5bZs2fHT3/60/jwww83WW7JkiVx9tlnx9y5c2P8+PFx0003xZlnnrnZx2Dw4MFxxRVXREopF1TMx6JFi2L48OHx4osvxjvvvBOTJk2K+fPnl9gWrR87nHrqqTF79ux44okncqGr0o5JPnUwn/6wWbNm8frrr8fcuXPjk08+idWrV0dERI8ePbYouLGxsn63KGtMWpp8f7c48MADo2HDhjFgwIDYeeedi9yxZEvKsKXfKXr27BmdOnWK/v37x6RJk2Lx4sXxwgsvxLnnnlts0H+9jT+L3//+99GjR4/c4/fffz9atWoVL7/8cl7lAAAAgP9VAgwAAABQgsLCwthvv/3iuuuuiwMPPDD22GOPOP/882PIkCGbTB4YMWJE3H///dGuXbu4++67Y/z48bmrT1arVi2eeOKJ+PTTT2OfffaJI488crMnIIwZMyZOPPHE+NWvfhUtW7aM/v37x/Tp02OnnXbaKvs6cODAWL16dfz+97+Pxo0bx9SpU2Pt2rXxgx/8INq2bRtnnXVW1K5du8hEy4MPPjjq1KkTc+fOjeOPP77U9Q8ePDjuuOOOGDNmTLRt2za6desWY8eOjZ133jm3TNu2baN27drRvn37KCwsjIhvJ3+tXbs2unfvXur677rrrlixYkVcfvnl0ahRo9zf4YcfnltmxYoVMXfu3NwkkOLUqVMnXnrppfjJT34Sl156aXTo0CG6du0a48ePj6uuuipq1aoV9evXj7Fjx8af/vSnaNOmTVxxxRWbXEm4UqVKMXz48GjXrl0ceOCBUb58+bj//vsj4tsr+954441x2223RePGjTcJw0REvPrqqzFz5sw44ogjNnmtVq1a0aNHj7jzzjsjIqJr166xbt26IhPkijtu+ZR7vVNOOSVWrVoVJ510UonHqjg1a9aMZ599Ng499NBo0aJFnHfeeXHNNdfEIYccUuzyP/3pT+Pwww+PY445Jvbbb79YtmxZkSuSbqnevXvHo48+GpMmTYp99tkn9t9//7juuuuiadOmkVKKQYMG5a7ivX750047LX7yk5/E8uXLo27duvH3v/89li9fHt26dYu99947Ro0albsbQz71uTTt2rWLKVOmxLx586Jr167RoUOHuOCCCza560dp8qlH37clS5bE0qVL815+hx12iBEjRsRvf/vbaNCgwWYFODZ25513xmeffRZ77bVXnHDCCTF06NDYfvvtc6/Xrl07Ro0aFV26dIl27drFU089FX/961+jbt26xa7v2muvje222y46d+4cffv2jd69e5d4l5n1BgwYEMOHD49hw4bFXnvtFYsWLYpBgwZFlSpVSn1ftWrV4tlnn42ddtopDj/88GjdunWccsop8c033+SuPFvW/kVEXHPNNfHkk09GkyZNclfSLckVV1wRV1xxRey5557x/PPPxyOPPBL16tWLiMi7D8hHQUFB/OUvf4ntttsuDjzwwOjZs2fssssu8cADD2zWevK1JZ/bxipVqhSTJk2K7bffPg499NBo27ZtXHHFFbkrRZfWvpSmR48e0bx58zjwwAPjmGOOiR/96Edx0UUXFVmmVq1accQRR0RhYWH0799/s8q93vd9zPORRVt/wAEHxGOPPRbnnXde3HTTTWX2P5MnT46CgoJS78hx8cUXx+LFi2PXXXeN+vXr512Wze0TyirrwIED4/rrr49bbrkldt999zjssMNi/vz5+R+c/6datWpxzjnnxPHHHx9dunSJwsLCIvXgiCOOiD59+sRBBx0U9evXj/Hjx5e5zs3t50sbD22pfNrD4mxOn9O8efPo3LlztGrVqsjE2pLkOxbLV0llHTZsWJQvXz7atGkT9evXjyVLlmzVNntDW3qcN7TTTjvFhAkT4uGHH44999wz/vCHP8Rll11W5vs2pz/b0CWXXBLnn39+XH755dG6devo06dPPPbYY6WOz2699dY48sgj4+c//3m0atUqhgwZEl999VXe29zYdx0jlmRLxwH9+/ePG264Ia6++urYfffd47bbbosxY8bk6mX58uXj4YcfjuXLl8c+++wTgwcPjnPPPTcioszxy3nnnRd77bVX9O7dO7p3754L/23sxBNPjK+//jr23XffOP300+PMM8/corvlHXfccVGhQoU47rjjyizbhqpVqxZz5syJI444Ilq0aBGnnnpqnH766fHTn/602OVr1qwZf/3rX2PGjBnRvn37OPfcc+OCCy6IiLKPSVl1MJ/+cMiQIdGyZcvo2LFj1K9fP6ZOnRoR396pYXPvglKcsn63KGtMWpZ8frcoKCiI4447LmbOnLnJhRC2pAxb+p2ioKAgJk6cGAceeGCcdNJJ0aJFizj22GPjnXfeKfVCExt/Fp988kmRO2msXr065s6dGytWrMirHAAAAPC/qiCllLZ1IQAAAOA/WUFBQTz00ENbPNkQ/t0899xz0aNHj3j33XfzuksIULxevXpFw4YN45577tnWRYmIiMWLF8fOO+8c//jHP6J9+/bbujgUo0ePHrH77rvHjTfeuK2L8l9l/Z12Zs2alQuj/TcbO3ZsnHXWWfH5559v66L8R0opRfPmzePnP/95nH322du6OPC9mjp1ahxwwAGxYMGC2HXXXb/Turp37x7t27fP3S3nu1gfMJs+ffpmhxO/q3HjxsVJJ50U//rXvzb7TiQAAAAAFK/Cti4AAAAAAP8eVq5cGR9//HFcdNFFcdRRRwkvwGZYsWJF/OEPf4jevXtH+fLlY/z48fHUU0/Fk08+ua2Lxn+Azz77LCZPnhyTJ0+OW265ZVsX57/OxIkT47LLLvufCC/w3Xz88cdx//33xwcffLDZd6KC/0QPPfRQFBYWRvPmzWPBggVx5plnRpcuXb5zeGFrWb16dSxbtizOO++82H///b+X8MLdd98du+yyS+ywww4xc+bMOOecc+Loo48WXgAAAADYigQYAAAAAIiIiPHjx8cpp5wS7du3j7vvvntbFwf+oxQUFMTEiRNj5MiR8c0330TLli1jwoQJ0bNnz21dNP4DdOjQIT777LO48soro2XLltu6OP91/vSnP23rIvAfYvvtt4969erF7bffHtttt922Lg5k7ssvv4xzzjknlixZEvXq1YuePXvGNddcs62LlTN16tQ46KCDokWLFvHnP//5e9nmBx98EBdccEF88MEH0ahRozjqqKNi5MiR38u2AQAAAP5XFKSU0rYuBAAAAAAAAAAAAAAA8N+t3LYuAAAAAAAAAAAAAAAA8N9PgAEAAAAAAAAAAAAAAMicAAMAAAAAAAAAAAAAAJA5AQYAAAAAAAAAAAAAACBzAgwAAAAAAAAAAAAAAEDmBBgAAAAAAAAAAAAAAIDMCTAAAAAAAAAAAAAAAACZE2AAAAAAAAAAAAAAAAAyJ8AAAAAAAAAAAAAAAABkToABAAAAAAAAAAAAAADInAADAAAAAAAAAAAAAACQOQEGAAAAAAAAAAAAAAAgcwIMAAAAAAAAAAAAAABA5gQYAAAAAAAAAAAAAACAzAkwAAAAAAAAAAAAAAAAmRNgAAAAAAAAAAAAAAAAMifAAAAAAAAAAAAAAAAAZE6AAQAAAAAAAAAAAAAAyJwAAwAAAAAAAAAAAAAAkDkBBgAAAAAAAAAAAAAAIHMCDAAAAAAAAAAAAAAAQOYEGAAAAAAAAAAAAAAAgMwJMAAAAAAAAAAAAAAAAJkTYAAAAAAAAAAAAAAAADInwAAAAAAAAAAAAAAAAGROgAEAAAAAAAAAAAAAAMicAAMAAAAAAAAAAAAAAJA5AQYAAAAAAAAAAAAAACBzAgwAAAAAAAAAAAAAAEDmBBgAAAAAAAAAAAAAAIDMCTAAAAAAAAAAAAAAAACZE2AAAAAAAAAAAAAAAAAyJ8AAAAAAAAAAAAAAAABkToABAAAAAAAAAAAAAADInAADAAAAAAAAAAAAAACQOQEGAAAAAAAAAAAAAAAgcwIMAAAAAAAAAAAAAABA5gQYAAAAAAAAAAAAAACAzAkwAAAAAAAAAAAAAAAAmRNgAAAAAAAAAAAAAAAAMifAAAAAAAAAAAAAAAAAZE6AAQAAAAAAAAAAAAAAyJwAAwAAAAAAAAAAAAAAkDkBBgAAAAAAAAAAAAAAIHMCDAAAAAAAAAAAAAAAQOYEGAAAAAAAAAAAAAAAgMwJMAAAAAAAAAAAAAAAAJkTYAAAAAAAAAAAAAAAADInwAAAAAAAAAAAAAAAAGROgAEAAAAAAAAAAAAAAMicAAMAAAAAAAAAAAAAAJA5AQYAAAAAAAAAAAAAACBzAgwAAAAAAAAAAAAAAEDmBBgAAAAAAAAAAAAAAIDMCTAAAAAAAAAAAAAAAACZE2AAAAAAAAAAAAAAAAAyJ8AAAAAAAAAAAAAAAABkToABAAAAAAAAAAAAAADInAADAAAAAAAAAAAAAACQOQEGAAAAAAAAAAAAAAAgcwIMAAAAAAAAAAAAAABA5gQYAAAAAAAAAAAAAACAzAkwAAAAAAAAAAAAAAAAmRNgAAAAAAAAAAAAAAAAMifAAAAAAAAAAAAAAAAAZE6AAQAAAAAAAAAAAAAAyJwAAwAAAAAAAAAAAAAAkDkBBgAAAAAAAAAAAAAAIHMCDAAAAAAAAAAAAAAAQOYEGAAAAAAAAAAAAAAAgMwJMAAAAAAAAAAAAAAAAJkTYAAAAAAAAAAAAAAAADInwAAAAAAAAAAAAAAAAGROgAEAAAAAAAAAAAAAAMicAAMAAAAAAAAAAAAAAJA5AQYAAAAAAAAAAAAAACBzAgwAAAAAAAAAAAAAAEDmBBgAAAAAAAAAAAAAAIDMCTAAAAAAAAAAAAAAAACZE2AAAAAAAAAAAAAAAAAyJ8AAAAAAAAAAAAAAAABkToABAAAAAAAAAAAAAADInAADAAAAAAAAAAAAAACQOQEGAAAAAAAAAAAAAAAgcwIMAAAAAAAAAAAAAABA5gQYAAAAAAAAAAAAAACAzAkwAAAAAAAAAAAAAAAAmRNgAAAAAAAAAAAAAAAAMifAAAAAAAAAAAAAAAAAZE6AAQAAAAAAAAAAAAAAyJwAAwAAAAAAAAAAAAAAkDkBBgAAAAAAAAAAAAAAIHMCDAAAAAAAAAAAAAAAQOYEGAAAAAAAAAAAAAAAgMwJMAAAAAAAAAAAAAAAAJkTYAAAAAAAAAAAAAAAADInwAAAAAAAAAAAAAAAAGROgAEAAAAAAAAAAAAAAMicAAMAAAAAAAAAAAAAAJA5AQYAAAAAAAAAAAAAACBzAgwAAAAAAAAAAAAAAEDmBBgAAAAAAAAAAAAAAIDMCTAAAAAAAAAAAAAAAACZE2AAAAAAAAAAAAAAAAAyJ8AAAAAAAAAAAAAAAABkToABAAAAAAAAAAAAAADInAADAAAAAAAAAAAAAACQOQEGAAAAAAAAAAAAAAAgcwIMAAAAAAAAAAAAAABA5gQYAAAAAAAAAAAAAACAzAkwAAAAAAAAAAAAAAAAmRNgAAAAAAAAAAAAAAAAMifAAAAAAAAAAAAAAAAAZE6AAQAAAAAAAAAAAAAAyJwAAwAAAAAAAAAAAAAAkDkBBgAAAAAAAAAAAAAAIHMCDAAAAAAAAAAAAAAAQOYEGAAAAAAAAAAAAAAAgMwJMAAAAAAAAAAAAAAAAJkTYAAAAAAAAAAAAAAAADInwAAAAAAAAAAAAAAAAGROgAEAAAAAAAAAAAAAAMicAAMAAAAAAAAAAAAAAJA5AQYAAAAAAAAAAAAAACBzAgwAAAAAAAAAAAAAAEDmBBgAAAAAAAAAAAAAAIDMCTAAAAAAAAAAAAAAAACZE2AAAAAAAAAAAAAAAAAyJ8AAAAAAAAAAAAAAAABkToABAAAAAAAAAAAAAADInAADAAAAAAAAAAAAAACQOQEGAAAAAAAAAAAAAAAgcwIMAAAAAAAAAAAAAABA5gQYAAAAAAAAAAAAAACAzAkwAAAAAAAAAAAAAAAAmRNgAAAAAAAAAAAAAAAAMifAAAAAAAAAAAAAAAAAZE6AAQAAAAAAAAAAAAAAyJwAAwAAAAAAAAAAAAAAkDkBBgAAAAAAAAAAAAAAIHMCDAAAAAAAAAAAAAAAQOYEGAAAAAAAAAAAAAAAgMwJMAAAAAAAAAAAAAAAAJkTYAAAAAAAAAAAAAAAADInwAAAAAAAAAAAAAAAAGROgAEAAAAAAAAAAAAAAMicAAMAAAAAAAAAAAAAAJA5AQYAAAAAAAAAAAAAACBzAgwAAAAAAAAAAAAAAEDmBBgAAAAAAAAAAAAAAIDMCTAAAAAAAAAAAAAAAACZE2AAAAAAAAAAAAAAAAAyJ8AAAAAAAAAAAAAAAABkToABAAAAAAAAAAAAAADInAADAAAAAAAAAAAAAACQOQEGAAAAAAAAAAAAAAAgcwIMAAAAAAAAAAAAAABA5gQYAAAAAAAAAAAAAACAzAkwAAAAAAAAAAAAAAAAmRNgAAAAAAAAAAAAAAAAMifAAAAAAAAAAAAAAAAAZE6AAQAAAAAAAAAAAAAAyJwAAwAAAAAAAAAAAAAAkDkBBgAAAAAAAAAAAAAAIHMCDAAAAAAAAAAAAAAAQOYEGAAAAAAAAAAAAAAAgMwJMAAAAAAAAAAAAAAAAJkTYAAAAAAAAAAAAAAAADInwAAAAAAAAAAAAAAAAGROgAEAAAAAAAAAAAAAAMicAAMAAAAAAAAAAAAAAJA5AQYAAAAAAAAAAAAAACBzAgwAAAAAAAAAAAAAAEDmBBgAAAAAAAAAAAAAAIDMCTAAAAAAAAAAAAAAAACZE2AAAAAAAAAAAAAAAAAyJ8AAAAAAAAAAAAAAAABkToABAAAAAAAAAAAAAADInAADAAAAAAAAAAAAAACQOQEGAAAAAAAAAAAAAAAgcwIMAAAAAAAAAAAAAABA5gQYAAAAAAAAAAAAAACAzAkwAAAAAAAAAAAAAAAAmRNgAAAAAAAAAAAAAAAAMifAAAAAAAAAAAAAAAAAZE6AAQAAAAAAAAAAAAAAyJwAAwAAAAAAAAAAAAAAkDkBBgAAAAAAAAAAAAAAIHMCDAAAAAAAAAAAAAAAQOYEGAAAAAAAAAAAAAAAgMwJMAAAAAAAAAAAAAAAAJkTYAAAAAAAAAAAAAAAADInwAAAAAAAAAAAAAAAAGROgAEAAAAAAAAAAAAAAMicAAMAAAAAAAAAAAAAAJA5AQYAAAAAAAAAAAAAACBzAgwAAAAAAAAAAAAAAEDmBBgAAAAAAAAAAAAAAIDMCTAAAAAAAAAAAAAAAACZE2AAAAAAAAAAAAAAAAAyJ8AAAAAAAAAAAAAAAABkToABAAAAAAAAAAAAAADInAADAAAAAAAAAAAAAACQOQEGAAAAAAAAAAAAAAAgcwIMAAAAAAAAAAAAAABA5gQYAAAAAAAAAAAAAACAzAkwAAAAAAAAAAAAAAAAmRNgAAAAAAAAAAAAAAAAMifAAAAAAAAAAAAAAAAAZE6AAQAAAAAAAAAAAAAAyJwAAwAAAAAAAAAAAAAAkDkBBgAAAAAAAAAAAAAAIHMCDAAAAAAAAAAAAAAAQOYEGAAAAAAAAAAAAAAAgMwJMAAAAAAAAAAAAAAAAJkTYAAAAAAAAAAAAAAAADInwAAAAAAAAAAAAAAAAGROgAEAAAAAAAAAAAAAAMicAAMAAAAAAAAAAAAAAJA5AQYAAAAAAAAAAAAAACBzAgwAAAAAAAAAAAAAAEDmBBgAAAAAAAAAAAAAAIDMCTAAAAAAAAAAAAAAAACZE2AAAAAAAAAAAAAAAAAyJ8AAAAAAAAAAAAAAAABkToABAAAAAAAAAAAAAADInAADAAAAAAAAAAAAAACQOQEGAAAAAAAAAAAAAAAgcwIMAAAAAAAAAAAAAABA5gQYAAAAAAAAAAAAAACAzAkwAAAAAAAAAAAAAAAAmRNgAAAAAAAAAAAAAAAAMifAAAAAAAAAAAAAAAAAZE6AAQAAAAAAAAAAAAAAyJwAAwAAAAAAAAAAAAAAkDkBBgAAAAAAAAAAAAAAIHMCDAAAAAAAAAAAAAAAQOYEGAAAAAAAAAAAAAAAgMwJMAAAAAAAAAAAAAAAAJkTYAAAAAAAAAAAAAAAADInwAAAAAAAAAAAAAAAAGROgAEAAAAAAAAAAAAAAMicAAMAAAAAAAAAAAAAAJA5AQYAAAAAAAAAAAAAACBzAgwAAAAAAAAAAAAAAEDmBBgAAAAAAAAAAAAAAIDMCTAAAAAAAAAAAAAAAACZE2AAAAAAAAAAAAAAAAAyJ8AAAAAAAAAAAAAAAABkToABAAAAAAAAAAAAAADInAADAAAAAAAAAAAAAACQOQEGAAAAAAAAAAAAAAAgcwIMAAAAAAAAAAAAAABA5gQYAAAAAAAAAAAAAACAzAkwAAAAAAAAAAAAAAAAmRNgAAAAAAAAAAAAAAAAMifAAAAAAAAAAAAAAAAAZE6AAQAAAAAAAAAAAAAAyJwAAwAAAAAAAAAAAAAAkDkBBgAAAAAAAAAAAAAAIHMCDAAAAAAAAAAAAAAAQOYEGAAAAAAAAAAAAAAAgMwJMAAAAAAAAAAAAAAAAJkTYAAAAAAAAAAAAAAAADInwAAAAAAAAAAAAAAAAGROgAEAAAAAAAAAAAAAAMicAAMAAAAAAAAAAAAAAJA5AQYAAAAAAAAAAAAAACBzAgwAAAAAAAAAAAAAAEDmBBgAAAAAAAAAAAAAAIDMCTAAAAAAAAAAAAAAAACZE2AAAAAAAAAAAAAAAAAyJ8AAAAAAAAAAAAAAAABkToABAAAAAAAAAAAAAADInAADAAAAAAAAAAAAAACQOQEGAAAAAAAAAAAAAAAgcwIMAAAAAAAAAAAAAABA5gQYAAAAAAAAAAAAAACAzAkwAAAAAAAAAAAAAAAAmRNgAAAAAAAAAAAAAAAAMifAAAAAAAAAAAAAAAAAZE6AAQAAAAAAAAAAAAAAyJwAAwAAAAAAAAAAAAAAkDkBBgAAAAAAAAAAAAAAIHMCDAAAAAAAAAAAAAAAQOYEGAAAAAAAAAAAAAAAgMwJMAAAAAAAAAAAAAAAAJkTYAAAAAAAAAAAAAAAADInwAAAAAAAAAAAAAAAAGROgAEAAAAAAAAAAAAAAMicAAMAAAAAAAAAAAAAAJA5AQYAAAAAAAAAAAAAACBzAgwAAAAAAAAAAAAAAEDmBBgAAAAAAAAAAAAAAIDMCTAAAAAAAAAAAAAAAACZE2AAAAAAAAAAAAAAAAAyJ8AAAAAAAAAAAAAAAABkToABAAAAAAAAAAAAAADInAADAAAAAAAAAAAAAACQOQEGAAAAAAAAAAAAAAAgcwIMAAAAAAAAAAAAAABA5gQYAAAAAAAAAAAAAACAzAkwAAAAAAAAAAAAAAAAmRNgAAAAAAAAAAAAAAAAMifAAAAAAAAAAAAAAAAAZE6AAQAAAAAAAAAAAAAAyJwAAwAAAAAAAAAAAAAAkDkBBgAAAAAAAAAAAAAAIHMCDAAAAAAAAAAAAAAAQOYEGAAAAAAAAAAAAAAAgMwJMAAAAAAAAAAAAAAAAJkTYAAAAAAAAAAAAAAAADInwAAAAAAAAAAAAAAAAGROgAEAAAAAAAAAAAAAAMicAAMAAAAAAAAAAAAAAJA5AQYAAAAAAAAAAAAAACBzAgwAAAAAAAAAAAAAAEDmBBgAAAAAAAAAAAAAAIDMCTAAAAAAAAAAAAAAAACZE2AAAAAAAAAAAAAAAAAyJ8AAAAAAAAAAAAAAAABkToABAAAAAAAAAAAAAADInAADAAAAAAAAAAAAAACQOQEGAAAAAAAAAAAAAAAgcwIMAAAAAAAAAAAAAABA5gQYAAAAAAAAAAAAAACAzAkwAAAAAAAAAAAAAAAAmRNgAAAAAAAAAAAAAAAAMifAAAAAAAAAAAAAAAAAZE6AAQAAAAAAAAAAAAAAyJwAAwAAAAAAAAAAAAAAkDkBBgAAAAAAAAAAAAAAIHMCDAAAAAAAAAAAAAAAQOYEGAAAAAAAAAAAAAAAgMwJMAAAAAAAAAAAAAAAAJkTYAAAAAAAAAAAAAAAADInwAAAAAAAAAAAAAAAAGROgAEAAAAAAAAAAAAAAMicAAMAAAAAAAAAAAAAAJA5AQYAAAAAAAAAAAAAACBzAgwAAAAAAAAAAAAAAEDmBBgAAAAAAAAAAAAAAIDMCTAAAAAAAAAAAAAAAACZE2AAAAAAAAAAAAAAAAAyJ8AAAAAAAAAAAAAAAABkToABAAAAAAAAAAAAAADInAADAAAAAAAAAAAAAACQOQEGAAAAAAAAAAAAAAAgcwIMAAAAAAAAAAAAAABA5gQYAAAAAAAAAAAAAACAzAkwAAAAAAAAAAAAAAAAmRNgAAAAAAAAAAAAAAAAMifAAAAAAAAAAAAAAAAAZE6AAQAAAAAAAAAAAAAAyJwAAwAAAAAAAAAAAAAAkDkBBgAAAAAAAAAAAAAAIHMCDAAAAAAAAAAAAAAAQOYEGAAAAAAAAAAAAAAAgMwJMAAAAAAAAAAAAAAAAJkTYAAAAAAAAAAAAAAAADInwAAAAAAAAAAAAAAAAGROgAEAAAAAAAAAAAAAAMicAAMAAAAAAAAAAAAAAJA5AQYAAAAAAAAAAAAAACBzAgwAAAAAAAAAAAAAAEDmBBgAAAAAAAAAAAAAAIDMCTAAAAAAAAAAAAAAAACZE2AAAAAAAAAAAAAAAAAyJ8AAAAAAAAAAAAAAAABkToABAAAAAAAAAAAAAADInAADAAAAAAAAAAAAAACQOQEGAAAAAAAAAAAAAAAgcwIMAAAAAAAAAAAAAABA5gQYAAAAAAAAAAAAAACAzAkwAAAAAAAAAAAAAAAAmRNgAAAAAAAAAAAAAAAAMifAAAAAAAAAAAAAAAAAZE6AAQAAAAAAAAAAAAAAyJwAAwAAAAAAAAAAAAAAkDkBBgAAAAAAAAAAAAAAIHMCDAAAAAAAAAAAAAAAQOYEGAAAAAAAAAAAAAAAgMwJMAAAAAAAAAAAAAAAAJkTYAAAAAAAAAAAAAAAADInwAAAAAAAAAAAAAAAAGROgAEAAAAAAAAAAAAAAMicAAMAAAAAAAAAAAAAAJA5AQYAAAAAAAAAAAAAACBzAgwAAAAAAAAAAAAAAEDmBBgAAAAAAAAAAAAAAIDMCTAAAAAAAAAAAAAAAACZE2AAAAAAAAAAAAAAAAAyJ8AAAAAAAAAAAAAAAABkToABAAAAAAAAAAAAAADInAADAAAAAAAAAAAAAACQOQEGAAAAAAAAAAAAAAAgcwIMAAAAAAAAAAAAAABA5gQYAAAAAAAAAAAAAACAzAkwAAAAAAAAAAAAAAAAmRNgAAAAAAAAAAAAAAAAMifAAAAAAAAAAAAAAAAAZE6AAQAAAAAAAAAAAAAAyJwAAwAAAAAAAAAAAAAAkDkBBgAAAAAAAAAAAAAAIHMCDAAAAAAAAAAAAAAAQOYEGAAAAAAAAAAAAAAAgMwJMAAAAAAAAAAAAAAAAJkTYAAAAAAAAAAAAAAAADInwAAAAAAAAAAAAAAAAGROgAEAAAAAAAAAAAAAAMicAAMAAAAAAAAAAAAAAJA5AQYAAAAAAAAAAAAAACBzAgwAAAAAAAAAAAAAAEDmBBgAAAAAAAAAAAAAAIDMCTAAAAAAAAAAAAAAAACZE2AAAAAAAAAAAAAAAAAyJ8AAAAAAAAAAAAAAAABkToABAAAAAAAAAAAAAADInAADAAAAAAAAAAAAAACQOQEGAOD/Y+/O430s8/+Bv88hy3HsiRY5FUnaFBUtJEKToY1ixKRl2mQmqWYq2qZMmZaZalpRQ2pCo02LolJTsrRaoqJmTHtNMiGu3x89zufnw9nIp2W+z+fj4fHwudfrvu/rvu7rw/W6PwAAAAAAAAAAAAA5J8AAAAAAAAAAAAAAAADknAADAAAAAAAAAAAAAACQcwIMAAAAAAAAAAAAAABAzgkwAAAAAAAAAAAAAAAAOSfAAAAAAAAAAAAAAAAA5JwAAwAAAAAAAAAAAAAAkHMCDAAAAAAAAAAAAAAAQM4JMAAAAAAAAAAAAAAAADknwAAAAAAAAAAAAAAAAOScAAMAAAAAAAAAAAAAAJBzAgwAAAAAAAAAAAAAAEDOCTAAAAAAAAAAAAAAAAA5J8AAAAAAAAAAAAAAAADknAADAAAAAAAAAAAAAACQcwIMAAAAAAAAAAAAAABAzgkwAAAAAAAAAAAAAAAAOSfAAAAAAAAAAAAAAAAA5JwAAwAAAAAAAAAAAAAAkHMCDAAAAAAAAAAAAAAAQM4JMAAAAAAAAAAAAAAAADknwAAAAAAAAAAAAAAAAOScAAMAAAAAAAAAAAAAAJBzAgwAAAAAAAAAAAAAAEDOCTAAAAAAAAAAAAAAAAA5J8AAAAAAAAAAAAAAAADknAADAAAAAAAAAAAAAACQcwIMAAAAAAAAAAAAAABAzgkwAAAAwI/Mu+++G3l5eTF37tyIiJg2bVrk5eXF559//oOW67vIy8uLBx544Icuxk/Cj+1cDRgwIHr27LlZtzl69OioU6fOZt3mxhg+fHg0bNjwR3euN8ZPuez/1/0Urt3w4cNjr732KnOZDh06xODBg7+X8mwu6z9fN8UP3X5VREWuH99dLp6PG6uoqCiuu+66H7QMPzYVaZt+Cu3w+n4Kbc//mp/Sc27+/Pmx//77R7Vq1X4U7f9P8R7bVP/+97+jc+fOUaNGDfdoDuSiT6M9BQAAgB8HAQYAAAB+MgYMGBB5eXlx1VVXZU1/4IEHIi8v73spw6RJk2L//feP2rVrR82aNaNly5abfWBL48aNY9myZbHbbrtt1u2WpPic5uXlxRZbbBE77LBDDB06NL7++uvNup9ly5ZFt27dNus2yzJx4sQ47LDDon79+t9psOr6AwOLiopi2rRpm6WMbJzNNRBq3rx5cckll8Qtt9zyvdfLTVHaoJ2fQtl/an4Mg5E3p4oObN7Ue2vixIlx2WWXbXzBfkDf5/O1PBUdGPtTGkC7PkGK8lU0pGqw5bf1qbjPWtqfivopPkN79+4dCxcu/KGL8YMT2inZsGHDokaNGrFgwYKYOnXqD12crHtsc4QHI6Lc+3/48OHfveCb4Nprr41ly5bF3Llz3aM5MGTIkB9FnS7JT7mPBgAAAD8GlX/oAgAAAMDGqFatWowYMSJOPfXUqFu37ve676lTp0bv3r3jiiuuiJ///OeRl5cXb775ZjzxxBObdT+VKlWKRo0abdZtrlq1KqpUqVLivK5du8aoUaNi9erVMWvWrOjfv3/k5eXFiBEjNtv+N/fxlOerr76KAw88MHr16hUnn3zy97rvn6rVq1fHFlts8UMXI+cWL14cERE9evT43oJPufB931Owvnr16v3QRdhouXi+8uOzZs2ayMvLi/x872/6XzJkyJD41a9+lfncpk2bOOWUUzapn/dTbAeqV68e1atX/6GLwY/U4sWL42c/+1k0adLkBy1H8XfOXNxjy5Yty/z93nvvjYsvvjgWLFiQmVZYWJj5e0op1qxZE5Ur5/6/wRcvXhz77LNPNGvWbJO3UdZ39Vz4KX3vKywszLq2AAAAwP8O/4IPAADAT0qnTp2iUaNGceWVV5a53IQJE6Jly5ZRtWrVKCoqipEjR2bNLyoqit///vdx4oknRs2aNWP77bePW2+9tcxtPvjgg3HAAQfEueeeG82bN4+dd945evbsGTfeeGNmmeK3Dd9yyy3RuHHjKCgoiF69esUXX3yRWWbt2rVx6aWXxnbbbRdVq1aNvfbaK6ZMmZKZX5G3VD733HNx0EEHRfXq1aNx48YxaNCg+Oqrr7KO77LLLosTTjghatWqFaecckqp26patWo0atQoGjduHD179oxOnTplhTLWrl0bV155Zeywww5RvXr12HPPPeP+++/PzNtuu+3i5ptvztrmnDlzIj8/P5YsWRIRG77h+7333otevXpFnTp1ol69etGjR4949913IyLi9ddfj/z8/Pjoo48iIuLTTz+N/Pz8OO644zLrX3755XHggQeWekz9+vWLiy++ODp16lTqMt9Vu3bt4rzzzsua9tFHH8UWW2wRzzzzTERErFy5MoYMGRLbbrtt1KhRI/bbb78K/YLDxx9/HEceeWQUFBREs2bNYvLkyVnzX3/99ejWrVsUFhZGw4YNo1+/fvHxxx9n5k+ZMiUOPPDAqFOnTtSvXz+OOOKIzMD9iP9fx+69995o3759VKtWLcaOHRtr1qyJ3/zmN5n1hg4dGimlMsv6ySefxPHHHx/bbrttFBQUxO677x733HNPuce4vptvvjl22mmnqFKlSjRv3jzuvvvuzLyioqKIiDjyyCMjLy8v87kkr732WnTs2DGqV68e9evXj1NOOSWWL18eEd/en927d4+IiPz8/FIDDMVvxJ46dWq0bt06CgoKol27dlmDpCIi/v73v8fee+8d1apVix133DEuueSS+OabbzLz58+fHwceeGBUq1Ytdt1113jyySc3uBfOO++82HnnnaOgoCB23HHHuOiii2L16tUR8e0bty+55JJ45ZVXMm+XHT16dERk31O5qouff/55nHrqqdGwYcOoVq1a7LbbbvHQQw9l5leknb388svjhBNOiMLCwmjSpElMnjw5Pvroo+jRo0cUFhbGHnvsES+//HJmneK3jD/00EPRvHnzKCgoiGOOOSZWrFgRY8aMiaKioqhbt24MGjQo1qxZk1mvvOMr3u5jjz0WLVq0iMLCwujatWtmMNzw4cNjzJgx8fe//z1zrqdNmxarVq2KM888M7beeuuoVq1aNGnSpMznz8yZM6Nz586x5ZZbRu3ataN9+/Yxe/bsDZYrfjNx9erVY8cdd8y0qcXKqscRJb/xtWfPnjFgwIDM/CVLlsSvf/3rMt9MXt69dffdd0dRUVHUrl07jjvuuPjyyy9LLcNNN90UzZo1i2rVqkXDhg3jmGOOKfU8bep1/uyzz+KEE06IunXrRkFBQXTr1i3eeuutiIj4z3/+E9WrV49HH300a1+TJk2KmjVrxooVK0p8vpbXnpbmgQceyBxvly5d4r333svMK+nXPAYPHhwdOnTIzJ8+fXpcf/31metT/AzcFFdddVU0bNgwatasGQMHDtzgV5TK63eUpEOHDjFo0KAYOnRo1KtXLxo1arTB262XLl2auZdr1aoVvXr1ig8++CAiym6/SnLnnXdm2pOtt946zjzzzMy8P/7xj7H77rtHjRo1onHjxnH66adn3Q/F9Wny5Mmx6667RtWqVWPp0qUb3e4NGTIkjjjiiMzn6667LvLy8rLOVdOmTeP222/PWu+aa66JrbfeOurXrx9nnHFGpg2P+PYeat26ddSsWTMaNWoUffr0iQ8//DAivn0WH3LIIRERUbdu3cjLy8vcw+uaNm1a/PKXv4wvvviixDeNr1ixosz+bFl9rmeeeSa22GKL+Pe//521zuDBg+Oggw4q8TyllGL48OGx/fbbR9WqVWObbbaJQYMGVeiYU0rRtGnTuOaaa7K2OXfu3MjLy4tFixaVuM+IbwexNmrUKPOnUqVKmX0U/ym2du3aMuvuus/QjW3ni+/v3//+99GwYcOoU6dOXHrppfHNN9/EueeeG/Xq1YvtttsuRo0albVeWe36448/HtWqVdvglzjOPvvs6NixY0SU/Csc5fVD1rWx/es1a9bEwIEDM/3/5s2bx/XXX5+1zWnTpsW+++4bNWrUiDp16sQBBxyQ6fuvr7j9nThxYhxyyCFRUFAQe+65Z7zwwgtZy5XVt6josy2i7PYp4v9/ZyvrObeuSy+9tMRf79lrr73ioosuKnGd4v7kY489Fq1atYrq1atHx44d48MPP4xHH300WrRoEbVq1Yo+ffrEihUrIiLirrvuivr168fKlSuzttWzZ8/o169fifvJy8uLWbNmxaWXXprVPpTVx1y4cGHk5eXF/Pnzs7Z17bXXxk477ZT5PH369Nh3330zbfP555+fVcc6dOgQZ555ZgwePDi23HLL6NKlS6ZMxffYDjvsEBERrVq1iry8vMyzMCLi9ttvjxYtWkS1atVil112iZtuuqnEY4yIrHu9du3akZeXl/k8f/78qFmzZjz66KOxzz77RNWqVeO5556LxYsXR48ePaJhw4ZRWFgYbdq0iSeffDJru+X9u0BZbURRUVFMmDAh7rrrrqw2vKL17/bbb48ddtghqlWrljlvt9xySxxxxBFRUFAQLVq0iBdeeCEWLVoUHTp0iBo1akS7du2yvtdFlN8W5OXlxc033xw///nPo0aNGnHFFVfEZ599Fn379o0GDRpE9erVo1mzZhu0W+vq0KFDnHXWWTF48OCoW7duNGzYMG677bb46quv4pe//GXUrFkzmjZtukE/rKw6dOutt8Y222wTa9euzVqnR48eceKJJ2adq3VtTL0py/fVlyur/xpR/vcUAAAA+J+VAAAA4Ceif//+qUePHmnixImpWrVq6b333ksppTRp0qS07lfcl19+OeXn56dLL700LViwII0aNSpVr149jRo1KrNMkyZNUr169dKNN96Y3nrrrXTllVem/Pz8NH/+/FL3f+WVV6YGDRqk1157rdRlhg0blmrUqJE6duyY5syZk6ZPn56aNm2a+vTpk1nmj3/8Y6pVq1a655570vz589PQoUPTFltskRYuXJhSSumdd95JEZHmzJmTUkrp6aefThGRPvvss5RSSosWLUo1atRI1157bVq4cGGaMWNGatWqVRowYEDW8dWqVStdc801adGiRWnRokVlntNir732WmrUqFHab7/9MtMuv/zytMsuu6QpU6akxYsXp1GjRqWqVaumadOmpZRSGjJkSDrwwAOztnvOOedkTYuINGnSpJRSSqtWrUotWrRIJ554Ynr11VfTm2++mfr06ZOaN2+eVq5cmdauXZu23HLL9Le//S2llNIDDzyQttxyy9SoUaPM9jp16pR+97vflXodiq1/Ltc/9vbt25e5fpMmTdK1116b9fnpp59OKaX05z//OW2//fZp7dq1mfl/+tOfsqaddNJJqV27dumZZ55JixYtSldffXWqWrVq5lqXJCLSdtttl8aNG5feeuutNGjQoFRYWJg++eSTlFJKn332WWrQoEG64IIL0rx589Ls2bNT586d0yGHHJLZxv33358mTJiQ3nrrrTRnzpzUvXv3tPvuu6c1a9ZknZeioqI0YcKE9Pbbb6d//etfacSIEalu3bppwoQJ6c0330wDBw5MNWvWzKoj63v//ffT1VdfnebMmZMWL16cbrjhhlSpUqX04osvlrrOqFGjUu3atTOfJ06cmLbYYot04403pgULFqSRI0emSpUqpaeeeiqllNKHH36YIiKNGjUqLVu2LH344Yclbnf58uVp6623TkcddVR67bXX0tSpU9MOO+yQ+vfvn1JK6csvv0yjRo1KEZGWLVuWli1bVuJ2iu+5/fbbL02bNi298cYb6aCDDkrt2rXLLPPMM8+kWrVqpdGjR6fFixenxx9/PBUVFaXhw4enlFL65ptvUvPmzVPnzp3T3Llz07PPPpv23XffrHshpZQuu+yyNGPGjPTOO++kyZMnp4YNG6YRI0aklFJasWJFOuecc1LLli0z5V2xYkVKKfueykVdXLNmTdp///1Ty5Yt0+OPP54WL16cHnzwwfTII4+klDaunf3LX/6SFi5cmE477bRUq1at1LVr13TfffelBQsWpJ49e6YWLVpkyjlq1Ki0xRZbpM6dO6fZs2en6dOnp/r166fDDjss9erVK73xxhvpwQcfTFWqVEnjx4/P7Ku84yvebqdOndLMmTPTrFmzUosWLTJt85dffpl69eqVunbtmjnXK1euTFdffXVq3LhxeuaZZ9K7776bnn322TRu3LgSz1lKKU2dOjXdfffdad68eZl7qGHDhuk///lPZpmISPXr10+33XZbWrBgQbrwwgtTpUqV0ptvvplSKr8ep5RS+/bt09lnn5217x49emSW+eSTT9J2222XLr300jLremn31rBhw1JhYWGmDM8880xq1KhR+u1vf1tiGWbOnJkqVaqUxo0bl9599900e/bsdP3115d6njb1Ov/85z9PLVq0SM8880yaO3du6tKlS2ratGlatWpVSimlY445Jv3iF7/I2tfRRx+dmbb+M6Ei7WlpZW/dunV6/vnn08svv5z23XffrPZh/WdrSimdffbZmWfO559/ntq2bZtOPvnkzPX55ptvStxfSdd6Xffee2+qWrVquv3229P8+fPT7373u1SzZs205557ZpYpr99R2n5r1aqVhg8fnhYuXJjGjBmT8vLy0uOPP55S+raN2GuvvdKBBx6YXn755fSPf/wj7bPPPpljLKv9Wt9NN92UqlWrlq677rq0YMGC9NJLL2U9e6+99tr01FNPpXfeeSdNnTo1NW/ePJ122mmZ+cXXpF27dmnGjBlp/vz56auvvtrodm/y5Mmpdu3amWvRs2fPtOWWW6bzzjsvpfTt8y4i0ltvvZVS+vY616pVK/3qV79K8+bNSw8++GAqKChIt956a2abd9xxR3rkkUfS4sWL0wsvvJDatm2bunXrllL69jkxYcKEFBFpwYIFadmyZenzzz/foFwrV65M1113XapVq1bmXH755ZcppfL7s+X1uVJKaeedd05/+MMfMvtbtWpV2nLLLdOdd95Z4nn629/+lmrVqpUeeeSRtGTJkvTiiy9W+JhTSumKK65Iu+66a9Y2Bw0alA4++OAS91ea9ftoxcqruyllP0M3tp3v379/qlmzZjrjjDPS/Pnz0x133JEiInXp0iVdccUVaeHChemyyy5LW2yxRea7Snnt+jfffJMaNmyYbr/99sx+1p+2ft+pvH7I+ja2f71q1ap08cUXp5kzZ6a33347/fWvf00FBQXp3nvvTSmltHr16lS7du00ZMiQtGjRovTmm2+m0aNHpyVLlpS4/+L2d5dddkkPPfRQWrBgQTrmmGNSkyZN0urVq1NK5fctKvpsK699Smnjn3Pvvfdeys/PTy+99FJm/uzZs1NeXl5avHhxieUo7k/uv//+6bnnnkuzZ89OTZs2Te3bt0+HHXZYmj17dnrmmWdS/fr101VXXZVS+rbtrF27drrvvvsy2/nggw9S5cqVM/3i9S1btiy1bNkynXPOOVntQ1l9zJRSat26dbrwwguztrXPPvtkpr3//vupoKAgnX766WnevHlp0qRJacstt0zDhg3LOkeFhYXp3HPPTfPnz8+0PeveYy+99FKKiPTkk0+mZcuWZb7T/PWvf01bb7115rvIhAkTUr169dLo0aNLPM51rX8/FJ/rPfbYIz3++ONp0aJF6ZNPPklz585Nf/nLX9Jrr72WFi5cmC688MJUrVq1rHpaXjtaVhvx4Ycfpq5du6ZevXpl2vCK1r8aNWqkrl27ptmzZ6dXXnklc9623XbbdO+992b6yUVFRaljx45pypQp6c0330z7779/6tq1a2ZbFWkLIiJttdVW6c4770yLFy9OS5YsSWeccUbaa6+90syZM9M777yTnnjiiTR58uRSz3n79u1TzZo102WXXZZp5ypVqpS6deuWbr311kxfv379+umrr76qUB369NNPU5UqVdKTTz6Z2c8nn3ySNW3YsGFZfZrvUm+Kfd99ufL6r+V9TwEAAID/VQIMAAAA/GSs+5/I+++/fzrxxBNTShsGGPr06ZM6d+6cte65556bNViqSZMmWYMc165dm7baaqt08803l7r/5cuXp8MPPzxFRGrSpEnq3bt3uuOOO9LXX3+dWWbYsGGpUqVK6f33389Me/TRR1N+fn5mkM0222yTrrjiiqxtt2nTJp1++ukppfIDDAMHDkynnHJK1vrPPvtsys/PT//9738zx9ezZ89Sj6VY//79U6VKlVKNGjVS1apVU0Sk/Pz8dP/996eUUvr6669TQUFBev7557PWGzhwYDr++ONTSinNmTMn5eXlZQaCrFmzJm277bZZ53LdQSx33313at68edZg65UrV6bq1aunxx57LKWU0lFHHZXOOOOMlFJKgwcPTueee26qW7dumjdvXlq1alUqKCjIGohWmrICDOeff37q169fmeuXNjgupW8HrFSuXDk988wzmWlt27bNDHRcsmRJqlSpUvrnP/+Ztd6hhx6aLrjgglL3GRFZg4mWL1+eIiI9+uijKaVvByMddthhWeu89957mQGQJfnoo49SRGTCN8Xn5brrrstabuutt84axLh69eq03XbblRlgKMnPfvazdM4555Q6f/1BR+3atUsnn3xy1jLHHntsOvzwwzOf1x/4X5Jbb7011a1bNy1fvjwz7eGHH075+fnp3//+d0ppw/aiJMX33LqDaR5++OEUEZl77NBDD02///3vs9a7++6709Zbb51S+va+r1y5ctbguieeeKLc47j66qvTPvvsk/m8/qCdYutuJxd18bHHHkv5+fml1qlNaWeXLVuWIiJddNFFmWkvvPBCJlCSUsoETNYNXZ166qmpoKAgMyAvpZS6dOmSTj311AofX0nbvfHGG1PDhg0zn0saqHTWWWeljh07ZrVXG2PNmjWpZs2a6cEHH8xMi4j0q1/9Kmu5/fbbLzMguyL1uLwAQ0plt1/rKqlODhs2LBUUFGQFL84999yscNu6ZZgwYUKqVatW1vJl2ZTrvHDhwhQRacaMGZn5H3/8capevXpmoOekSZNSYWFhZuDcF198kapVq5ZpP9d/JmxKe1pc9n/84x+ZafPmzUsRkQlulTfoLaXygwkVXa5t27aZ/kOx/fbbL6vdKK/fUdp+1w8ntmnTJtOuPP7446lSpUpp6dKlmflvvPFGiojMAN/S2q/1bbPNNhUKJRb729/+lurXr5/5XHxN5s6dm5m2Ke3eZ599lvLz89PMmTPT2rVrU7169dKVV16Zqfd//etf07bbbptZvn///qlJkyZZAxaPPfbY1Lt371LLPnPmzBQRmXq+fh+vNOs/N4uV15+tSJ9rxIgRqUWLFpn5EyZMSIWFhVlt0LpGjhyZdt5558zAy/Ksf8z//Oc/s4KOxYGJjRl8mlLZAYay6m5K2e3exrbzxde9OBSaUkrNmzdPBx10UObzN998k2rUqJHuueeelFLF2vWzzz47dezYMTP/scceS1WrVs3UjfXrQHn9kJJ81/71GWeckY4++uiU0reDjCMiE2guT3H7u25Io7jNmDdvXkqp4n2L8p5tFW2fNuY5l1JK3bp1ywpPnXXWWalDhw6llqOk/uSVV16ZIiIr9HDqqaemLl26ZD6fdtppWaGfkSNHph133LHMOrrnnntmBQtKsn4f89prr0077bRT5vOCBQuyrsdvf/vbDdqPG2+8MRUWFmbqf/v27VOrVq022Ne691hp38d22mmnDcJCl112WWrbtm2Zx5FS6QGGBx54oNx1W7Zsmf70pz9lPpfXjpbXRqzf/6po/dtiiy02CGWv/z2wuJ98xx13ZKbdc889qVq1apnPFWkLIiINHjw4a5nu3bunX/7ylyUeU0nWb1uL27l1v08X9/VfeOGFlFLF6lCPHj0y/66TUkq33HJL2mabbTLz1+9LfJd6U+z77MtVpP9ake8pAAAA8L8of6N/sgEAAAB+BEaMGBFjxoyJefPmbTBv3rx5ccABB2RNO+CAA+Ktt96KNWvWZKbtsccemb/n5eVFo0aN4sMPP4yIiG7dukVhYWEUFhZGy5YtIyKiRo0a8fDDD8eiRYviwgsvjMLCwjjnnHNi3333jRUrVmS2tf3228e2226b+dy2bdtYu3ZtLFiwIP7zn//Ev/71rxLLV9KxlOSVV16J0aNHZ8pXWFgYXbp0ibVr18Y777yTWa5169YV2t4hhxwSc+fOjRdffDH69+8fv/zlL+Poo4+OiIhFixbFihUronPnzln7u+uuu2Lx4sUREbHXXntFixYtYty4cRERMX369Pjwww/j2GOPLbX8ixYtipo1a2a2V69evfj6668z22zfvn1MmzYts72OHTvGwQcfHNOmTYuZM2fG6tWrNziHG+vKK6+Mu+66a5PXb9CgQRx22GExduzYiIh455134oUXXoi+fftGRMRrr70Wa9asiZ133jnr3E2fPj1znKVZt27WqFEjatWqlambr7zySjz99NNZ29xll10iIjLbfeutt+L444+PHXfcMWrVqhVFRUUREbF06dKs/axbR7744otYtmxZ7LfffplplStXLrcerVmzJi677LLYfffdo169elFYWBiPPfbYBvsqS2n3bEXviXW3s+eee0aNGjWytlN8/22sda/D1ltvHRGRdR0uvfTSrOtw8sknx7Jly2LFihWxYMGCaNy4cTRq1CizjX333XeDfdx7771xwAEHRKNGjaKwsDAuvPDCjTp3Ebmpi3Pnzo3tttsudt555xLnb0o727Bhw4iI2H333TeYVnxeIyIKCgpip512ylqmqKgoCgsLs6YVr1PR41t/u1tvvXXWfksyYMCAmDt3bjRv3jwGDRoUjz/+eJnLf/DBB3HyySdHs2bNonbt2lGrVq1Yvnz5Bte0bdu2G3wuru+bux5vqqKioqhZs2bmc1nnq3PnztGkSZPYcccdo1+/fjF27Nis52JJNvY6z5s3LypXrpzVRtWvXz+aN2+eOXeHH354bLHFFjF58uSIiJgwYULUqlUrOnXqVGIZKtKelqRy5crRpk2bzOdddtkl6tSps9Ft1uYwb968rHMSkV2/vku/Y937NyK7DsybNy8aN24cjRs3zszfddddN/o8fPjhh/Gvf/0rDj300FKXefLJJ+PQQw+NbbfdNmrWrBn9+vWLTz75JKuOValSJau8m9Lu1alTJ/bcc8+YNm1avPbaa1GlSpU45ZRTYs6cObF8+fKYPn16tG/fPmudli1bRqVKlUo8RxERs2bNiu7du8f2228fNWvWzKy/se18Wcrqz1akzzVgwIBYtGhR/OMf/4iIiNGjR0evXr2y2qB1HXvssfHf//43dtxxxzj55JNj0qRJ8c0331T4mLfZZpv42c9+FnfeeWdERDz44IOxcuXKUvuN3/WcRJTdfm1sOx/x7XXPz////73WsGHDrGdbpUqVon79+ln3S3ntet++fWPatGnxr3/9KyIixo4dGz/72c+iTp06JZahvH5ISTa2f33jjTfGPvvsEw0aNIjCwsK49dZbM9exXr16MWDAgOjSpUt07949rr/++li2bFm5566svlVF+xblqWj7tDHPuYiIk08+Oe655574+uuvY9WqVTFu3Lg48cQTyy3P+n2hgoKC2HHHHbOmrbvfk08+OR5//PH45z//GRHf3pMDBgyIvLy8cve1rvL6mMcdd1y8++67mXt/7Nixsffee2eeg/PmzYu2bdtm7feAAw6I5cuXx/vvv5+Zts8++2xUuSIivvrqq1i8eHEMHDgwqw5ffvnl5X5PKsv631uWL18eQ4YMiRYtWkSdOnWisLAw5s2bt0EbXFY7urFtREXrX5MmTaJBgwYbrF+RvvPXX38d//nPfyKi4m3B+ufmtNNOi/Hjx8dee+0VQ4cOjeeff77M41q/bMXtXFn9+orUob59+8aECRNi5cqVEfFtPTzuuOOy2thim7PefF99uYr0XyM27XsKAAAA/NRV/qELAAAAAJvi4IMPji5dusQFF1wQAwYM2KRtbLHFFlmf8/LyYu3atRERcfvtt8d///vfEpfbaaedYqeddoqTTjopfve738XOO+8c9957b/zyl7/cpHJsrOXLl8epp54agwYN2mDe9ttvn/l7aQPP1lejRo1o2rRpRETceeedseeee8Ydd9wRAwcOjOXLl0dExMMPP5wVyoiIqFq1aubvffv2jXHjxsX5558f48aNi65du0b9+vVLLf8+++yTGWy9ruJBHB06dIjBgwfHW2+9FW+++WYceOCBMX/+/Jg2bVp89tln0bp16ygoKKjQ8eVS3759Y9CgQfGnP/0pxo0bF7vvvntmEMfy5cujUqVKMWvWrKzBjRGRNUC3JGXVzeXLl0f37t1jxIgRG6xXPBCse/fu0aRJk7jttttim222ibVr18Zuu+0Wq1atylq+onWkLFdffXVcf/31cd1118Xuu+8eNWrUiMGDB2+wr5+ida9D8cCbda/DJZdcEkcdddQG61WrVq1C2y8OGVxyySXRpUuXqF27dowfPz5Gjhy50WXd3HWxevXqG12GkpR0Dss6r+vPL16mvHuiIsdX0jZSSmWWf++994533nknHn300XjyySejV69e0alTp7j//vtLXL5///7xySefxPXXXx9NmjSJqlWrRtu2bTf7/ZCfn79B2VevXr1Z91HWOV9fzZo1Y/bs2TFt2rR4/PHH4+KLL47hw4fHzJkzSx18u7HXuSKqVKkSxxxzTIwbNy6OO+64GDduXPTu3TsqVy75n8Er0p5uiu/j+nwfvuv1qIjy2pp33303jjjiiDjttNPiiiuuiHr16sVzzz0XAwcOjFWrVmX6AtWrV88aILmpz+AOHTrEtGnTomrVqtG+ffuoV69etGjRIp577rmYPn16nHPOOVnLl3WOvvrqq+jSpUt06dIlxo4dGw0aNIilS5dGly5dNmubUF77WF6fa6uttoru3bvHqFGjYocddohHH300M8i9JI0bN44FCxbEk08+GU888UScfvrpcfXVV8f06dNj1apVFTrmk046Kfr16xfXXnttjBo1Knr37r1Z+3UbU3c3tp0vbfvf9X5p06ZN7LTTTjF+/Pg47bTTYtKkSTF69OhSl9+UfsjG9K/Hjx8fQ4YMiZEjR0bbtm2jZs2acfXVV8eLL76Y2d6oUaNi0KBBMWXKlLj33nvjwgsvjCeeeCL233//UstdXh/g+7Sx16x79+5RtWrVmDRpUlSpUiVWr14dxxxzzEbtpyJ1pVWrVrHnnnvGXXfdFYcddli88cYb8fDDD1f0sCKiYn3MRo0aRceOHWPcuHGx//77x7hx4+K0007bqP1EbNr3ieLvmLfddtsGIbz12+zvUpYhQ4bEE088Eddcc000bdo0qlevHsccc8wGbXBZ12RT2ohNKWtJZalI37mibcH6++vWrVssWbIkHnnkkXjiiSfi0EMPjTPOOCOuueaaUstcXtu3Kfd09+7dI6UUDz/8cLRp0yaeffbZuPbaa0tcNlf1piTfd19uU76nAAAAwE+dAAMAAAA/WVdddVXstdde0bx586zpLVq0iBkzZmRNmzFjRuy8884V/o/t9Qfrl6aoqCgKCgriq6++ykxbunRp/Otf/4ptttkmIiL+8Y9/RH5+fjRv3jxq1aoV22yzTcyYMSPrLb4zZswo8e3sJdl7773jzTffzIQONqf8/Pz47W9/G7/5zW+iT58+seuuu0bVqlVj6dKlG7x1eF19+vSJCy+8MGbNmhX3339//OUvfymz/Pfee29stdVWUatWrRKX2X333aNu3bpx+eWXx1577RWFhYXRoUOHGDFiRHz22WfRoUOH73qom0WPHj3ilFNOiSlTpsS4cePihBNOyMxr1apVrFmzJj788MM46KCDNts+995775gwYUIUFRWVOCj3k08+iQULFsRtt92W2e9zzz1X7nZr164dW2+9dbz44otx8MEHR0TEN998E7NmzYq999671PVmzJgRPXr0iF/84hcR8e2AlYULF8auu+5a4WMqvmf79++ftd11t7HFFluU+/bdFi1axOjRo+Orr77KDNKZMWNG5v7bnPbee+9YsGBBqfdh8+bN47333osPPvgg8zbSmTNnZi3z/PPPR5MmTeJ3v/tdZtqSJUuylqlSpUqF3jq8ueviHnvsEe+//34sXLiwxF9h2Bzt7Oayue610s51rVq1onfv3tG7d+845phjomvXrvHpp59GvXr1Nlh2xowZcdNNN8Xhhx8eERHvvfdefPzxxxss949//CPrGv3jH/+IVq1aRUTF6nGDBg2y3nS9Zs2aeP311+OQQw4p93jWV5F7qyIqV64cnTp1ik6dOsWwYcOiTp068dRTT5U4oG5TtGjRIr755pt48cUXo127dhHx/9u7dduKvn37RufOneONN96Ip556Ki6//PJSt1lee1qab775Jl5++eXMc3vBggXx+eefR4sWLSLi2+vz+uuvZ60zd+7crMFpFb0+5WnRokW8+OKLG9SnYpuj31Haft9777147733Mm+ZfvPNN+Pzzz/PXI+KHGPNmjWjqKgopk6dmlV/i82aNSvWrl0bI0eOzLyN+b777iu3fJvaLrRv3z7uvPPOqFy5cnTt2jUivh30fc8998TChQs3qv8xf/78+OSTT+Kqq67KnKOXX345a5kqVapERJR7nja1vlSkzxXxbaDg+OOPj+222y522mmncn/lqnr16tG9e/fo3r17nHHGGbHLLrvEa6+9Fimlco854ttfS6lRo0bcfPPNMWXKlHjmmWc2+tg2p41p5zdFRfsnffv2jbFjx8Z2220X+fn58bOf/azUbZbXDynJxvSvZ8yYEe3atYvTTz89M62kN5y3atUqWrVqFRdccEG0bds2Mxh+U1Skb1GRe6Ei7dOmqFy5cvTv3z9GjRoVVapUieOOO26zBT7Xd9JJJ8V1110X//znP6NTp05Zb/OviIr0MSO+rXNDhw6N448/Pt5+++047rjjMvNatGgREyZMiJRSZmD6jBkzombNmrHddttVuCwltXMNGzaMbbbZJt5+++3ML4blwowZM2LAgAFx5JFHRsS3A+Dffffdjd7OxrQRuap/pdmUtqBYgwYNon///tG/f/846KCD4txzzy0zwLCxKlKHqlWrFkcddVSMHTs2Fi1aFM2bNy/1u+fmrDffV1+uov1XAAAA+L9ow99fBAAAgJ+I3XffPfr27Rs33HBD1vRzzjknpk6dGpdddlksXLgwxowZE3/+859jyJAh32l/w4cPj6FDh8a0adPinXfeiTlz5sSJJ54Yq1evjs6dO2eWq1atWvTv3z9eeeWVePbZZ2PQoEHRq1evaNSoUUREnHvuuTFixIi49957Y8GCBXH++efH3Llz4+yzz65QOc4777x4/vnn48wzz4y5c+fGW2+9FX//+9/jzDPP/E7HV+zYY4+NSpUqxY033hg1a9aMIUOGxK9//esYM2ZMLF68OGbPnh1/+tOfYsyYMZl1ioqKol27djFw4MBYs2ZN/PznPy91+3379o0tt9wyevToEc8++2y88847MW3atBg0aFC8//77EfHtGwcPPvjgGDt2bGYw1R577BErV66MqVOnlhmmiIj49NNPY+7cufHmm29GxLcDEubOnRv//ve/M8tccMEFWQM+N0WNGjWiZ8+ecdFFF8W8efPi+OOPz8zbeeedo2/fvnHCCSfExIkT45133omXXnoprrzyyo1+i+q6zjjjjPj000/j+OOPj5kzZ8bixYvjsccei1/+8pexZs2aqFu3btSvXz9uvfXWWLRoUTz11FPxm9/8pkLbPvvss+Oqq66KBx54IObPnx+nn356fP7552Wu06xZs3jiiSfi+eefj3nz5sWpp54aH3zwwUYd07nnnhujR4+Om2++Od5666344x//GBMnTsy6Z4sHuP773/+Ozz77rMTt9O3bN3P/vf766/H000/HWWedFf369cuECDaXiy++OO6666645JJL4o033oh58+bF+PHj48ILL4yIiM6dO8dOO+0U/fv3j1dffTVmzJiRmVc8gKdZs2axdOnSGD9+fCxevDhuuOGGmDRpUtZ+ioqK4p133om5c+fGxx9/HCtXriyxPJu7LrZv3z4OPvjgOProo+OJJ57IvHl2ypQpEZG7dnZTbK57raioKF599dVYsGBBfPzxx7F69er44x//GPfcc0/Mnz8/Fi5cGH/729+iUaNGpf6qQLNmzeLuu++OefPmxYsvvhh9+/YtcXDj3/72t7jzzjtj4cKFMWzYsHjppZcybXhF6nHHjh3j4Ycfjocffjjmz58fp5122gb3alFRUTzzzDPxz3/+s8QQxbrLlXdvleehhx6KG264IebOnRtLliyJu+66K9auXbtZg0PNmjWLHj16xMknnxzPPfdcvPLKK/GLX/witt122+jRo0dmuYMPPjgaNWoUffv2jR122GGDN/Suq7z2tDRbbLFFnHXWWfHiiy/GrFmzYsCAAbH//vtnBsF17NgxXn755bjrrrvirbfeimHDhm0wCK6oqChefPHFePfdd+Pjjz/e5DeQn3322XHnnXfGqFGjMvXpjTfeyFrmu/Y7StKpU6dMP2z27Nnx0ksvxQknnBDt27eP1q1bZ46xIu3X8OHDY+TIkXHDDTfEW2+9lelnREQ0bdo0Vq9eHX/605/i7bffjrvvvrvMkGSxTW0XDj744Pjyyy/joYceyvQ/OnToEGPHjo2tt966xEBXabbffvuoUqVKpuyTJ0+Oyy67LGuZJk2aRF5eXjz00EPx0UcfZd4uvb6ioqJYvnx5TJ06NT7++ONYsWJFhcpQkT5XRESXLl2iVq1acfnll5f7i2KjR4+OO+64I15//fV4++23469//WtUr149mjRpUqFjjvj2TdkDBgyICy64IJo1axZt27aNiIgTTjghLrjgggod2+ayse38pqho/6T4frriiivimGOOyfq1s/WV1w8pycb0r5s1axYvv/xyPPbYY7Fw4cK46KKLsoKY77zzTlxwwQXxwgsvxJIlS+Lxxx+Pt956KzP4d1NUpG9RkWdbRdqnTXXSSSfFU089FVOmTIkTTzzxO22rLH369In3338/brvttk3aT0X6mBERRx11VHz55Zdx2mmnxSGHHJIJ4EdEnH766fHee+/FWWedFfPnz4+///3vMWzYsPjNb36TCZRVxFZbbRXVq1ePKVOmxAcffBBffPFFRERccsklceWVV8YNN9wQCxcujNdeey1GjRoVf/zjHzf6eEvTrFmzmDhxYsydOzdeeeWV6NOnz0Y/bze2jchl/SvJprQFxev9/e9/j0WLFsUbb7wRDz300He6f0tS0TrUt2/fePjhh+POO+8sN5iwuerN99WXq2j/tTyTJk2KXXbZJWvaLrvsknVfb45/3wAAAIDvkwADAAAAP2mXXnrpBv9RvPfee8d9990X48ePj9122y0uvvjiuPTSS2PAgAHfaV/t27ePt99+O0444YTYZZddolu3bvHvf/87Hn/88axBmk2bNo2jjjoqDj/88DjssMNijz32iJtuuikzf9CgQfGb3/wmzjnnnNh9991jypQpMXny5GjWrFmFyrHHHnvE9OnTY+HChXHQQQdFq1at4uKLL84acPJdVK5cOc4888z4wx/+EF999VVcdtllcdFFF8WVV14ZLVq0iK5du8bDDz8cO+ywQ9Z6ffv2jVdeeSWOPPLIMt9GWlBQEM8880xsv/32cdRRR0WLFi1i4MCB8fXXX2e9Hbh9+/axZs2azACr/Pz8OPjggyMvL6/cNwNPnjw5WrVqlXlz7XHHHRetWrXKGvS4bNmyWLp06caeng0UH/dBBx0U22+/fda8UaNGxQknnBDnnHNONG/ePHr27BkzZ87cYLmNUfwm7TVr1sRhhx0Wu+++ewwePDjq1KkT+fn5kZ+fH+PHj49Zs2bFbrvtFr/+9a/j6quvrtC2zznnnOjXr1/0798/2rZtGzVr1sy8sbQ0F154Yey9997RpUuX6NChQzRq1Ch69uy5UcfUs2fPuP766+Oaa66Jli1bxi233BKjRo3KehPwyJEj44knnojGjRtn3lS/voKCgnjsscfi008/jTZt2sQxxxwThx56aPz5z3/eqPJURJcuXeKhhx6Kxx9/PNq0aRP7779/XHvttdGkSZOI+HZw5gMPPBDLly+PNm3axEknnZR5C261atUiIuLnP/95/PrXv44zzzwz9tprr3j++efjoosuytrP0UcfHV27do1DDjkkGjRoEPfcc0+pZdrcdXHChAnRpk2bOP7442PXXXeNoUOHZgZ156qd3VSb4147+eSTo3nz5tG6deto0KBB5g2xf/jDH6J169bRpk2bePfdd+ORRx4pdeDeHXfcEZ999lnsvffe0a9fvxg0aFBstdVWGyx3ySWXxPjx42OPPfaIu+66K+65557MW1grUo9PPPHE6N+/f2ZA3I477rjB2+svvfTSePfdd2OnnXaKBg0alHrcFbm3ylOnTp2YOHFidOzYMVq0aBF/+ctf4p577omWLVtu0vZKM2rUqNhnn33iiCOOiLZt20ZKKR555JGst+Hm5eXF8ccfH6+88kq5g+DKa09LU1BQEOedd1706dMnDjjggCgsLIx77703M79Lly5x0UUXxdChQ6NNmzbx5ZdfbjCgbMiQIVGpUqXYddddo0GDBpv8POrdu3dmX/vss08sWbIkTjvttKxlvmu/oyR5eXnx97//PerWrRsHH3xwdOrUKXbccces81DR9qt///5x3XXXxU033RQtW7aMI444It56662IiNhzzz3jj3/8Y4wYMSJ22223GDt2bFx55ZUVKuOmtAt169aN3XffPRo0aJAZKHjwwQfH2rVryw1Prq9BgwYxevTo+Nvf/ha77rprXHXVVRu82XrbbbeNSy65JM4///xo2LBhqWHUdu3axa9+9avo3bt3NGjQIP7whz9UqAwV7XPl5+fHgAEDYs2aNeUOfqxTp07cdtttccABB8Qee+wRTz75ZDz44INRv379Ch1zsYEDB8aqVauyAhNLly7N+nWZ78PGtvOboqL9k6ZNm8a+++4br776arntV3n9kNJUtH996qmnxlFHHRW9e/eO/fbbLz755JOsX2MoKCiI+fPnx9FHHx0777xznHLKKXHGGWfEqaeeupFn5/+rSN+iIs+2irRPm6pZs2bRrl272GWXXcoMyH1XtWvXjqOPPjoKCws3ul8dUbE+ZsS39b979+4lPjO33XbbeOSRR+Kll16KPffcM371q1/FwIEDyx0Yv77KlSvHDTfcELfccktss802mUHbJ510Utx+++0xatSo2H333aN9+/YxevToDb5jfhd//OMfo27dutGuXbvo3r17dOnSpcxflivJxrYRuax/JdnUtqBKlSpxwQUXxB577BEHH3xwVKpUKcaPH79Zy1bROtSxY8eoV69eLFiwIPr06VPmNitSbzp06FDud5Lvsy9Xkf5reb744otYsGBB1rQFCxZkAkERm+/fNwAAAOD7kpdSSj90IQAAAOB/xfDhw+OBBx6IuXPn/tBFAX5kZsyYEQceeGAsWrQodtpppx+6OACQMXDgwPjoo49i8uTJ38v+nn322Tj00EPjvffe2+y/kgS5klKKZs2axemnn17hXzjbVIceemi0bNlyg18bBMrWpEmTuOSSS36wYDUAAABQMZV/6AIAAAAAwP+iSZMmRWFhYTRr1iwWLVoUZ599dhxwwAHCCwD8aHzxxRfx2muvxbhx476X8MLKlSvjo48+iuHDh8exxx4rvMBPxkcffRTjx4+Pf//731m/HLK5ffbZZzFt2rSYNm1a1q/4AeV74403onbt2uX+mhAAAADwwxNgAAAAAIAc+PLLL+O8886LpUuXxpZbbhmdOnWKkSNH/tDFAoCMHj16xEsvvRS/+tWvonPnzjnf3z333BMDBw6MvfbaK+66666c7w82l6222iq23HLLuPXWW6Nu3bo520+rVq3is88+ixEjRkTz5s1zth/4X9SyZct49dVXf+hiAAAAABWQl1JKP3QhAAAAAAAAAAAAAACA/235P3QBAAAAAAAAAAAAAACA/30CDAAAAAAAAAAAAAAAQM4JMAAAAAAAAAAAAAAAADknwAAAAAAAAAAAAAAAAOScAAMAAAAAAAAAAAAAAJBzAgwAAAAAAAAAAAAAAEDOCTAAAAAAAAAAAAAAAAA5J8AAAAAAAAAAAAAAAADknAADAAAAAAAAAAAAAACQcwIMAAAAAAAAAAAAAABAzgkwAAAAAAAAAAAAAAAAOSfAAAAAAAAAAAAAAAAA5JwAAwAAAAAAAAAAAAAAkHMCDAAAAAAAAAAAAAAAQM4JMAAAAAAAAAAAAAAAADknwAAAAAAAAAAAAAAAAOScAAMAAAAAAAAAAAAAAJBzAgwAAAAAAAAAAAAAAEDOCTAAAAAAAAAAAAAAAAA5J8AAAAAAAAAAAAAAAADknAADAAAAAAAAAAAAAACQcwIMAAAAAAAAAAAAAABAzgkwAAAAAAAAAAAAAAAAOSfAAAAAAAAAAAAAAAAA5JwAAwAAAAAAAAAAAAAAkHMCDAAAAAAAAAAAAAAAQM4JMAAAAAAAAAAAAAAAADknwAAAAAAAAAAAAAAAAOScAAMAAAAAAAAAAAAAAJBzAgwAAAAAAAAAAAAAAEDOCTAAAAAAAAAAAAAAAAA5J8AAAAAAAAAAAAAAAADknAADAAAAAAAAAAAAAACQcwIMAAAAAAAAAAAAAABAzgkwAAAAAAAAAAAAAAAAOSfAAAAAAAAAAAAAAAAA5JwAAwAAAAAAAAAAAAAAkHMCDAAAAAAAAAAAAAAAQM4JMAAAAAAAAAAAAAAAADknwAAAAAAAAAAAAAAAAOScAAMAAAAAAAAAAAAAAJBzAgwAAAAAAAAAAAAAAEDOCTAAAAAAAAAAAAAAAAA5J8AAAAAAAAAAAAAAAADknAADAAAAAAAAAAAAAACQcwIMAAAAAAAAAAAAAABAzgkwAAAAAAAAAAAAAAAAOSfAAAAAAAAAAAAAAAAA5JwAAwAAAAAAAAAAAAAAkHMCDAAAAAAAAAAAAAAAQM4JMAAAAAAAAAAAAAAAADknwAAAAAAAAAAAAAAAAOScAAMAAAAAAAAAAAAAAJBzAgwAAAAAAAAAAAAAAEDOCTAAAAAAAAAAAAAAAAA5J8AAAAAAAAAAAAAAAADknAADAAAAAAAAAAAAAACQcwIMAAAAAAAAAAAAAABAzgkwAAAAAAAAAAAAAAAAOSfAAAAAAAAAAAAAAAAA5JwAAwAAAAAAAAAAAAAAkHMCDAAAAAAAAAAAAAAAQM4JMAAAAAAAAAAAAAAAADknwAAAAAAAAAAAAAAAAOScAAMAAAAAAAAAAAAAAJBzAgwAAAAAAAAAAAAAAEDOCTAAAAAAAAAAAAAAAAA5J8AAAAAAAAAAAAAAAADknAADAAAAAAAAAAAAAACQcwIMAAAAAAAAAAAAAABAzgkwAAAAAAAAAAAAAAAAOSfAAAAAAAAAAAAAAAAA5JwAAwAAAAAAAAAAAAAAkHMCDAAAAAAAAAAAAAAAQM4JMAAAAAAAAAAAAAAAADknwAAAAAAAAAAAAAAAAOScAAMAAAAAAAAAAAAAAJBzAgwAAAAAAAAAAAAAAEDOCTAAAAAAAAAAAAAAAAA5J8AAAAAAAAAAAAAAAADknAADAAAAAAAAAAAAAACQcwIMAAAAAAAAAAAAAABAzgkwAAAAAAAAAAAAAAAAOSfAAAAAAAAAAAAAAAAA5JwAAwAAAAAAAAAAAAAAkHMCDAAAAAAAAAAAAAAAQM4JMAAAAAAAAAAAAAAAADknwAAAAAAAAAAAAAAAAOScAAMAAAAAAAAAAAAAAJBzAgwAAAAAAAAAAAAAAEDOCTAAAAAAAAAAAAAAAAA5J8AAAAAAAAAAAAAAAADknAADAAAAAAAAAAAAAACQcwIMAAAAAAAAAAAAAABAzgkwAAAAAAAAAAAAAAAAOSfAAAAAAAAAAAAAAAAA5JwAAwAAAAAAAAAAAAAAkHMCDAAAAAAAAAAAAAAAQM4JMAAAAAAAAAAAAAAAADknwAAAAAAAAAAAAAAAAOScAAMAAAAAAAAAAAAAAJBzAgwAAAAAAAAAAAAAAEDOCTAAAAAAAAAAAAAAAAA5J8AAAAAAAAAAAAAAAADknAADAAAAAAAAAAAAAACQcwIMAAAAAAAAAAAAAABAzgkwAAAAAAAAAAAAAAAAOSfAAAAAAAAAAAAAAAAA5JwAAwAAAAAAAAAAAAAAkHMCDAAAAAAAAAAAAAAAQM4JMAAAAAAAAAAAAAAAADknwAAAAAAAAAAAAAAAAOScAAMAAAAAAAAAAAAAAJBzAgwAAAAAAAAAAAAAAEDOCTAAAAAAAAAAAAAAAAA5J8AAAAAAAAAAAAAAAADknAADAAAAAAAAAAAAAACQcwIMAAAAAAAAAAAAAABAzgkwAAAAAAAAAAAAAAAAOSfAAAAAAAAAAAAAAAAA5JwAAwAAAAAAAAAAAAAAkHMCDAAAAAAAAAAAAAAAQM4JMAAAAAAAAAAAAAAAADknwAAAAAAAAAAAAAAAAOScAAMAAAAAAAAAAAAAAJBzAgwAAAAAAAAAAAAAAEDOCTAAAAAAAAAAAAAAAAA5J8AAAAAAAAAAAAAAAADknAADAAAAAAAAAAAAAACQcwIMAAAAAAAAAAAAAABAzgkwAAAAAAAAAAAAAAAAOSfAAAAAAAAAAAAAAAAA5JwAAwAAAAAAAAAAAAAAkHMCDAAAAAAAAAAAAAAAQM4JMAAAAAAAAAAAAAAAADknwAAAAAAAAAAAAAAAAOScAAMAAAAAAAAAAAAAAJBzAgwAAAAAAAAAAAAAAEDOCTAAAAAAAAAAAAAAAAA5J8AAAAAAAAAAAAAAAADknAADAAAAAAAAAAAAAACQcwIMAAAAAAAAAAAAAABAzgkwAAAAAAAAAAAAAAAAOSfAAAAAAAAAAAAAAAAA5JwAAwAAAAAAAAAAAAAAkHMCDAAAAAAAAAAAAAAAQM4JMAAAAAAAAAAAAAAAADknwAAAAAAAAAAAAAAAAOScAAMAAAAAAAAAAAAAAJBzAgwAAAAAAAAAAAAAAEDOCTAAAAAAAAAAAAAAAAA5J8AAAAAAAAAAAAAAAADknAADAAAAAAAAAAAAAACQcwIMAAAAAAAAAAAAAABAzgkwAAAAAAAAAAAAAAAAOSfAAAAAAAAAAAAAAAAA5JwAAwAAAAAAAAAAAAAAkHMCDAAAAAAAAAAAAAAAQM4JMAAAAAAAAAAAAAAAADknwAAAAAAAAAAAAAAAAOScAAMAAAAAAAAAAAAAAJBzAgwAAAAAAAAAAAAAAEDOCTAAAAAAAAAAAAAAAAA5J8AAAAAAAAAAAAAAAADknAADAAAAAAAAAAAAAACQcwIMAAAAAAAAAAAAAABAzgkwAAAAAAAAAAAAAAAAOSfAAAAAAAAAAAAAAAAA5JwAAwAAAAAAAAAAAAAAkHMCDAAAAAAAAAAAAAAAQM4JMAAAAAAAAAAAAAAAADknwAAAAAAAAAAAAAAAAOScAAMAAAAAAAAAAAAAAJBzAgwAAAAAAAAAAAAAAEDOCTAAAAAAAAAAAAAAAAA5J8AAAAAAAAAAAAAAAADknAADAAAAAAAAAAAAAACQcwIMAAAAAAAAAAAAAABAzgkwAAAAAAAAAAAAAAAAOSfAAAAAAAAAAAAAAAAA5JwAAwAAAAAAAAAAAAAAkHMCDAAAAAAAAAAAAAAAQM4JMAAAAAAAAAAAAAAAADknwAAAAAAAAAAAAAAAAOScAAMAAAAAAAAAAAAAAJBzAgwAAAAAAAAAAAAAAEDOCTAAAAAAAAAAAAAAAAA5J8AAAAAAAAAAAAAAAADknAADAAAAAAAAAAAAAACQcwIMAAAAAAAAAAAAAABAzgkwAAAAAAAAAAAAAAAAOSfAAAAAAAAAAAAAAAAA5JwAAwAAAAAAAAAAAAAAkHMCDAAAAAAAAAAAAAAAQM4JMAAAAAAAAAAAAAAAADknwAAAAAAAAAAAAAAAAOScAAMAAAAAAAAAAAAAAJBzAgwAAAAAAAAAAAAAAEDOCTAAAAAAAAAAAAAAAAA5J8AAAAAAAAAAAAAAAADknAADAAAAAAAAAAAAAACQcwIMAAAAAAAAAAAAAABAzgkwAAAAAAAAAAAAAAAAOSfAAAAAAAAAAAAAAAAA5JwAAwAAAAAAAAAAAAAAkHMCDAAAAAAAAAAAAAAAQM4JMAAAAAAAAAAAAAAAADknwAAAAAAAAAAAAAAAAOScAAMAAAAAAAAAAAAAAJBzAgwAAAAAAAAAAAAAAEDOCTAAAAAAAAAAAAAAAAA5J8AAAAAAAAAAAAAAAADknAADAAAAAAAAAAAAAACQcwIMAAAAAAAAAAAAAABAzgkwAAAAAAAAAAAAAAAAOSfAAAAAAAAAAAAAAAAA5JwAAwAAAAAAAAAAAAAAkHMCDAAAAAAAAAAAAAAAQM4JMAAAAAAAAAAAAAAAADknwAAAAAAAAAAAAAAAAOScAAMAAAAAAAAAAAAAAJBzAgwAAAAAAAAAAAAAAEDOCTAAAAAAAAAAAAAAAAA5J8AAAAAAAAAAAAAAAADknAADAAAAAAAAAAAAAACQcwIMAAAAAAAAAAAAAABAzgkwAAAAAAAAAAAAAAAAOSfAAAAAAAAAAAAAAAAA5JwAAwAAAAAAAAAAAAAAkHMCDAAAAAAAAAAAAAAAQM4JMAAAAAAAAAAAAAAAADknwAAAAAAAAAAAAAAAAOScAAMAAAAAAAAAAAAAAJBzAgwAAAAAAAAAAAAAAEDOCTAAAAAAAAAAAAAAAAA5J8AAAAAAAAAAAAAAAADknAADAAAAAAAAAAAAAACQcwIMAAAAAAAAAAAAAABAzgkwAAAAAAAAAAAAAAAAOSfAAAAAAAAAAAAAAAAA5JwAAwAAAAAAAAAAAAAAkHMCDAAAAAAAAAAAAAAAQM4JMAAAAAAAAAAAAAAAADknwAAAAAAAAAAAAAAAAOScAAMAAAAAAAAAAAAAAJBzAgwAAAAAAAAAAAAAAEDOCTAAAAAAAAAAAAAAAAA5J8AAAAAAAAAAAAAAAADknAADAAAAAAAAAAAAAACQcwIMAAAAAAAAAAAAAABAzgkwAAAAAAAAAAAAAAAAOSfAAAAAAAAAAAAAAAAA5JwAAwAAAAAAAAAAAAAAkHMCDAAAAAAAAAAAAAAAQM4JMAAAAAAAAAAAAAAAADknwAAAAAAAAAAAAAAAAOScAAMAAAAAAAAAAAAAAJBzAgwAAAAAAAAAAAAAAEDOCTAAAAAAAAAAAAAAAAA5J8AAAAAAAAAAAAAAAADknAADAAAAAAAAAAAAAACQcwIMAAAAAAAAAAAAAABAzgkwAAAAAAAAAAAAAAAAOSfAAAAAAAAAAAAAAAAA5JwAAwAAAAAAAAAAAAAAkHMCDAAAAAAAAAAAAAAAQM4JMAAAAAAAAAAAAAAAADknwAAAAAAAAAAAAAAAAOScAAMAAAAAAAAAAAAAAJBzAgwAAAAAAAAAAAAAAEDOCTAAAAAAAAAAAAAAAAA5J8AAAAAAAAAAAAAAAADknAADAAAAAAAAAAAAAACQcwIMAAAAAAAAAAAAAABAzgkwAAAAAAAAAAAAAAAAOSfAAAAAAAAAAAAAAAAA5JwAAwAAAAAAAAAAAAAAkHMCDAAAAAAAAAAAAAAAQM4JMAAAAAAAAAAAAAAAADknwAAAAAAAAAAAAAAAAOScAAMAAAAAAAAAAAAAAJBzAgwAAAAAAAAAAAAAAEDOCTAAAAAAAAAAAAAAAAA5J8AAAAAAAAAAAAAAAADknAADAAAAAAAAAAAAAACQcwIMAAAAAAAAAAAAAABAzgkwAAAAAAAAAAAAAAAAOSfAAAAAAAAAAAAAAAAA5JwAAwAAAAAAAAAAAAAAkHMCDAAAAAAAAAAAAAAAQM4JMAAAAAAAAAAAAAAAADknwAAAAAAAAAAAAAAAAOScAAMAAAAAAAAAAAAAAJBzAgwAAADwf8S7774beXl5MXfu3IiImDZtWuTl5cXnn3/+g5bru8jLy4sHHnjghy4G/8f8mOrd8OHDY6+99srpPgYMGBA9e/b8QcvwU/BjqhdleeCBB6Jp06ZRqVKlGDx48A9dnHJtzLPqf+G5tr7/xWd3Ra1/7BVRXnu1uYwePTrq1KmT8/382G3KNdochg0bFltuuWXcc889cfnll8eoUaNyti/XumTr32sdOnTIeqasWLEijj766KhVq1amzSppWlFRUVx33XU5K1dFVaRsP5Xn/A9p/Xrwv6wix7oxdean1p/+Kd4P/5f6UAAAAPBTIMAAAADA/3kDBgyIvLy8uOqqq7KmP/DAA5GXl/e9lGHSpEmx//77R+3ataNmzZrRsmXLzT74o3HjxrFs2bLYbbfdNut2S1J8TvPy8mKLLbaIHXbYIYYOHRpff/31Zt3PsmXLolu3bpt1m6VZvXp1nHfeebH77rtHjRo1YptttokTTjgh/vWvf230tvLy8uLdd9/dYHqXLl2iUqVKMXPmzM1Q4h+P4gGOxX/q168fhx12WMyZM+eHLtoGistalu+z3v0UDBkyJKZOnfpDF+MH91OpF6eeemocc8wx8d5778Vll132QxenXO3atYtly5ZF7dq1N+uyP1Xf1zF+X4NQ33///ahSpcpm65tcf/31MXr06M2yrR/S008/fZXglAAAUJBJREFUHUcccUQ0aNAgqlWrFjvttFP07t07nnnmmR+6aN+7kga4P/roo/HII4/EqFGjYsKECXHEEUfkbP+9e/eOhQsXZj7ncpDx+mGJ0vZVVFQU06ZNy0kZNtXEiROzniljxoyJZ599Np5//vlMm1XStJkzZ8Ypp5ySs3JVtC37IcoW8eMeUL25wyX/F/1U+oZlKa0d+l84NgAAAOCHJcAAAAAAEVGtWrUYMWJEfPbZZ9/7vqdOnRq9e/eOo48+Ol566aWYNWtWXHHFFbF69erNup9KlSpFo0aNonLlypttm6tWrSp1XteuXWPZsmXx9ttvx7XXXhu33HJLDBs2bLPtOyKiUaNGUbVq1c26zdKsWLEiZs+eHRdddFHMnj07Jk6cGAsWLIif//znm2X7S5cujeeffz7OPPPMuPPOOzfLNjdFWdf0u3ryySdj2bJl8dhjj8Xy5cujW7dumzxgq6RyrlmzJtauXfsdS1m+77Pe/RQUFhZG/fr1f+hi/GCK6+JPoV4sX748Pvzww+jSpUtss802UbNmzQ2W+b7uo4qqUqVKNGrUqEKBwo1ZNpdy2Y6Wd4w/tutX3rkYPXp09OrVK/7zn//Eiy+++J33V7t27R/F2/K/Sx246aab4tBDD4369evHvffeGwsWLIhJkyZFu3bt4te//vVmLOVP10svvRT77rtvPP744zFnzpxo0KDBd9peaddr9erVUb169dhqq62+0/b/L6hXr17WM2Xx4sXRokWL2G233TJtVknTGjRoEAUFBT9gyUsv74+lbPx0/RT6hpvqf/nYAAAAgO+HAAMAAABERKdOnaJRo0Zx5ZVXlrnchAkTomXLllG1atUoKiqKkSNHZs0vKiqK3//+93HiiSdGzZo1Y/vtt49bb721zG0++OCDccABB8S5554bzZs3j5133jl69uwZN954Y2aZ4jcf3nLLLdG4ceMoKCiIXr16xRdffJFZZu3atXHppZfGdtttF1WrVo299torpkyZkplf/Gb5uXPnllqW5557Lg466KCoXr16NG7cOAYNGhRfffVV1vFddtllccIJJ0StWrXKfCtp1apVo1GjRtG4cePo2bNndOrUKZ544oms8l555ZWxww47RPXq1WPPPfeM+++/PzNvu+22i5tvvjlrm3PmzIn8/PxYsmRJRHz7SwYPPPBAZv57770XvXr1ijp16kS9evWiR48emV86eP311yM/Pz8++uijiIj49NNPIz8/P4477rjM+pdffnkceOCBJR5P7dq144knnohevXpF8+bNY//9948///nPMWvWrFi6dGmp56GiRo0aFUcccUScdtppcc8998R///vfrPkdOnSIs846KwYPHhx169aNhg0bxm233RZfffVV/PKXv4yaNWtG06ZN49FHH81ab/r06bHvvvtG1apVY+utt47zzz8/vvnmm6ztnnnmmTF48ODYcssto0uXLpnz1a1btygsLIyGDRtGv3794uOPP86sd//998fuu+8e1atXj/r160enTp2y6kpJ6tevH40aNYrWrVvHNddcEx988EFmwOqm1L3iNxVPnjw5dt1116hatWosXbo0PvvsszjhhBOibt26UVBQEN26dYu33nors60lS5ZE9+7do27dulGjRo1o2bJlPPLIIxW+VuvWu1WrVsWZZ54ZW2+9dVSrVi2aNGlSZjsyc+bM6Ny5c2y55ZZRu3btaN++fcyePbvM/U2bNi323XffqFGjRtSpUycOOOCAzD1Q7O67746ioqKoXbt2HHfccfHll19m5q1cuTIGDRoUW221VVSrVi0OPPDADX7l44033ogjjjgiatWqFTVr1oyDDjooFi9eXOoxNGjQIEaMGBERG76ZdcCAAdGzZ8+45pprYuutt4769evHGWeckRXKWrZsWfzsZz+L6tWrxw477BDjxo2r0Jt+b7/99mjRokVUq1Ytdtlll7jpppsy80488cTYY489YuXKlRHx7bVp1apVnHDCCRHx/9vA8ePHR7t27aJatWqx2267xfTp07P2UV7dL+2e2Zj2qKLnaeXKlXHeeedF48aNo2rVqtG0adO44447KlzWdU2bNi0zuLRjx46Rl5cX06ZN2+T7qHi9hx56KJo3bx4FBQVxzDHHxIoVK2LMmDFRVFQUdevWjUGDBsWaNWtKLNPChQsjLy8v5s+fnzX92muvjZ122ilT7nXfTl3W/VvSm6w3x3P7vPPOi5133jkKCgpixx13jIsuuijrOhXfA7fffnvssMMOUa1atbjrrruifv36mfpYrGfPntGvX78Sz0fEtwOzW7VqFdWqVYvWrVtv8Es16x9jaddv5cqVMWTIkNh2222jRo0asd9++23wxvYZM2ZEhw4doqCgIOrWrRtdunSJzz77LAYMGBDTp0+P66+/PvPLOcV1d1OfKSVJKcWoUaOiX79+0adPn6y6XZry6nzxfVVsypQpceCBB0adOnWifv36ccQRR2S1bcXtwsSJE+OQQw6JgoKC2HPPPeOFF17I2u/o0aNj++23j4KCgjjyyCPjk08+yZpfUh2I+Dac2KNHjygsLIxatWpFr1694oMPPij1+JYuXRqDBw+OwYMHx5gxY6Jjx47RpEmT2GOPPeLss8+Ol19+OWv571q/hw8fnvULScV/in/ForzzV5KyrtH6v8hU/KdDhw5lbnNdeXl5cfvtt8eRRx4ZBQUF0axZs5g8eXJm/po1a2LgwIGZ/mXz5s3j+uuvz9pGcT254oorYptttonmzZtnynbvvfdG+/bto1q1ajF27NisX0UYPXp0XHLJJfHKK69knauS+tiff/55pp3dFKXta33fRz9kzZo18Zvf/CZTD4YOHRoppaxl1v2lgw4dOsTIkSPjmWeeyVzfkqZFbPiW/88//zxOPfXUaNiwYeY5/dBDD0VEyW+Cv+6666KoqKjEcpfVlq1f9oqUbV3F1/y+++7L9F/btGkTCxcujJkzZ0br1q2jsLAwunXrlvnuUdI2DjnkkIiIqFu3buTl5cWAAQMiomJ9t3X9+c9/zvolm+JfEvzLX/6SmdapU6e48MILI+LbwEaPHj2iYcOGUVhYGG3atIknn3wy65wsWbIkfv3rX2fOXbHSnh3F1q5dG0OHDo169epFo0aNYvjw4aWWuzQVedYMGjSozP18/vnncdJJJ0WDBg2iVq1a0bFjx3jllVdK3ecxxxwTZ555Zubz4MGDs/ooq1atiho1amSdp/KOdf2+4fvvvx/HH3981KtXL2rUqBGtW7feILxXVp++JGVdj/LqUXGfYurUqdG6desoKCiIdu3axYIFCyKi7HZo3WOryLO0Ivdvef+eUVI/b+7cuVn3dkW/53311VdRq1atzL8/FHvggQeiRo0apZ73tWvXxh/+8Ido2rRpVK1aNbbffvu44oorSlwWAAAAKJsAAwAAAMS3v07w+9//Pv70pz/F+++/X+Iys2bNil69esVxxx0Xr732WgwfPjwuuuiiDQYTjRw5MjPo8PTTT4/TTjstMwigJI0aNYo33ngjXn/99TLLuGjRorjvvvviwQcfjClTpmS2X+z666+PkSNHxjXXXBOvvvpqdOnSJX7+859nDTgty+LFi6Nr165x9NFHx6uvvhr33ntvPPfcc1kDOSIirrnmmthzzz1jzpw5cdFFF1Vo26+//no8//zzUaVKlcy0K6+8Mu666674y1/+Em+88Ub8+te/jl/84hcxffr0yM/Pj+OPPz7GjRuXtZ2xY8fGAQccEE2aNNlgH6tXr44uXbpEzZo149lnn40ZM2ZEYWFhdO3aNVatWhUtW7aM+vXrZwYrP/vss1mfI74dLLMxg+i++OKLyMvLy3rbc4cOHTKDjyqqeBDnL37xi9hll12iadOmGwymiIgYM2ZMbLnllvHSSy/FWWedFaeddloce+yx0a5du5g9e3Ycdthh0a9fv1ixYkVERPzzn/+Mww8/PNq0aROvvPJK3HzzzXHHHXfE5ZdfvsF2q1SpEjNmzIi//OUv8fnnn0fHjh2jVatW8fLLL8eUKVPigw8+iF69ekXEt4PPjz/++DjxxBNj3rx5MW3atDjqqKM2GMxWlurVq0fEt4OBvkvdW7FiRYwYMSJuv/32eOONN2KrrbaKAQMGxMsvvxyTJ0+OF154IVJKcfjhh2cGHJ9xxhmxcuXKeOaZZ+K1116LESNGRGFhYYXLvq4bbrghJk+eHPfdd18sWLAgxo4dW+pAuoiIL7/8Mvr37x/PPfdc/OMf/4hmzZrF4YcfXuogmW+++SZ69uwZ7du3j1dffTVeeOGFOOWUU7IGki1evDgeeOCBeOihh+Khhx6K6dOnx1VXXZWZP3To0JgwYUKMGTMmZs+eHU2bNo0uXbrEp59+GhHf1pODDz44qlatGk899VTMmjUrTjzxxKyBYsWeeuqp6Ny5c1xxxRVx3nnnlXqcTz/9dCxevDiefvrpGDNmTIwePTqrrTzhhBPiX//6V0ybNi0mTJgQt956a3z44Yelbi/i2/v/4osvjiuuuCLmzZsXv//97+Oiiy6KMWPGRMS31+Krr76K888/PyIifve738Xnn38ef/7zn7O2c+6558Y555wTc+bMibZt20b37t0zg5HLq/vF1r9n1ldee7Qx5+mee+6JG264IebNmxe33HJLpq5WtKzF1h2QNmHChFi2bFm0a9cuIjbtPipe74Ybbojx48fHlClTYtq0aXHkkUfGI488Eo888kjcfffdccstt5TYnkVE7LzzztG6desYO3bsBte6T58+Ja6zMffv5npu16xZM0aPHh1vvvlmXH/99XHbbbfFtddem7WNRYsWxYQJE2LixIkxd+7cOPbYY2PNmjVZA6s//PDDePjhh+PEE08ssbzLly+PI444InbdddeYNWtWDB8+PIYMGVLisusq6fqdeeaZ8cILL8T48ePj1VdfjWOPPTa6du2a6RPMnTs3Dj300Nh1113jhRdeiOeeey66d+8ea9asieuvvz7atm0bJ598cixbtiyWLVsWjRs33uRnSmmefvrpWLFiRXTq1Cl+8YtfxPjx48sMwm1snY/4doDib37zm3j55Zdj6tSpkZ+fH0ceeeQGv1Lxu9/9LoYMGRJz586NnXfeOY4//vhMG/jiiy/GwIED48wzz4y5c+fGIYccssExR2xYB9auXRs9evSITz/9NKZPnx5PPPFEvP3229G7d+9SyzthwoRYvXp1DB06tMT567b9m6N+DxkyJHONly1bFtdcc00UFBRE69atN+r8FSvvGjVu3Dhrf3PmzIn69evHwQcfXOo5Kckll1wSvXr1ildffTUOP/zw6Nu3b+aZVhyC/dvf/hZvvvlmXHzxxfHb3/427rvvvqxtTJ06NRYsWBBPPPFEZoB8RMT5558fZ599dsybN2+DAE7v3r3jnHPOiZYtW2aOoazr+V1UdF+57odEfFuHRo8eHXfeeWc899xz8emnn8akSZNKXX7ixIlx8sknR9u2bWPZsmUxceLEEqetb+3atdGtW7eYMWNG/PWvf40333wzrrrqqqhUqVLZJ6sUpbVlFSlvRQ0bNiwuvPDCmD17dlSuXDn69OkTQ4cOjeuvvz6effbZWLRoUVx88cUlrtu4ceOYMGFCREQsWLAgli1blgnblNd3W1/79u3jzTffzIQlpk+fHltuuWUmQLN69ep44YUXMt9zli9fHocffnhMnTo15syZE127do3u3btnQtkTJ06M7bbbLi699NLMuYso+9lRbMyYMVGjRo148cUX4w9/+ENceumlWSH28mzMs6as/Rx77LHx4YcfxqOPPhqzZs2KvffeOw499NAyz+G6gaP1z+HMmTNj9erVmb7Txh7r8uXLo3379vHPf/4zJk+eHK+88koMHTo0qz0tr0+/vvKuR0Xr0e9+97sYOXJkvPzyy1G5cuVMP2Vj27yynqUV8V3/PSOi4v3EGjVqxHHHHRejRo3Kmj5q1Kg45phjSvyVsoiICy64IK666qq46KKL4s0334xx48ZFw4YNK1w+AAAAYB0JAAAA/o/r379/6tGjR0oppf333z+deOKJKaWUJk2alNb96tynT5/UuXPnrHXPPffctOuuu2Y+N2nSJP3iF7/IfF67dm3aaqut0s0331zq/pcvX54OP/zwFBGpSZMmqXfv3umOO+5IX3/9dWaZYcOGpUqVKqX3338/M+3RRx9N+fn5admyZSmllLbZZpt0xRVXZG27TZs26fTTT08ppfTOO++kiEhz5sxJKaX09NNPp4hIn332WUoppYEDB6ZTTjkla/1nn3025efnp//+97+Z4+vZs2epx1Ksf//+qVKlSqlGjRqpatWqKSJSfn5+uv/++1NKKX399depoKAgPf/881nrDRw4MB1//PEppZTmzJmT8vLy0pIlS1JKKa1ZsyZtu+22WecyItKkSZNSSindfffdqXnz5mnt2rWZ+StXrkzVq1dPjz32WEoppaOOOiqdccYZKaWUBg8enM4999xUt27dNG/evLRq1apUUFCQHn/88XKPL6WU/vvf/6a999479enTJ2t6v3790vnnn1+hbRR7/PHHU4MGDdLq1atTSilde+21qX379lnLtG/fPh144IGZz998802qUaNG6tevX2basmXL0v9r777DrKjvxY9/qCouIBIFbGDo4IKUqEgEDEaiNyYiNkQFRSyoqAELETv3ghrM1Uh8DCKWSMREo8nFKDaIAQIWFgsdQSwhNtRgRZjfHz57fpwt7Fmy35jn3tfreXgeds45c+bMmbYw75mIyObPn59lWZb99Kc/LTdPJk+enBUVFWWbN2/Ojbdbt25573Xddddlhx9+eN6wN954I4uIbPny5dkLL7yQRUS2du3agj5f2WVvw4YN2cCBA7OioqJs/fr1273sTZs2LYuIrKSkJDdsxYoVWURkc+fOzQ177733sp122il74IEHsizLsuLi4uzqq68uaNorsvVyd/7552ff+9738uZxdWzevDlr2LBh9sc//rHCx99///0sIrLZs2dX+PhVV12VNWjQIPv4449zwy6++OLswAMPzLLs6+1LvXr1svvuuy/3+Jdffpntscce2Q033JBlWZaNHTs223fffbMvv/yywvco3UY+9NBDWVFRUXb//feXm4auXbvmPb9ly5bZV199lRt23HHHZSeccEKWZVm2dOnSLCKy5557Lvf4ypUrs4jIfv7zn1c4DVmWZa1bt86mT5+eN+y6667LevXqlft53rx5Wb169bIrrrgiq1u3bvbss8/mHitdDidOnJgbtmnTpmyvvfbKrr/++tz4trXsZ1nF60yWVX97VNV8Wr58eRYR2RNPPFHh/ChkWsvasGFDFhHZM888kxu2vetR6etWrVqVe85ZZ52VNWjQIPvHP/6RGzZgwIDsrLPOqnB6suzr7V3r1q1zP5d+7qVLl2ZZVn5fta31t+xzU+23b7zxxqxHjx65n6+66qqsXr162TvvvJP3vHPOOSc74ogjcj9PmjQp+/a3v13p9uL222/PmjZtmtvuZVmW3Xbbbdvcd1f0/b3++utZnTp1srfeeitv/P3798/Gjh2bZVmWDR48OOvdu3eln7Fv377ZBRdckDdse/cplTnppJOyCy+8MPdz165ds2nTpuV+LrvvKGSZ3/qYriLvvvtuFhHZyy+/nPced9xxR+45r776at4yOHjw4OzII4/MG88JJ5yQNW7cOPdzRcvArFmzsjp16mTr1q0rN+6FCxdWOH1nn3121qhRo7xhv/vd77Kdd9459+ell17Ksqzml+/58+dnO+64YzZjxowKpy3LKp9/1fmOSn322WfZgQcemP3whz/MLT8VadmyZd6+ISKycePG5X7euHFjFhHZn/70p0rHce6552aDBg3K/Tx06NCsWbNm2RdffJEbVvpZ/vu//zvvtdOmTSv3XW+9z9v6taXzIcsq3t5WpZD3Kiv1cUiWZVmLFi1yxwxZ9v/3nVuva2W3GRdccEG5Y9mKhm39/T7++ONZ7dq1K92HVTQ/fv7zn2ctW7bM/Vx2G1DRtqwiVU1bluXv5yvadvzmN7/JIiJ76qmncsMmTJiQtW/fvtL3LbtNz7LCjt3K2rJlS9a0adPst7/9bZZlWbb//vtnEyZMyJo3b55lWZb95S9/yerVq5d98sknlU5L586ds1/84heVfv4sK2zfsfXvK1n29e+jl156aaWvKavQfc223ufZZ5/NGjVqlPf7dJZ9fSx5++23V/i+L730UlarVq3snXfeyT744IOsfv362XXXXZc7Lhs/fnx28MEHV+uzbr3M3H777VnDhg2z999/v8L3r+qYviLb+j4KWY5Kl78nn3wy95yZM2dmEZE7FqlsO1TV+lB2X1rI+lvVv2dUtL4sWrQoi4hszZo1WZZV7zhxwYIFWZ06dbK33347y7Is+/vf/57VrVu30t+7Pv7442yHHXbIpkyZUuHjAAAAQPW4AwMAAABs5frrr4+77747li5dWu6xpUuXRu/evfOG9e7dO1auXJl31ckuXbrk/l6rVq1o3rx57sriRxxxRBQVFUVRUVF07tw5Ir6++t/MmTNj1apVMW7cuCgqKorRo0fHAQcckLuSfkTEPvvsE3vuuWfu5169esWWLVti+fLl8fHHH8fbb79d4fRV9Fkqsnjx4rjrrrty01dUVBQDBgyILVu2xJo1a3LPK70qb1UOPfTQKCkpiQULFsTQoUPjtNNOi0GDBkXE11cp/vTTT+P73/9+3vvdc889sXr16oiI2H///aNjx465uzDMmTMn3nnnnTjuuOMqnf5Vq1ZFw4YNc+Pbdddd4/PPP8+Nc+sra86ZMye+973vRZ8+fWL27Nm5q2qWnYcV2bRpUxx//PGRZVncdttteY/dc889MWHChILmUak777wzTjjhhKhbt25ERAwePDjmzp2bm+5SWy9bderUiaZNm0ZxcXFuWOnVH0uXt6VLl0avXr3yrtjcu3fv2LhxY96dRnr06JH3PosXL45nnnkm77vp0KFDRHx9ZdCuXbtG//79o7i4OI477riYMmVKbNiwocrPefDBB0dRUVE0adIkFi9eHDNmzIhmzZr9U8te/fr18+bL0qVLo27dunHggQfmhjVt2jTat2+fWxdGjRoV48ePj969e8dVV10VL730UpXTXplhw4ZFSUlJtG/fPkaNGhWzZs3a5vP//ve/x4gRI6Jt27bRuHHjaNSoUWzcuDF3xduydt111xg2bFgMGDAgjjrqqLj55ptzV8Et1apVq7yrhLZo0SK3DKxevbrccl2vXr044IADcvOjpKQkDjnkkKhXr16l071gwYI47rjj4t577y3oatOdO3fOu2Ly1tO0fPnyqFu3bnTv3j33eJs2baJJkyaVju+TTz6J1atXx/Dhw/OWk/Hjx+etJ7169YoxY8bEddddF6NHj47vfve75cbVq1ev3N/r1q0bPXv2zM2Lqpb9UmXXmbIK2R5VNZ9KSkqiTp060bdv30rfo5BpLcT2rEcREQ0aNIjWrVvnfm7WrFm0atUq70q3zZo12+bdNU488cRYu3Zt/PWvf42Ir+++0L1799xnKas6629N7LcjImbMmBG9e/eO5s2bR1FRUYwbN67cOtuyZcvYbbfd8oaNGDEiZs2aFW+99VZERNx1110xbNiwvG1y2ent0qVL7LjjjrlhWy+vlSn7/b388suxefPmaNeuXd7yMWfOnNyyUXrV5urY3n1KRT788MN46KGH4uSTT84NO/nkk2Pq1KmVvmZ7lvmVK1fG4MGD49vf/nY0atQod2X6st/f1vOvRYsWEZG/L916XYio+HspuwwsXbo09t5777wrvnfq1Cl22WWXbR6blV0+BgwYECUlJTFz5sz45JNPcstuTS3fEV/Pj6OPPjrGjBmTd0eLQudfqep8R6effnr84x//iOnTp0ft2tX7r6qtP9POO+8cjRo1yvtMkydPjh49esRuu+0WRUVF8atf/arcNBcXF+fdGaxUoce5/y5SH4d89NFH8be//S1vHSjdd9a0kpKS2GuvvaJdu3Y1Pu5Utl4WS4/Dyx6bV3WHqbIKOXYrq1atWrnfaT788MNYsmRJjBw5Mr744otYtmxZzJkzJ77zne9EgwYNIuLruwGMGTMmOnbsGLvssksUFRXF0qVLK10OShWy79h6nkTkH9sUotB9zbbeZ/HixbFx48Zo2rRp3vZozZo1le4v9ttvv9h1111jzpw58eyzz0a3bt3ihz/8Ye5ufRXdqa86n7WkpCS6desWu+66a6WffVvH9JWNs7LvozrL0bb2gdXxz4ynJv49I6J6x4kHHHBAdO7cOXc3t1//+tfRsmXLSu8KtHTp0vjiiy+qffwEAAAAVKzuNz0BAAAA8O+kT58+MWDAgBg7dmwMGzZsu8ZR9iTgWrVqxZYtWyIi4o477ojPPvuswue1bt06WrduHWeccUZcfvnl0a5du5gxY0acdtpp2zUd1bVx48Y466yzYtSoUeUe22effXJ/33nnnQsa38477xxt2rSJiK9P0O/atWtMnTo1hg8fHhs3boyIiJkzZ+ZFGRERO+ywQ+7vQ4YMienTp8dll10W06dPjx/84AfRtGnTSqe/R48ecd9995V7rPSEwn79+sWFF14YK1eujCVLlsR3v/vdWLZsWcyePTs2bNgQPXv2zJ3YU5nSeOH111+Pp59+Oho1alTQ/KjMBx98EL///e9j06ZNeTHE5s2b484774z//M//zA2raNnaeljpiT6ly1uhyn6nGzdujKOOOiquv/76cs9t0aJF1KlTJ5544omYN29ezJo1K37xi1/E5ZdfHgsWLIh999230veZMWNGdOrUKZo2bRq77LJL3vtt77K30047VXoycGXOOOOMGDBgQMycOTNmzZoVEyZMiEmTJsX5559frfFERHTv3j3WrFkTf/rTn+LJJ5+M448/Pg477LD43e9+V+Hzhw4dGu+//37cfPPN0bJly9hhhx2iV69e8eWXX1b6HtOmTYtRo0bFY489FjNmzIhx48bFE088EQcddFBEbHubU4iddtqpyue0bt06mjZtGnfeeWf8x3/8xzZjh5qYprJKtxlTpkwpdyLx1gHAli1bYu7cuVGnTp1YtWrVdr3Ptpb9UlVtBwvZHkVsez5V9b0UOq2F2J71KKLqbVLpsG19982bN4/vfe97MX369DjooINi+vTpcc4551T6/Jpcf7f1OUqnef78+TFkyJC45pprYsCAAdG4ceO4//77Y9KkSXmvqWiZ6NatW3Tt2jXuueeeOPzww+PVV1+NmTNnbvd0Vqbs97dx48aoU6dOvPDCC3nrR0Tk4pJC1vvtVchxwvTp0+Pzzz/PW5+zLIstW7bEihUrKjyBeXuW+aOOOipatmwZU6ZMiT322CO2bNkS++23X7ltbop96fZo27ZtfPTRR7F+/fpo3rx5RHz9nbVp0yYXOVZXVevkJ598Ej/60Y+iV69ece211+Y9t9D5V6rQ72j8+PHx+OOPx8KFC/NO1q2Jz3T//ffHmDFjYtKkSdGrV69o2LBh3HjjjbFgwYK811T2fW3P91gaYGRZlhu2adOmao9ne/wrjkP+VaraLtWuXTtvHkf86+ZzZSradpQd9s8c/1RHv3794le/+lXu5PtGjRrlooY5c+bkBZFjxoyJJ554In72s59FmzZtYqeddopjjz22yuWgkH1HTR8Dbs/7bNy4MVq0aJEL17e29e8gZV9fOr922GGH6NevX3Tp0iW++OKLeOWVV2LevHkxZsyYgqehrBTzrqb25TWxD6xqPDWx/hayra3uceIZZ5wRkydPjssuuyymTZsWp512WqXHxCmPnQAAAOD/IndgAAAAgDImTpwYf/zjH2P+/Pl5wzt27Bhz587NGzZ37txo165duRMEK7PnnntGmzZtok2bNtGyZctKn9eqVato0KBBfPLJJ7lh69ati7fffjv381//+teoXbt2tG/fPho1ahR77LFHhdPXqVOngqate/fusWTJktz0bf2noivUVkft2rXjpz/9aYwbNy4+++yz6NSpU+ywww6xbt26cu+19ZWKTzrppHjllVfihRdeiN/97ncxZMiQbU7/ypUrY/fddy83zsaNG0fE11dEbdKkSYwfPz7233//KCoqin79+sWcOXNi9uzZ5a6qWVZpvLBy5cp48sknK40pquO+++6LvfbaKxYvXhwlJSW5P5MmTYq77ror7yrK1dWxY8eYP39+3kkec+fOjYYNG8Zee+1V6eu6d+8er776arRq1arcvCw9sa9WrVrRu3fvuOaaa2LRokVRv379+P3vf7/N6dl7772jdevW5U4cqsllr2PHjvHVV1/lnaj4/vvvx/Lly/PWhb333jvOPvvseOihh2L06NExZcqUar3P1ho1ahQnnHBCTJkyJWbMmBEPPvhgfPDBBxU+d+7cuTFq1Kg48sgjo3PnzrHDDjvEe++9V+V7dOvWLcaOHRvz5s2L/fbbL3dnkqq0bt066tevn7dt2LRpUzz33HO5+dGlS5d49tlnt3kS0be+9a14+umnY9WqVXH88cf/UycMtm/fPr766qtYtGhRbtiqVau2eRePZs2axR577BGvvfZauWVk62jmxhtvzF1p+LHHHotp06aVG1fplf4jIr766qt44YUXomPHjhFR2LJfiEK2R1UpLi6OLVu25K78W9F71MS0VqTQ9aimDBkyJGbMmBHz58+P1157LU488cRtPr/Q9bcm9tvz5s2Lli1bxuWXXx49e/aMtm3bxuuvv17YB4uvT4y76667Ytq0aXHYYYfl7eMqmt6XXnopPv/889ywrZfXQnXr1i02b94c77zzTrllo/Sk+C5dusRTTz1V6Tjq169fbv+zvfuUikydOjVGjx6dt99bvHhxHHLIIXHnnXdW+JrqLvOly+y4ceOif//+0bFjx4LuFlRWx44dy538Xsj30rFjx3jjjTfijTfeyA1bsmRJfPjhh5WuR8cee2zUq1evwgCgovH/s8t3lmVx8sknx5YtW+Lee+/NO2lze+ZfId/Rgw8+GNdee2088MADeXdwqSlz586Ngw8+OEaOHBndunWLNm3aVPuuNNtS0bpRGqZtfYekkpKSJO9VkZTHIY0bN44WLVrkrQOl+86a1qVLl3jzzTdjxYoVFT6+2267xfr16/O2QVXN50Ln4Tel9Dh362ks5NitIn379o0lS5bEb3/729zvNP369Ysnn3wy5s6dm/d7zty5c2PYsGExcODAKC4ujubNm8fatWvLTVvZeVfVvqMm1MS+pnv37rF+/fqoW7duuW3Rt771rUpfV3q3vtLfC2vXrh19+vSJG2+8Mb744ouC7tRXmS5dukRJSUml6+b2jrOy72N7l6Oyamodqmr9LeTfMwrd1lbn97yTTz45Xn/99bjllltiyZIlMXTo0Eqf27Zt29hpp52SrwMAAADwf4WAAQAAAMooLi6OIUOGxC233JI3fPTo0fHUU0/FddddFytWrIi77747br311nJXYqyuq6++Oi655JKYPXt2rFmzJhYtWhSnn356bNq0Kb7//e/nnrfjjjvG0KFDY/HixfHss8/GqFGj4vjjj8+djHjxxRfH9ddfHzNmzIjly5fHZZddFiUlJXHBBRcUNB2XXnppzJs3L84777woKSmJlStXxiOPPBLnnXfeP/X5Sh133HFRp06dmDx5cjRs2DDGjBkTF110Udx9992xevXqePHFF+MXv/hF3H333bnXtGrVKg4++OAYPnx4bN68OX70ox9VOv4hQ4bEt771rfjxj38czz77bKxZsyZmz54do0aNijfffDMi/v+VNe+7777cSTylV9Z86qmn8q5MWtamTZvi2GOPjeeffz7uu+++2Lx5c6xfvz7Wr1+fd7XSU089NcaOHVvwfJk6dWoce+yxsd9+++X9GT58eLz33nvx2GOPFTyuskaOHBlvvPFGnH/++bFs2bJ45JFH4qqrroqf/OQnuStYVuTcc8+NDz74IAYPHhzPPfdcrF69Oh5//PE47bTTYvPmzbFgwYL4r//6r3j++edj3bp18dBDD8W7776bOwm8umpy2Wvbtm38+Mc/jhEjRsRf/vKXWLx4cZx88smx5557xo9//OOIiLjwwgvj8ccfjzVr1sSLL74YzzzzzHZP+0033RS/+c1vYtmyZbFixYr47W9/G82bN6/06q5t27aNe++9N5YuXRoLFiyIIUOGbPNqnmvWrImxY8fG/Pnz4/XXX49Zs2bFypUrC57enXfeOc4555y4+OKL47HHHoslS5bEiBEj4tNPP43hw4dHRMR5550XH3/8cZx44onx/PPPx8qVK+Pee++N5cuX541r9913j6effjqWLVsWgwcPjq+++qqwmVRGhw4d4rDDDoszzzwzFi5cGIsWLYozzzyzyrsAXHPNNTFhwoS45ZZbYsWKFfHyyy/HtGnT4qabboqIiEWLFsWVV14Zd9xxR/Tu3TtuuummuOCCC+K1117LG8/kyZPj97//fSxbtizOPffc2LBhQ5x++ukRUfWyX6hCtkdVadWqVQwdOjROP/30ePjhh3PjeOCBB2p0WitSyHpUk4455pj4xz/+Eeecc04ceuihsccee1T63OqsvzWx327btm2sW7cu7r///li9enXccsstVcZaWzvppJPizTffjClTpuSWs209t1atWjFixIhYsmRJPProo/Gzn/2s4Pcq1a5duxgyZEiceuqp8dBDD8WaNWti4cKFMWHChNwdIMaOHRvPPfdcjBw5Ml566aVYtmxZ3HbbbbkTmVu1ahULFiyItWvXxnvvvRdbtmzZ7n1KWSUlJfHiiy/GGWecUW7fN3jw4Lj77rsr3L5Ud5lv0qRJNG3aNH71q1/FqlWr4umnn46f/OQn1Z6fpXfA+dnPfhYrV66MW2+9taB982GHHZY7pnzxxRdj4cKFceqpp0bfvn2jZ8+eFb5mn332iUmTJsXNN98cQ4cOjWeeeSbWrl0bL774Yu64tDROqInl++qrr44nn3wybr/99ti4cWPuuOazzz7brvlX1Xf0yiuvxKmnnhqXXnppdO7cOfd+NXlCb9u2beP555+Pxx9/PFasWBFXXHFFPPfcczU2/latWsWaNWuipKQk3nvvvfjiiy9ip512ioMOOigmTpwYS5cujTlz5sS4cePKvbZDhw7V2n5U9F5lpT4OiYi44IILYuLEifHwww/HsmXLYuTIkfHhhx8W/DkK1bdv3+jTp08MGjQonnjiidydJUrXt379+sW7774bN9xwQ6xevTomT54cf/rTn7Y5zoq2Zf9OWrZsGbVq1Yr/+Z//iXfffTc2btxY0LFbRbp06RJNmjSJ6dOn5wUMDz/8cLmT79u2bRsPPfRQLh476aSTys2bVq1axZ///Od46623cvuGqvYdNaEm9jWHHXZY9OrVK44++uiYNWtWrF27NubNmxeXX355PP/885W+rl+/frFkyZJ49dVX47vf/W5u2H333Rc9e/b8pwLRwYMHR/PmzePoo4+OuXPnxmuvvRYPPvhguYsmVMe2vo/tXY7KKmQ7VIhC1t+q/j2j9GIHV199daxcuTJmzpxZ7o5Y1f09r0mTJnHMMcfExRdfHIcffvg2I5kdd9wxLr300rjkkkvinnvuidWrV8df//rXmDp1au45/fv3j1tvvTX386233hr9+/fP/fzWW29Fhw4dYuHChYXNOAAAAPhfTMAAAAAAFbj22mvLncTRvXv3eOCBB+L++++P/fbbL6688sq49tprY9iwYf/Ue/Xt2zdee+21OPXUU6NDhw5xxBFHxPr162PWrFnRvn373PPatGkTxxxzTBx55JFx+OGHR5cuXeKXv/xl7vFRo0bFT37ykxg9enQUFxfHY489Fn/4wx+ibdu2BU1Hly5dYs6cObFixYo45JBDolu3bnHllVdu80TS6qhbt26cd955ccMNN8Qnn3wS1113XVxxxRUxYcKE6NixY/zgBz+ImTNn5l1NPeLrE4EXL14cAwcO3OYJVg0aNIg///nPsc8++8QxxxwTHTt2jOHDh8fnn38ejRo1yj2vb9++sXnz5tyJPaVX1iy9o0Bl3nrrrfjDH/4Qb775Zuy///7RokWL3J958+blnrdu3bq8q0JuywsvvBCLFy+OQYMGlXuscePG0b9//7wTIqprzz33jEcffTQWLlwYXbt2jbPPPjuGDx9e4Ul1Wyu9+uXmzZvj8MMPj+Li4rjwwgtjl112idq1a0ejRo3iz3/+cxx55JHRrl27GDduXEyaNCmOOOKI7ZrOml72pk2bFj169Igf/vCH0atXr8iyLB599NGoV69eRHx9ldtzzz03t9y1a9cub12qjoYNG8YNN9wQPXv2jO985zuxdu3aePTRRys9wWrq1KmxYcOG6N69e5xyyikxatSo2H333Ssdf4MGDWLZsmUxaNCgaNeuXZx55plx7rnnxllnnVXwNE6cODEGDRoUp5xySnTv3j1WrVoVjz/+eDRp0iQiIpo2bRpPP/10bNy4Mfr27Rs9evSIKVOm5ObX1po3bx5PP/10vPzyyzFkyJDtPlH+nnvuiWbNmkWfPn1i4MCBMWLEiGjYsGHsuOOOlb7mjDPOiDvuuCOmTZsWxcXF0bdv37jrrrti3333jc8//zxOPvnkGDZsWBx11FEREXHmmWfGoYceGqecckredE6cODEmTpwYXbt2jb/85S/xhz/8IXc13qqW/UIVuj2qym233RbHHntsjBw5Mjp06BAjRozI3Zmnpqa1MlWtRzWpYcOGcdRRR8XixYu3eaediOqtvzWx3/7Rj34UF110UZx33nmx//77x7x58+KKK64o+PWNGzeOQYMGRVFRURx99NHbfG5RUVH88Y9/jJdffjm6desWl19+eUFX4q/ItGnT4tRTT43Ro0dH+/bt4+ijj47nnnsu9tlnn4j4OnKYNWtWLF68OA444IDo1atXPPLII1G3bt2IiBgzZkzUqVMnOnXqFLvttlusW7duu/cpZU2dOjU6deoUHTp0KPfYwIED45133olHH3203GPVXeZr164d999/f7zwwgux3377xUUXXRQ33nhjtaY1IuKggw6KKVOmxM033xxdu3aNWbNmFfSZa9WqFY888kg0adIk+vTpE4cddlh8+9vfjhkzZmzzdeeff37MmjUr3n333Tj22GOjbdu2ceSRR8aaNWvisccei+Li4oiomeV7zpw5sXHjxjj44IPzjmtmzJixXfOvqu/o+eefj08//TTGjx+f937HHHNMwdNclbPOOiuOOeaYOOGEE+LAAw+M999/P0aOHFlj4x80aFD84Ac/iEMPPTR22223+M1vfhMREXfeeWd89dVX0aNHj7jwwgtj/Pjx5V67fPny+Oijj/7p99pa6uOQiK9jmVNOOSWGDh0avXr1ioYNG8bAgQML/hzV8eCDD8Z3vvOdGDx4cHTq1CkuueSS3D68Y8eO8ctf/jImT54cXbt2jYULF1YZ7FS0Lft3sueee8Y111wTl112WTRr1iwX71Z17FaRWrVqxSGHHBK1atXKnXzfpUuXaNSoUbmT72+66aZo0qRJHHzwwXHUUUfFgAEDonv37nnju/baa2Pt2rXRunXr3JXvq9p3FGLYsGHbvOtdTexratWqFY8++mj06dMnTjvttGjXrl2ceOKJ8frrr0ezZs0qfV1xcXHssssuuTv1RXx94v3Wvztur/r168esWbNi9913jyOPPDKKi4tj4sSJBd8xpyJVfR/bsxyVVch2qBCFrL9V/XtGvXr1csFWly5d4vrrry+3rd2e3/OGDx8eX375ZZWhaUTEFVdcEaNHj44rr7wyOnbsGCeccEK88847ucdXr16dF/S89957eXcB2rRpUyxfvjw+/fTTKt8LAAAA/rerlW19r0YAAADg39LVV18dDz/8cJSUlHzTkwJQ4958883Ye++948knn8y7SmlNWrt2bey7776xaNGi2H///ZO8B1Skf//+0blz53J3dqLmDR48OOrUqRO//vWvv+lJAaACffv2jUMPPTSuvvrqb3pSICIi7r333rjooovi7bffjvr163/TkwMAAAD/ZxR+SQwAAAAAgBpQeseH4uLi+Nvf/haXXHJJtGrVKvr06fNNTxrUmA0bNsTs2bNj9uzZ232XFwrz1VdfxYoVK2L+/PnVukMNAP86H330UaxevTpmzpz5TU8KxKeffhp/+9vfYuLEiXHWWWeJFwAAAOBf7J+/lzgAAAAAQDVs2rQpfvrTn0bnzp1j4MCBsdtuu8Xs2bOjXr163/SkQY3p1q1bDBs2LK6//vpo3779Nz05/6u98sor0bNnz+jcuXOcffbZ3/TkAFCBxo0bx5tvvhlFRUXf9KRA3HDDDdGhQ4do3rx5jB079pueHAAAAPg/p1aWZdk3PREAAAAAAAAAAAAAAMD/bu7AAAAAAAAAAAAAAAAAJCdgAAAAAAAAAAAAAAAAkhMwAAAAAAAAAAAAAAAAyQkYAAAAAAAAAAAAAACA5AQMAAAAAAAAAAAAAABAcgIGAAAAAAAAAAAAAAAgOQEDAAAAAAAAAAAAAACQnIABAAAAAAAAAAAAAABITsAAAAAAAAAAAAAAAAAkJ2AAAAAAAAAAAAAAAACSEzAAAAAAAAAAAAAAAADJCRgAAAAAAAAAAAAAAIDkBAwAAAAAAAAAAAAAAEByAgYAAAAAAAAAAAAAACA5AQMAAAAAAAAAAAAAAJCcgAEAAAAAAAAAAAAAAEhOwAAAAAAAAAAAAAAAACQnYAAAAAAAAAAAAAAAAJITMAAAAAAAAAAAAAAAAMkJGAAAAAAAAAAAAAAAgOQEDAAAAAAAAAAAAAAAQHICBgAAAAAAAAAAAAAAIDkBAwAAAAAAAAAAAAAAkJyAAQAAAAAAAAAAAAAASE7AAAAAAAAAAAAAAAAAJCdgAAAAAAAAAAAAAAAAkhMwAAAAAAAAAAAAAAAAyQkYAAAAAAAAAAAAAACA5AQMAAAAAAAAAAAAAABAcgIGAAAAAAAAAAAAAAAgOQEDAAAAAAAAAAAAAACQnIABAAAAAAAAAAAAAABITsAAAAAAAAAAAAAAAAAkJ2AAAAAAAAAAAAAAAACSEzAAAAAAAAAAAAAAAADJCRgAAAAAAAAAAAAAAIDkBAwAAAAAAAAAAAAAAEByAgYAAAAAAAAAAAAAACA5AQMAAAAAAAAAAAAAAJCcgAEAAAAAAAAAAAAAAEhOwAAAAAAAAAAAAAAAACQnYAAAAAAAAAAAAAAAAJITMAAAAAAAAAAAAAAAAMkJGAAAAAAAAAAAAAAAgOQEDAAAAAAAAAAAAAAAQHICBgAAAAAAAAAAAAAAIDkBAwAAAAAAAAAAAAAAkJyAAQAAAAAAAAAAAAAASE7AAAAAAAAAAAAAAAAAJCdgAAAAAAAAAAAAAAAAkhMwAAAAAAAAAAAAAAAAyQkYAAAAAAAAAAAAAACA5AQMAAAAAAAAAAAAAABAcgIGAAAAAAAAAAAAAAAgOQEDAAAAAAAAAAAAAACQnIABAAAAAAAAAAAAAABITsAAAAAAAAAAAAAAAAAkJ2AAAAAAAAAAAAAAAACSEzAAAAAAAAAAAAAAAADJCRgAAAAAAAAAAAAAAIDkBAwAAAAAAAAAAAAAAEByAgYAAAAAAAAAAAAAACA5AQMAAAAAAAAAAAAAAJCcgAEAAAAAAAAAAAAAAEhOwAAAAAAAAAAAAAAAACQnYAAAAAAAAAAAAAAAAJITMAAAAAAAAAAAAAAAAMkJGAAAAAAAAAAAAAAAgOQEDAAAAAAAAAAAAAAAQHICBgAAAAAAAAAAAAAAIDkBAwAAAAAAAAAAAAAAkJyAAQAAAAAAAAAAAAAASE7AAAAAAAAAAAAAAAAAJCdgAAAAAAAAAAAAAAAAkhMwAAAAAAAAAAAAAAAAyQkYAAAAAAAAAAAAAACA5AQMAAAAAAAAAAAAAABAcgIGAAAAAAAAAAAAAAAgOQEDAAAAAAAAAAAAAACQnIABAAAAAAAAAAAAAABITsAAAAAAAAAAAAAAAAAkJ2AAAAAAAAAAAAAAAACSEzAAAAAAAAAAAAAAAADJCRgAAAAAAAAAAAAAAIDkBAwAAAAAAAAAAAAAAEByAgYAAAAAAAAAAAAAACA5AQMAAAAAAAAAAAAAAJCcgAEAAAAAAAAAAAAAAEhOwAAAAAAAAAAAAAAAACQnYAAAAAAAAAAAAAAAAJITMAAAAAAAAAAAAAAAAMkJGAAAAAAAAAAAAAAAgOQEDAAAAAAAAAAAAAAAQHICBgAAAAAAAAAAAAAAIDkBAwAAAAAAAAAAAAAAkJyAAQAAAAAAAAAAAAAASE7AAAAAAAAAAAAAAAAAJCdgAAAAAAAAAAAAAAAAkhMwAAAAAAAAAAAAAAAAyQkYAAAAAAAAAAAAAACA5AQMAAAAAAAAAAAAAABAcgIGAAAAAAAAAAAAAAAgOQEDAAAAAAAAAAAAAACQnIABAAAAAAAAAAAAAABITsAAAAAAAAAAAAAAAAAkJ2AAAAAAAAAAAAAAAACSEzAAAAAAAAAAAAAAAADJCRgAAAAAAAAAAAAAAIDkBAwAAAAAAAAAAAAAAEByAgYAAAAAAAAAAAAAACA5AQMAAAAAAAAAAAAAAJCcgAEAAAAAAAAAAAAAAEhOwAAAAAAAAAAAAAAAACQnYAAAAAAAAAAAAAAAAJITMAAAAAAAAAAAAAAAAMkJGAAAAAAAAAAAAAAAgOQEDAAAAAAAAAAAAAAAQHICBgAAAAAAAAAAAAAAIDkBAwAAAAAAAAAAAAAAkJyAAQAAAAAAAAAAAAAASE7AAAAAAAAAAAAAAAAAJCdgAAAAAAAAAAAAAAAAkhMwAAAAAAAAAAAAAAAAyQkYAAAAAAAAAAAAAACA5AQMAAAAAAAAAAAAAABAcgIGAAAAAAAAAAAAAAAgOQEDAAAAAAAAAAAAAACQnIABAAAAAAAAAAAAAABITsAAAAAAAAAAAAAAAAAkJ2AAAAAAAAAAAAAAAACSEzAAAAAAAAAAAAAAAADJCRgAAAAAAAAAAAAAAIDkBAwAAAAAAAAAAAAAAEByAgYAAAAAAAAAAAAAACA5AQMAAAAAAAAAAAAAAJCcgAEAAAAAAAAAAAAAAEhOwAAAAAAAAAAAAAAAACQnYAAAAAAAAAAAAAAAAJITMAAAAAAAAAAAAAAAAMkJGAAAAAAAAAAAAAAAgOQEDAAAAAAAAAAAAAAAQHICBgAAAAAAAAAAAAAAIDkBAwAAAAAAAAAAAAAAkJyAAQAAAAAAAAAAAAAASE7AAAAAAAAAAAAAAAAAJCdgAAAAAAAAAAAAAAAAkhMwAAAAAAAAAAAAAAAAyQkYAAAAAAAAAAAAAACA5AQMAAAAAAAAAAAAAABAcgIGAAAAAAAAAAAAAAAgOQEDAAAAAAAAAAAAAACQnIABAAAAAAAAAAAAAABITsAAAAAAAAAAAAAAAAAkJ2AAAAAAAAAAAAAAAACSEzAAAAAAAAAAAAAAAADJCRgAAAAAAAAAAAAAAIDkBAwAAAAAAAAAAAAAAEByAgYAAAAAAAAAAAAAACA5AQMAAAAAAAAAAAAAAJCcgAEAAAAAAAAAAAAAAEhOwAAAAAAAAAAAAAAAACQnYAAAAAAAAAAAAAAAAJITMAAAAAAAAAAAAAAAAMkJGAAAAAAAAAAAAAAAgOQEDAAAAAAAAAAAAAAAQHICBgAAAAAAAAAAAAAAIDkBAwAAAAAAAAAAAAAAkJyAAQAAAAAAAAAAAAAASE7AAAAAAAAAAAAAAAAAJCdgAAAAAAAAAAAAAAAAkhMwAAAAAAAAAAAAAAAAyQkYAAAAAAAAAAAAAACA5AQMAAAAAAAAAAAAAABAcgIGAAAAAAAAAAAAAAAgOQEDAAAAAAAAAAAAAACQnIABAAAAAAAAAAAAAABITsAAAAAAAAAAAAAAAAAkJ2AAAAAAAAAAAAAAAACSEzAAAAAAAAAAAAAAAADJCRgAAAAAAAAAAAAAAIDkBAwAAAAAAAAAAAAAAEByAgYAAAAAAAAAAAAAACA5AQMAAAAAAAAAAAAAAJCcgAEAAAAAAAAAAAAAAEhOwAAAAAAAAAAAAAAAACQnYAAAAAAAAAAAAAAAAJITMAAAAAAAAAAAAAAAAMkJGAAAAAAAAAAAAAAAgOQEDAAAAAAAAAAAAAAAQHICBgAAAAAAAAAAAAAAIDkBAwAAAAAAAAAAAAAAkJyAAQAAAAAAAAAAAAAASE7AAAAAAAAAAAAAAAAAJCdgAAAAAAAAAAAAAAAAkhMwAAAAAAAAAAAAAAAAyQkYAAAAAAAAAAAAAACA5AQMAAAAAAAAAAAAAABAcgIGAAAAAAAAAAAAAAAgOQEDAAAAAAAAAAAAAACQnIABAAAAAAAAAAAAAABITsAAAAAAAAAAAAAAAAAkJ2AAAAAAAAAAAAAAAACSEzAAAAAAAAAAAAAAAADJCRgAAAAAAAAAAAAAAIDkBAwAAAAAAAAAAAAAAEByAgYAAAAAAAAAAAAAACA5AQMAAAAAAAAAAAAAAJCcgAEAAAAAAAAAAAAAAEhOwAAAAAAAAAAAAAAAACQnYAAAAAAAAAAAAAAAAJITMAAAAAAAAAAAAAAAAMkJGAAAAAAAAAAAAAAAgOQEDAAAAAAAAAAAAAAAQHICBgAAAAAAAAAAAAAAIDkBAwAAAAAAAAAAAAAAkJyAAQAAAAAAAAAAAAAASE7AAAAAAAAAAAAAAAAAJCdgAAAAAAAAAAAAAAAAkhMwAAAAAAAAAAAAAAAAyQkYAAAAAAAAAAAAAACA5AQMAAAAAAAAAAAAAABAcgIGAAAAAAAAAAAAAAAgOQEDAAAAAAAAAAAAAACQnIABAAAAAAAAAAAAAABITsAAAAAAAAAAAAAAAAAkJ2AAAAAAAAAAAAAAAACSEzAAAAAAAAAAAAAAAADJCRgAAAAAAAAAAAAAAIDkBAwAAAAAAAAAAAAAAEByAgYAAAAAAAAAAAAAACA5AQMAAAAAAAAAAAAAAJCcgAEAAAAAAAAAAAAAAEhOwAAAAAAAAAAAAAAAACQnYAAAAAAAAAAAAAAAAJITMAAAAAAAAAAAAAAAAMkJGAAAAAAAAAAAAAAAgOQEDAAAAAAAAAAAAAAAQHICBgAAAAAAAAAAAAAAIDkBAwAAAAAAAAAAAAAAkJyAAQAAAAAAAAAAAAAASE7AAAAAAAAAAAAAAAAAJCdgAAAAAAAAAAAAAAAAkhMwAAAAAAAAAAAAAAAAyQkYAAAAAAAAAAAAAACA5AQMAAAAAAAAAAAAAABAcgIGAAAAAAAAAAAAAAAgOQEDAAAAAAAAAAAAAACQnIABAAAAAAAAAAAAAABITsAAAAAAAAAAAAAAAAAkJ2AAAAAAAAAAAAAAAACSEzAAAAAAAAAAAAAAAADJCRgAAAAAAAAAAAAAAIDkBAwAAAAAAAAAAAAAAEByAgYAAAAAAAAAAAAAACA5AQMAAAAAAAAAAAAAAJCcgAEAAAAAAAAAAAAAAEhOwAAAAAAAAAAAAAAAACQnYAAAAAAAAAAAAAAAAJITMAAAAAAAAAAAAAAAAMkJGAAAAAAAAAAAAAAAgOQEDAAAAAAAAAAAAAAAQHICBgAAAAAAAAAAAAAAIDkBAwAAAAAAAAAAAAAAkJyAAQAAAAAAAAAAAAAASE7AAAAAAAAAAAAAAAAAJCdgAAAAAAAAAAAAAAAAkhMwAAAAAAAAAAAAAAAAyQkYAAAAAAAAAAAAAACA5AQMAAAAAAAAAAAAAABAcgIGAAAAAAAAAAAAAAAgOQEDAAAAAAAAAAAAAACQnIABAAAAAAAAAAAAAABITsAAAAAAAAAAAAAAAAAkJ2AAAAAAAAAAAAAAAACSEzAAAAAAAAAAAAAAAADJCRgAAAAAAAAAAAAAAIDkBAwAAAAAAAAAAAAAAEByAgYAAAAAAAAAAAAAACA5AQMAAAAAAAAAAAAAAJCcgAEAAAAAAAAAAAAAAEhOwAAAAAAAAAAAAAAAACQnYAAAAAAAAAAAAAAAAJITMAAAAAAAAAAAAAAAAMkJGAAAAAAAAAAAAAAAgOQEDAAAAAAAAAAAAAAAQHICBgAAAAAAAAAAAAAAIDkBAwAAAAAAAAAAAAAAkJyAAQAAAAAAAAAAAAAASE7AAAAAAAAAAAAAAAAAJCdgAAAAAAAAAAAAAAAAkhMwAAAAAAAAAAAAAAAAyQkYAAAAAAAAAAAAAACA5AQMAAAAAAAAAAAAAABAcgIGAAAAAAAAAAAAAAAgOQEDAAAAAAAAAAAAAACQnIABAAAAAAAAAAAAAABITsAAAAAAAAAAAAAAAAAkJ2AAAAAAAAAAAAAAAACSEzAAAAAAAAAAAAAAAADJCRgAAAAAAAAAAAAAAIDkBAwAAAAAAAAAAAAAAEByAgYAAAAAAAAAAAAAACA5AQMAAAAAAAAAAAAAAJCcgAEAAAAAAAAAAAAAAEhOwAAAAAAAAAAAAAAAACQnYAAAAAAAAAAAAAAAAJITMAAAAAAAAAAAAAAAAMkJGAAAAAAAAAAAAAAAgOQEDAAAAAAAAAAAAAAAQHICBgAAAAAAAAAAAAAAIDkBAwAAAAAAAAAAAAAAkJyAAQAAAAAAAAAAAAAASE7AAAAAAAAAAAAAAAAAJCdgAAAAAAAAAAAAAAAAkhMwAAAAAAAAAAAAAAAAyQkYAAAAAAAAAAAAAACA5AQMAAAAAAAAAAAAAABAcgIGAAAAAAAAAAAAAAAgOQEDAAAAAAAAAAAAAACQnIABAAAAAAAAAAAAAABITsAAAAAAAAAAAAAAAAAkJ2AAAAAAAAAAAAAAAACSEzAAAAAAAAAAAAAAAADJCRgAAAAAAAAAAAAAAIDkBAwAAAAAAAAAAAAAAEByAgYAAAAAAAAAAAAAACA5AQMAAAAAAAAAAAAAAJCcgAEAAAAAAAAAAAAAAEhOwAAAAAAAAAAAAAAAACQnYAAAAAAAAAAAAAAAAJITMAAAAAAAAAAAAAAAAMkJGAAAAAAAAAAAAAAAgOQEDAAAAAAAAAAAAAAAQHICBgAAAAAAAAAAAAAAIDkBAwAAAAAAAAAAAAAAkJyAAQAAAAAAAAAAAAAASE7AAAAAAAAAAAAAAAAAJCdgAAAAAAAAAAAAAAAAkhMwAAAAAAAAAAAAAAAAyQkYAAAAAAAAAAAAAACA5AQMAAAAAAAAAAAAAABAcgIGAAAAAAAAAAAAAAAgOQEDAAAAAAAAAAAAAACQnIABAAAAAAAAAAAAAABITsAAAAAAAAAAAAAAAAAkJ2AAAAAAAAAAAAAAAACSEzAAAAAAAAAAAAAAAADJCRgAAAAAAAAAAAAAAIDkBAwAAAAAAAAAAAAAAEByAgYAAAAAAAAAAAAAACA5AQMAAAAAAAAAAAAAAJCcgAEAAAAAAAAAAAAAAEhOwAAAAAAAAAAAAAAAACQnYAAAAAAAAAAAAAAAAJITMAAAAAAAAAAAAAAAAMkJGAAAAAAAAAAAAAAAgOQEDAAAAAAAAAAAAAAAQHICBgAAAAAAAAAAAAAAIDkBAwAAAAAAAAAAAAAAkJyAAQAAAAAAAAAAAAAASE7AAAAAAAAAAAAAAAAAJCdgAAAAAAAAAAAAAAAAkhMwAAAAAAAAAAAAAAAAyQkYAAAAAAAAAAAAAACA5AQMAAAAAAAAAAAAAABAcgIGAAAAAAAAAAAAAAAgOQEDAAAAAAAAAAAAAACQnIABAAAAAAAAAAAAAABITsAAAAAAAAAAAAAAAAAkJ2AAAAAAAAAAAAAAAACSEzAAAAAAAAAAAAAAAADJCRgAAAAAAAAAAAAAAIDkBAwAAAAAAAAAAAAAAEByAgYAAAAAAAAAAAAAACA5AQMAAAAAAAAAAAAAAJCcgAEAAAAAAAAAAAAAAEhOwAAAAAAAAAAAAAAAACQnYAAAAAAAAAAAAAAAAJITMAAAAAAAAAAAAAAAAMkJGAAAAAAAAAAAAAAAgOQEDAAAAAAAAAAAAAAAQHICBgAAAAAAAAAAAAAAIDkBAwAAAAAAAAAAAAAAkJyAAQAAAAAAAAAAAAAASE7AAAAAAAAAAAAAAAAAJCdgAAAAAAAAAAAAAAAAkhMwAAAAAAAAAAAAAAAAyQkYAAAAAAAAAAAAAACA5AQMAAAAAAAAAAAAAABAcgIGAAAAAAAAAAAAAAAgOQEDAAAAAAAAAAAAAACQnIABAAAAAAAAAAAAAABITsAAAAAAAAAAAAAAAAAkJ2AAAAAAAAAAAAAAAACSEzAAAAAAAAAAAAAAAADJCRgAAAAAAAAAAAAAAIDkBAwAAAAAAAAAAAAAAEByAgYAAAAAAAAAAAAAACA5AQMAAAAAAAAAAAAAAJCcgAEAAAAAAAAAAAAAAEhOwAAAAAAAAAAAAAAAACQnYAAAAAAAAAAAAAAAAJITMAAAAAAAAAAAAAAAAMkJGAAAAAAAAAAAAAAAgOQEDAAAAAAAAAAAAAAAQHICBgAAAAAAAAAAAAAAIDkBAwAAAAAAAAAAAAAAkJyAAQAAAAAAAAAAAAAASE7AAAAAAAAAAAAAAAAAJCdgAAAAAAAAAAAAAAAAkhMwAAAAAAAAAAAAAAAAyQkYAAAAAAAAAAAAAACA5AQMAAAAAAAAAAAAAABAcgIGAAAAAAAAAAAAAAAgOQEDAAAAAAAAAAAAAACQnIABAAAAAAAAAAAAAABITsAAAAAAAAAAAAAAAAAkJ2AAAAAAAAAAAAAAAACSEzAAAAAAAAAAAAAAAADJCRgAAAAAAAAAAAAAAIDkBAwAAAAAAAAAAAAAAEByAgYAAAAAAAAAAAAAACA5AQMAAAAAAAAAAAAAAJCcgAEAAAAAAAAAAAAAAEhOwAAAAAAAAAAAAAAAACQnYAAAAAAAAAAAAAAAAJITMAAAAAAAAAAAAAAAAMkJGAAAAAAAAAAAAAAAgOQEDAAAAAAAAAAAAAAAQHICBgAAAAAAAAAAAAAAIDkBAwAAAAAAAAAAAAAAkJyAAQAAAAAAAAAAAAAASE7AAAAAAAAAAAAAAAAAJCdgAAAAAAAAAAAAAAAAkhMwAAAAAAAAAAAAAAAAyQkYAAAAAAAAAAAAAACA5AQMAAAAAAAAAAAAAABAcgIGAAAAAAAAAAAAAAAgOQEDAAAAAAAAAAAAAACQnIABAAAAAAAAAAAAAABITsAAAAAAAAAAAAAAAAAkJ2AAAAAAAAAAAAAAAACSEzAAAAAAAAAAAAAAAADJCRgAAAAAAAAAAAAAAIDkBAwAAAAAAAAAAAAAAEByAgYAAAAAAAAAAAAAACA5AQMAAAAAAAAAAAAAAJCcgAEAAAAAAAAAAAAAAEhOwAAAAAAAAAAAAAAAACQnYAAAAAAAAAAAAAAAAJITMAAAAAAAAAAAAAAAAMkJGAAAAAAAAAAAAAAAgOQEDAAAAAAAAAAAAAAAQHICBgAAAAAAAAAAAAAAIDkBAwAAAAAAAAAAAAAAkJyAAQAAAAAAAAAAAAAASE7AAAAAAAAAAAAAAAAAJPf/AGRmzAbUuEOJAAAAAElFTkSuQmCC",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "import matplotlib.pyplot as plt\n",
+ "import seaborn as sns\n",
+ "\n",
+ "# Plot some samples of the dataset\n",
+ "sample_size = 2\n",
+ "\n",
+ "spoiler_samples = df[df['is_spoiler'] == True].sample(sample_size)\n",
+ "non_spoiler_samples = df[df['is_spoiler'] == False].sample(sample_size)\n",
+ "\n",
+ "plt.figure(figsize=(40, 20))\n",
+ "\n",
+ "# Spoiler samples\n",
+ "for i, review in enumerate(spoiler_samples['review_text']):\n",
+ " plt.text(0.5, 1.0 - i*0.2, f\"Spoiler Review {i+1}: {review[:150]}...\", ha='center', va='top', wrap=True)\n",
+ "\n",
+ "# Non-Spoiler samples\n",
+ "for i, review in enumerate(non_spoiler_samples['review_text']):\n",
+ " plt.text(0.5, 0.5 - i*0.2, f\"Non-Spoiler Review {i+1}: {review[:150]}...\", ha='center', va='top', wrap=True)\n",
+ "\n",
+ "plt.axis('off')\n",
+ "plt.title('Sample Reviews (Spoiler vs Non-Spoiler)')\n",
+ "plt.show()\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "id": "e2d12852",
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2024-08-16T07:46:24.192163Z",
+ "iopub.status.busy": "2024-08-16T07:46:24.191357Z",
+ "iopub.status.idle": "2024-08-16T07:46:27.636981Z",
+ "shell.execute_reply": "2024-08-16T07:46:27.635974Z"
+ },
+ "papermill": {
+ "duration": 3.458975,
+ "end_time": "2024-08-16T07:46:27.639034",
+ "exception": false,
+ "start_time": "2024-08-16T07:46:24.180059",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtEAAAIjCAYAAADFk0cVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABZjUlEQVR4nO3de1gWdf7/8RegHERv8AiSeEhLJQ8kKrLmmbxV3DJxU3MTj22GllKmluGhWsvW1PJU27ewVjet71crSQwxdU3ygOEZV02zQtAyuBUVFOb3Rxfz8xZUxlBQn4/rmitn5n3PvO/hvunF8Lk/uBiGYQgAAABAibmWdQMAAADArYYQDQAAAFhEiAYAAAAsIkQDAAAAFhGiAQAAAIsI0QAAAIBFhGgAAADAIkI0AAAAYBEhGgAAALCIEA2UkalTp8rFxeWmnKtz587q3Lmzub5+/Xq5uLjo008/vSnnHzJkiOrXr39TznW9zpw5oxEjRsjf318uLi4aO3ZsWbdUrMu/lkePHpWLi4vi4uLKrCeUjfr162vIkCHmeuH7ev369WXW081wpzxPlH+EaKAUxMXFycXFxVw8PT0VEBAgu92ut956S6dPny6V86Snp2vq1KlKTU0tleOVpvLcW0n8/e9/V1xcnEaNGqWPPvpIjz/++BVr8/LyNHfuXN1///2y2Wzy9fXVfffdpyeeeEJpaWk3ses7Q+H7atasWUX2Fb73tm/fXgad/f7D15QpU9SsWTN5e3urevXqCg4O1jPPPKP09PQy6elmKAyyhYubm5tq1aqlfv36af/+/WXdHnBTVCjrBoDbyfTp09WgQQNduHBBGRkZWr9+vcaOHas333xTn3/+uVq0aGHWTp48WRMnTrR0/PT0dE2bNk3169dXcHBwiR/31VdfWTrP9bhab//85z9VUFBww3v4I9atW6d27dppypQp16yNjIzU6tWrNXDgQI0cOVIXLlxQWlqaVq1apT/96U9q0qTJDevzZnwty6s33nhDo0aNUqVKlcq6FUnShQsX1LFjR6WlpSkqKkpjxozRmTNntHfvXi1dulSPPPKIAgICbtj5Dxw4IFfXsr0X9vTTT6tNmza6cOGCdu3apUWLFmn9+vXas2eP/P39b8g5O3bsqHPnzsnd3f2GHB8oKUI0UIp69uyp1q1bm+uTJk3SunXr1Lt3bz300EPav3+/vLy8JEkVKlRQhQo39i149uxZVapUqcz/Z1OxYsUyPX9JnDhxQkFBQdes27Ztm1atWqVXX31VL7zwgtO+efPmKSsr6wZ1+Lsb/bXMycmRt7f3DT3H9QgODlZqaqoWLVqkmJiYsm5HkrRy5Up99913WrJkiR577DGnfefPn1deXt4NPb+Hh8cNPX5JXgsdOnRQv379zPXGjRtr1KhR+vDDD/X888/fkL5cXV3l6el5Q44NWMFwDuAG69q1q1566SX98MMP+te//mVuL25MdGJioh544AH5+vqqcuXKaty4sRnU1q9frzZt2kiShg4dav4atXAsbOfOndWsWTOlpKSoY8eOqlSpkvnYy8fRFsrPz9cLL7wgf39/eXt766GHHtKPP/7oVHP5uMtClx7zWr0VNyY6JydHzz77rAIDA+Xh4aHGjRvrH//4hwzDcKpzcXHR6NGjtXLlSjVr1kweHh667777lJCQUPwFv8yJEyc0fPhw+fn5ydPTUy1bttTixYvN/YW/lj5y5Iji4+PN3o8ePVrs8Q4fPixJat++fZF9bm5uql69urle+DVOS0vTo48+KpvNpurVq+uZZ57R+fPnnR578eJFvfzyy2rYsKE8PDxUv359vfDCC8rNzXWqu9LX8nJpaWnq16+fqlWrJk9PT7Vu3Vqff/65U03hUIgNGzboqaeeUq1atVSnTp1ij5eZmakKFSpo2rRpRfYdOHBALi4umjdvnqTf79BOmzZN99xzjzw9PVW9enU98MADSkxMvGbfV9K+fXt17dpVM2fO1Llz565Zv27dOnXo0EHe3t7y9fXVww8/XGSYQeHX59ChQxoyZIh8fX3l4+OjoUOH6uzZs9c8x9VeC56enrLZbOb6kCFDVLlyZX3//fey2+3y9vZWQECApk+fXuQ1X9L3xpXem5fbsmWLevToIR8fH1WqVEmdOnXSN998U+y12Ldvnx577DFVrVpVDzzwwDWPfbkOHTpI+v/XptDPP/+sYcOGyc/Pz3wPv//+++Z+K6+vK42Jvtbz3LVrl1xcXJzeBykpKXJxcVGrVq2cjtWzZ0+Fhoaa69u3b5fdbleNGjXk5eWlBg0aaNiwYRavDm43hGjgJigcX3u1X8Xv3btXvXv3Vm5urqZPn65Zs2bpoYceMv8n0LRpU02fPl2S9MQTT+ijjz7SRx99pI4dO5rH+PXXX9WzZ08FBwdrzpw56tKly1X7evXVVxUfH68JEybo6aefVmJiosLDw0sUUi5Vkt4uZRiGHnroIc2ePVs9evTQm2++qcaNG2v8+PHF3mXctGmTnnrqKQ0YMEAzZ87U+fPnFRkZqV9//fWqfZ07d06dO3fWRx99pEGDBumNN96Qj4+PhgwZorlz55q9f/TRR6pRo4aCg4PN3mvWrFnsMevVqydJWrJkiS5evFii6/Poo4/q/PnzmjFjhnr16qW33npLTzzxhFPNiBEjFBsbq1atWmn27Nnq1KmTZsyYoQEDBpToHJfau3ev2rVrp/3792vixImaNWuWvL291adPH61YsaJI/VNPPaV9+/YpNjb2ikOM/Pz81KlTJy1fvrzIvmXLlsnNzU1/+ctfJP0eyKZNm6YuXbpo3rx5evHFF1W3bl3t2LHD8nO51NSpU5WZmamFCxdetW7t2rWy2+06ceKEpk6dqpiYGG3evFnt27cv9oejRx99VKdPn9aMGTP06KOPKi4urtgwd7nC18KHH35YJOAWJz8/Xz169JCfn59mzpypkJAQTZkyxWkIkdX3xrWsW7dOHTt2lMPh0JQpU/T3v/9dWVlZ6tq1q7Zu3Vqk/i9/+YvOnj2rv//97xo5cqTl8xVe36pVq5rbMjMz1a5dO61du1ajR4/W3Llz1ahRIw0fPlxz5syRZO31db3Ps1mzZvL19dXGjRvNx/3nP/+Rq6urdu7cKYfDIUkqKCjQ5s2bze9fJ06cUPfu3XX06FFNnDhRb7/9tgYNGqRvv/3W8vXBbcYA8Id98MEHhiRj27ZtV6zx8fEx7r//fnN9ypQpxqVvwdmzZxuSjJMnT17xGNu2bTMkGR988EGRfZ06dTIkGYsWLSp2X6dOncz1r7/+2pBk3HXXXYbD4TC3L1++3JBkzJ0719xWr149Iyoq6prHvFpvUVFRRr169cz1lStXGpKMV155xamuX79+houLi3Ho0CFzmyTD3d3dadvOnTsNScbbb79d5FyXmjNnjiHJ+Ne//mVuy8vLM8LCwozKlSs7Pfd69eoZERERVz2eYRhGQUGBea39/PyMgQMHGvPnzzd++OGHIrWFX+OHHnrIaftTTz1lSDJ27txpGIZhpKamGpKMESNGONU999xzhiRj3bp15rbLr/uRI0eKXPdu3boZzZs3N86fP+/U95/+9CfjnnvuMbcVvm4feOAB4+LFi9d87u+8844hydi9e7fT9qCgIKNr167mesuWLUt0LUtKkhEdHW0YhmF06dLF8Pf3N86ePev0HC597wUHBxu1atUyfv31V3Pbzp07DVdXV2Pw4MHmtsKvz7Bhw5zO98gjjxjVq1e/Zl9nz541GjdubEgy6tWrZwwZMsT4n//5HyMzM7NIbVRUlCHJGDNmjLmtoKDAiIiIMNzd3c33vZX3xuXvzcL39ddff20e/5577jHsdrtRUFDg1HeDBg2MBx98sMi1GDhw4DWf96Xnev/9942TJ08a6enpRkJCgtGoUSPDxcXF2Lp1q1k7fPhwo3bt2sYvv/zidIwBAwYYPj4+5teypK+vP/I8IyIijLZt25rrffv2Nfr27Wu4ubkZq1evNgzDMHbs2GFIMj777DPDMAxjxYoV1/z+jjsTd6KBm6Ry5cpXnaXD19dXkvTZZ59d94fwPDw8NHTo0BLXDx48WFWqVDHX+/Xrp9q1a+vLL7+8rvOX1Jdffik3Nzc9/fTTTtufffZZGYah1atXO20PDw9Xw4YNzfUWLVrIZrPp+++/v+Z5/P39NXDgQHNbxYoV9fTTT+vMmTPasGGD5d5dXFy0Zs0avfLKK6patar+/e9/Kzo6WvXq1VP//v2LHRMdHR3ttD5mzBizv0v/e/mdxmeffVaSFB8fX+L+Tp06pXXr1pl3V3/55Rf98ssv+vXXX2W323Xw4EH9/PPPTo8ZOXKk3Nzcrnnsvn37qkKFClq2bJm5bc+ePdq3b5/69+9vbvP19dXevXt18ODBEvddUlOnTlVGRoYWLVpU7P7jx48rNTVVQ4YMUbVq1cztLVq00IMPPljsa/vJJ590Wu/QoYN+/fVX887klXh5eWnLli0aP368pN+HxwwfPly1a9fWmDFjigzFkaTRo0eb/y4cqpSXl6e1a9dKsv7euJrU1FQdPHhQjz32mH799VfztZCTk6Nu3bpp48aNRb7XXH4trmXYsGGqWbOmAgIC1KNHD2VnZ+ujjz4yh3cZhqH//d//1Z///GcZhmH28Msvv8hutys7O9v8DUVJX19/5Hl26NBBO3bsUE5OjqTff8vVq1cvBQcH6z//+Y+k3+9Ou7i4mMNZCr83r1q1ShcuXLB0fXB7I0QDN8mZM2ecAuvl+vfvr/bt22vEiBHy8/PTgAEDtHz5ckuB+q677rL0wbN77rnHad3FxUWNGjW64njg0vLDDz8oICCgyPVo2rSpuf9SdevWLXKMqlWr6rfffrvmee65554iMxhc6Twl5eHhoRdffFH79+9Xenq6/v3vf6tdu3Zavny5U0gqdPl1btiwoVxdXc3r/MMPP8jV1VWNGjVyqvP395evr6+lPg8dOiTDMPTSSy+pZs2aTkvhsIETJ044PaZBgwYlOnaNGjXUrVs3p1+5L1u2TBUqVFDfvn3NbdOnT1dWVpbuvfdeNW/eXOPHj9euXbtK/ByupmPHjurSpcsVx0YXXqvGjRsX2de0aVMzXF3q8tdX4VCEwtfXqVOnlJGRYS7Z2dlmrY+Pj2bOnKmjR4/q6NGj+p//+R81btxY8+bN08svv+x0XFdXV919991O2+69915JcnotWHlvXE3hDzFRUVFFXgvvvfeecnNznZ6LVPLXQqHY2FglJiZqxYoVGjx4sLKzs53ebydPnlRWVpbefffdIj0U/sBf+Hos6evrjzzPDh066OLFi0pOTtaBAwd04sQJdejQQR07dnQK0UFBQeYPYZ06dVJkZKSmTZumGjVq6OGHH9YHH3xQ7A9JuLMwOwdwE/z000/Kzs4uEpIu5eXlpY0bN+rrr79WfHy8EhIStGzZMnXt2lVfffVVie4UFs78UZqu9Adh8vPzS9RTabjSeYwSjEO90WrXrq0BAwYoMjJS9913n5YvX664uLirzrxypWtaGn98p/CHrueee052u73Ymstfh1ZeNwMGDNDQoUOVmpqq4OBgLV++XN26dVONGjXMmo4dO+rw4cP67LPP9NVXX+m9997T7NmztWjRIo0YMeI6npWzKVOmqHPnznrnnXfMu4R/xLVeX3379nX6rUVUVFSxf9ymXr16GjZsmB555BHdfffdWrJkiV555ZU/3N/1KnwtvPHGG1ecErNy5cpO61a/hzRv3lzh4eGSpD59+ujs2bMaOXKkHnjgAQUGBpo9/PWvf1VUVFSxx7h06s+SvL4uZ+V5tm7dWp6entq4caPq1q2rWrVq6d5771WHDh20YMEC5ebm6j//+Y8eeeQR87GFf5jq22+/1RdffKE1a9Zo2LBhmjVrlr799tsi1xB3DkI0cBN89NFHknTFUFPI1dVV3bp1U7du3fTmm2/q73//u1588UV9/fXXCg8PL/W/cHj5r9sNw9ChQ4ec/qdWtWrVYoco/PDDD0531az0Vq9ePa1du1anT592uuNW+IdKCj+w9UfVq1dPu3btUkFBgdPdsdI+j/T7MJEWLVro4MGD+uWXX5zmyD148KDTHb5Dhw6poKDAnLGkXr16Kigo0MGDB807jtLvH8jKysqy1Gfh16RixYpmuClNffr00d/+9jfzV+7//e9/NWnSpCJ11apV09ChQzV06FCdOXNGHTt21NSpU0slRHfq1EmdO3fW66+/rtjYWKd9hdfqwIEDRR6XlpamGjVqWJ7Cb9asWU6/9bjW3M9Vq1ZVw4YNtWfPHqftBQUF+v777827z9Lv10+S02uhtN4bhUOgbDbbDXktFOe1117TihUr9Oqrr2rRokWqWbOmqlSpovz8/BL1UNLX16WsPE93d3e1bdtW//nPf1S3bl1zNpEOHTooNzdXS5YsUWZmZrEfim7Xrp3atWunV199VUuXLtWgQYP08ccfl8prGrcmhnMAN9i6dev08ssvq0GDBho0aNAV606dOlVkW+FdlcJfGxb+z7+05iL+8MMPncZpf/rppzp+/Lh69uxpbmvYsKG+/fZbpzlvV61aVWQqPCu99erVS/n5+eaUVYVmz54tFxcXp/P/Eb169VJGRobTGMuLFy/q7bffVuXKldWpUyfLxzx48KCOHTtWZHtWVpaSk5NVtWrVIjN7zJ8/32n97bffliTzefbq1UuSzJkKCr355puSpIiIiBL3V6tWLfMu7fHjx4vsP3nyZImPVRxfX1/Z7XYtX75cH3/8sdzd3dWnTx+nmstnTalcubIaNWrk9Ovv7OxspaWlFRlOUFKFY6Pfffddp+21a9dWcHCwFi9e7PRa3LNnj7766ivzWlsREhKi8PBwcymcT3znzp365ZdfitT/8MMP2rdvX7FDSi59zRuGoXnz5qlixYrq1q2bpNJ9b4SEhKhhw4b6xz/+oTNnzhTZ/0dfC8Vp2LChIiMjFRcXp4yMDLm5uSkyMlL/+7//W+SHiuJ6KMnr63JWn2eHDh20ZcsWff3112aIrlGjhpo2barXX3/drCn022+/Ffmt1+Xfm3Fn4k40UIpWr16ttLQ0Xbx4UZmZmVq3bp0SExNVr149ff7551f9AwHTp0/Xxo0bFRERoXr16unEiRNasGCB6tSpY37ApWHDhvL19dWiRYtUpUoVeXt7KzQ01PI4xkLVqlXTAw88oKFDhyozM1Nz5sxRo0aNnKa2GjFihD799FP16NFDjz76qA4fPqx//etfTh/0s9rbn//8Z3Xp0kUvvviijh49qpYtW+qrr77SZ599prFjxxY59vV64okn9M4772jIkCFKSUlR/fr19emnn+qbb77RnDlzrjpG/Up27typxx57TD179lSHDh1UrVo1/fzzz1q8eLHS09M1Z86cIsMDjhw5ooceekg9evRQcnKy/vWvf+mxxx5Ty5YtJUktW7ZUVFSU3n33XWVlZalTp07aunWrFi9erD59+lxzqsLLzZ8/Xw888ICaN2+ukSNH6u6771ZmZqaSk5P1008/aefOnZaf96X69++vv/71r1qwYIHsdnuRIRVBQUHq3LmzQkJCVK1aNW3fvl2ffvqp03jxFStWaOjQofrggw9KNNfx5Tp16qROnToV++HQN954Qz179lRYWJiGDx+uc+fO6e2335aPj4+mTp1q+VxXkpiYqClTpuihhx5Su3btzHmg33//feXm5hY5l6enpxISEhQVFaXQ0FCtXr1a8fHxeuGFF8wfvErzveHq6qr33ntPPXv21H333aehQ4fqrrvu0s8//6yvv/5aNptNX3zxRaldj0Ljx4/X8uXLNWfOHL322mt67bXX9PXXXys0NFQjR45UUFCQTp06pR07dmjt2rVFbiBc6/X1R59nhw4d9Oqrr+rHH390CssdO3bUO++8o/r16zvNl7548WItWLBAjzzyiBo2bKjTp0/rn//8p2w223X9UIbbSFlNCwLcTgqn2Spc3N3dDX9/f+PBBx805s6d6zSVWqHLp7hLSkoyHn74YSMgIMBwd3c3AgICjIEDBxr//e9/nR732WefGUFBQUaFChWcpjbr1KmTcd999xXb35WmuPv3v/9tTJo0yahVq5bh5eVlREREFDtV26xZs4y77rrL8PDwMNq3b29s3769yDGv1tvlU9wZhmGcPn3aGDdunBEQEGBUrFjRuOeee4w33njDaYoqw3Ce3uxSV5p673KZmZnG0KFDjRo1ahju7u5G8+bNi52Gr6RT3GVmZhqvvfaa0alTJ6N27dpGhQoVjKpVqxpdu3Y1Pv30U6fawq/xvn37jH79+hlVqlQxqlataowePdo4d+6cU+2FCxeMadOmGQ0aNDAqVqxoBAYGGpMmTXKaps4wSjbFnWEYxuHDh43Bgwcb/v7+RsWKFY277rrL6N27t1OPJZmasTgOh8Pw8vIqMn1goVdeecVo27at4evra3h5eRlNmjQxXn31VSMvL6/IuYv7WlzuSq+Bwtdxcc9h7dq1Rvv27Q0vLy/DZrMZf/7zn419+/Y51RR+fS6fVrKwtyNHjly1r++//96IjY012rVrZ9SqVcuoUKGCUbNmTSMiIsJpWkLD+P094O3tbRw+fNjo3r27UalSJcPPz8+YMmWKkZ+f71Rb0vfGtaa4K/Tdd98Zffv2NapXr254eHgY9erVMx599FEjKSnpmtfiSgrP9cknnxS7v3PnzobNZjOysrIMw/j9fRMdHW0EBgYaFStWNPz9/Y1u3boZ7777bpHHXuv19UeeZ+Hx3dzcjCpVqjhN7fivf/3LkGQ8/vjjTvU7duwwBg4caNStW9fw8PAwatWqZfTu3dvYvn17ia4Vbl8uhlEOPpkDALehwj86cvLkyat+MAq3vyFDhujTTz8tdrgBgFsTY6IBAAAAiwjRAAAAgEWEaAAAAMAixkQDAAAAFnEnGgAAALCIEA0AAABYxB9buYkKCgqUnp6uKlWqlPqfbwYAAMAfZxiGTp8+rYCAALm6Xvl+MyH6JkpPT1dgYGBZtwEAAIBr+PHHH53+euXlCNE3UeGfGP7xxx9ls9nKuBsAAABczuFwKDAw0MxtV0KIvokKh3DYbDZCNAAAQDl2raG3fLAQAAAAsIgQDQAAAFhEiAYAAAAsIkQDAAAAFhGiAQAAAIsI0QAAAIBFhGgAAADAIkI0AAAAYBEhGgAAALCIEA0AAABYRIgGAAAALCJEAwAAABYRogEAAACLCNEAAACARYRoAAAAwCJCNAAAAGARIRoAAACwiBANAAAAWESIBgAAACyqUNYN4Ob5ctuZsm4BwA3Sq03lsm4BAO4o3IkGAAAALCJEAwAAABYRogEAAACLCNEAAACARYRoAAAAwCJCNAAAAGARIRoAAACwiBANAAAAWESIBgAAACwiRAMAAAAWEaIBAAAAiwjRAAAAgEWEaAAAAMAiQjQAAABgESEaAAAAsIgQDQAAAFhEiAYAAAAsIkQDAAAAFhGiAQAAAIvKTYh+7bXX5OLiorFjx5rbzp8/r+joaFWvXl2VK1dWZGSkMjMznR537NgxRUREqFKlSqpVq5bGjx+vixcvOtWsX79erVq1koeHhxo1aqS4uLgi558/f77q168vT09PhYaGauvWrU77S9ILAAAA7gzlIkRv27ZN77zzjlq0aOG0fdy4cfriiy/0ySefaMOGDUpPT1ffvn3N/fn5+YqIiFBeXp42b96sxYsXKy4uTrGxsWbNkSNHFBERoS5duig1NVVjx47ViBEjtGbNGrNm2bJliomJ0ZQpU7Rjxw61bNlSdrtdJ06cKHEvAAAAuHO4GIZhlGUDZ86cUatWrbRgwQK98sorCg4O1pw5c5Sdna2aNWtq6dKl6tevnyQpLS1NTZs2VXJystq1a6fVq1erd+/eSk9Pl5+fnyRp0aJFmjBhgk6ePCl3d3dNmDBB8fHx2rNnj3nOAQMGKCsrSwkJCZKk0NBQtWnTRvPmzZMkFRQUKDAwUGPGjNHEiRNL1EtJOBwO+fj4KDs7WzabrdSuYUl9ue3MTT8ngJujV5vKZd0CANwWSprXyvxOdHR0tCIiIhQeHu60PSUlRRcuXHDa3qRJE9WtW1fJycmSpOTkZDVv3twM0JJkt9vlcDi0d+9es+byY9vtdvMYeXl5SklJcapxdXVVeHi4WVOSXoqTm5srh8PhtAAAAODWV6EsT/7xxx9rx44d2rZtW5F9GRkZcnd3l6+vr9N2Pz8/ZWRkmDWXBujC/YX7rlbjcDh07tw5/fbbb8rPzy+2Ji0trcS9FGfGjBmaNm3aFfcDAADg1lRmd6J//PFHPfPMM1qyZIk8PT3Lqo0batKkScrOzjaXH3/8saxbAgAAQCkosxCdkpKiEydOqFWrVqpQoYIqVKigDRs26K233lKFChXk5+envLw8ZWVlOT0uMzNT/v7+kiR/f/8iM2QUrl+rxmazycvLSzVq1JCbm1uxNZce41q9FMfDw0M2m81pAQAAwK2vzEJ0t27dtHv3bqWmpppL69atNWjQIPPfFStWVFJSkvmYAwcO6NixYwoLC5MkhYWFaffu3U6zaCQmJspmsykoKMisufQYhTWFx3B3d1dISIhTTUFBgZKSksyakJCQa/YCAACAO0eZjYmuUqWKmjVr5rTN29tb1atXN7cPHz5cMTExqlatmmw2m8aMGaOwsDBzNozu3bsrKChIjz/+uGbOnKmMjAxNnjxZ0dHR8vDwkCQ9+eSTmjdvnp5//nkNGzZM69at0/LlyxUfH2+eNyYmRlFRUWrdurXatm2rOXPmKCcnR0OHDpUk+fj4XLMXAAAA3DnK9IOF1zJ79my5uroqMjJSubm5stvtWrBggbnfzc1Nq1at0qhRoxQWFiZvb29FRUVp+vTpZk2DBg0UHx+vcePGae7cuapTp47ee+892e12s6Z///46efKkYmNjlZGRoeDgYCUkJDh92PBavQAAAODOUebzRN9JmCcawI3CPNEAUDpumXmiAQAAgFsNIRoAAACwiBANAAAAWESIBgAAACwiRAMAAAAWEaIBAAAAiwjRAAAAgEWEaAAAAMAiQjQAAABgESEaAAAAsIgQDQAAAFhEiAYAAAAsIkQDAAAAFhGiAQAAAIsI0QAAAIBFhGgAAADAIkI0AAAAYBEhGgAAALCIEA0AAABYRIgGAAAALCJEAwAAABYRogEAAACLCNEAAACARYRoAAAAwCJCNAAAAGARIRoAAACwiBANAAAAWESIBgAAACwiRAMAAAAWEaIBAAAAiwjRAAAAgEWEaAAAAMAiQjQAAABgESEaAAAAsIgQDQAAAFhEiAYAAAAsIkQDAAAAFhGiAQAAAIsI0QAAAIBFhGgAAADAIkI0AAAAYFGZhuiFCxeqRYsWstlsstlsCgsL0+rVq839nTt3louLi9Py5JNPOh3j2LFjioiIUKVKlVSrVi2NHz9eFy9edKpZv369WrVqJQ8PDzVq1EhxcXFFepk/f77q168vT09PhYaGauvWrU77z58/r+joaFWvXl2VK1dWZGSkMjMzS+9iAAAA4JZRpiG6Tp06eu2115SSkqLt27era9euevjhh7V3716zZuTIkTp+/Li5zJw509yXn5+viIgI5eXlafPmzVq8eLHi4uIUGxtr1hw5ckQRERHq0qWLUlNTNXbsWI0YMUJr1qwxa5YtW6aYmBhNmTJFO3bsUMuWLWW323XixAmzZty4cfriiy/0ySefaMOGDUpPT1ffvn1v8BUCAABAeeRiGIZR1k1cqlq1anrjjTc0fPhwde7cWcHBwZozZ06xtatXr1bv3r2Vnp4uPz8/SdKiRYs0YcIEnTx5Uu7u7powYYLi4+O1Z88e83EDBgxQVlaWEhISJEmhoaFq06aN5s2bJ0kqKChQYGCgxowZo4kTJyo7O1s1a9bU0qVL1a9fP0lSWlqamjZtquTkZLVr165Ez83hcMjHx0fZ2dmy2WzXe4mu25fbztz0cwK4OXq1qVzWLQDAbaGkea3cjInOz8/Xxx9/rJycHIWFhZnblyxZoho1aqhZs2aaNGmSzp49a+5LTk5W8+bNzQAtSXa7XQ6Hw7ybnZycrPDwcKdz2e12JScnS5Ly8vKUkpLiVOPq6qrw8HCzJiUlRRcuXHCqadKkierWrWvWFCc3N1cOh8NpAQAAwK2vQlk3sHv3boWFhen8+fOqXLmyVqxYoaCgIEnSY489pnr16ikgIEC7du3ShAkTdODAAf3f//2fJCkjI8MpQEsy1zMyMq5a43A4dO7cOf3222/Kz88vtiYtLc08hru7u3x9fYvUFJ6nODNmzNC0adMsXhEAAACUd2Ueohs3bqzU1FRlZ2fr008/VVRUlDZs2KCgoCA98cQTZl3z5s1Vu3ZtdevWTYcPH1bDhg3LsOuSmTRpkmJiYsx1h8OhwMDAMuwIAAAApaHMh3O4u7urUaNGCgkJ0YwZM9SyZUvNnTu32NrQ0FBJ0qFDhyRJ/v7+RWbIKFz39/e/ao3NZpOXl5dq1KghNze3YmsuPUZeXp6ysrKuWFMcDw8Pc+aRwgUAAAC3vjIP0ZcrKChQbm5usftSU1MlSbVr15YkhYWFaffu3U6zaCQmJspms5lDQsLCwpSUlOR0nMTERHPctbu7u0JCQpxqCgoKlJSUZNaEhISoYsWKTjUHDhzQsWPHnMZvAwAA4M5QpsM5Jk2apJ49e6pu3bo6ffq0li5dqvXr12vNmjU6fPiwli5dql69eql69eratWuXxo0bp44dO6pFixaSpO7duysoKEiPP/64Zs6cqYyMDE2ePFnR0dHy8PCQJD355JOaN2+enn/+eQ0bNkzr1q3T8uXLFR8fb/YRExOjqKgotW7dWm3bttWcOXOUk5OjoUOHSpJ8fHw0fPhwxcTEqFq1arLZbBozZozCwsJKPDMHAAAAbh9lGqJPnDihwYMH6/jx4/Lx8VGLFi20Zs0aPfjgg/rxxx+1du1aM9AGBgYqMjJSkydPNh/v5uamVatWadSoUQoLC5O3t7eioqI0ffp0s6ZBgwaKj4/XuHHjNHfuXNWpU0fvvfee7Ha7WdO/f3+dPHlSsbGxysjIUHBwsBISEpw+bDh79my5uroqMjJSubm5stvtWrBgwc25UAAAAChXyt080bcz5okGcKMwTzQAlI5bbp5oAAAA4FZBiAYAAAAsIkQDAAAAFhGiAQAAAIsI0QAAAIBFhGgAAADAIkI0AAAAYBEhGgAAALCIEA0AAABYRIgGAAAALCJEAwAAABYRogEAAACLCNEAAACARYRoAAAAwCJCNAAAAGARIRoAAACwiBANAAAAWESIBgAAACwiRAMAAAAWEaIBAAAAiwjRAAAAgEWEaAAAAMAiQjQAAABgESEaAAAAsIgQDQAAAFhEiAYAAAAsIkQDAAAAFhGiAQAAAIsI0QAAAIBFhGgAAADAIkI0AAAAYBEhGgAAALCIEA0AAABYRIgGAAAALCJEAwAAABYRogEAAACLCNEAAACARYRoAAAAwCJCNAAAAGARIRoAAACwiBANAAAAWFSmIXrhwoVq0aKFbDabbDabwsLCtHr1anP/+fPnFR0drerVq6ty5cqKjIxUZmam0zGOHTumiIgIVapUSbVq1dL48eN18eJFp5r169erVatW8vDwUKNGjRQXF1ekl/nz56t+/fry9PRUaGiotm7d6rS/JL0AAADgzlCmIbpOnTp67bXXlJKSou3bt6tr1656+OGHtXfvXknSuHHj9MUXX+iTTz7Rhg0blJ6err59+5qPz8/PV0REhPLy8rR582YtXrxYcXFxio2NNWuOHDmiiIgIdenSRampqRo7dqxGjBihNWvWmDXLli1TTEyMpkyZoh07dqhly5ay2+06ceKEWXOtXgAAAHDncDEMwyjrJi5VrVo1vfHGG+rXr59q1qyppUuXql+/fpKktLQ0NW3aVMnJyWrXrp1Wr16t3r17Kz09XX5+fpKkRYsWacKECTp58qTc3d01YcIExcfHa8+ePeY5BgwYoKysLCUkJEiSQkND1aZNG82bN0+SVFBQoMDAQI0ZM0YTJ05Udnb2NXspCYfDIR8fH2VnZ8tms5XaNSupL7eduennBHBz9GpTuaxbAIDbQknzWrkZE52fn6+PP/5YOTk5CgsLU0pKii5cuKDw8HCzpkmTJqpbt66Sk5MlScnJyWrevLkZoCXJbrfL4XCYd7OTk5OdjlFYU3iMvLw8paSkONW4uroqPDzcrClJL8XJzc2Vw+FwWgAAAHDrK/MQvXv3blWuXFkeHh568skntWLFCgUFBSkjI0Pu7u7y9fV1qvfz81NGRoYkKSMjwylAF+4v3He1GofDoXPnzumXX35Rfn5+sTWXHuNavRRnxowZ8vHxMZfAwMCSXRQAAACUa2Ueohs3bqzU1FRt2bJFo0aNUlRUlPbt21fWbZWKSZMmKTs721x+/PHHsm4JAAAApaBCWTfg7u6uRo0aSZJCQkK0bds2zZ07V/3791deXp6ysrKc7gBnZmbK399fkuTv719kFo3CGTMurbl8Fo3MzEzZbDZ5eXnJzc1Nbm5uxdZceoxr9VIcDw8PeXh4WLgaAAAAuBWU+Z3oyxUUFCg3N1chISGqWLGikpKSzH0HDhzQsWPHFBYWJkkKCwvT7t27nWbRSExMlM1mU1BQkFlz6TEKawqP4e7urpCQEKeagoICJSUlmTUl6QUAAAB3jjK9Ez1p0iT17NlTdevW1enTp7V06VKtX79ea9askY+Pj4YPH66YmBhVq1ZNNptNY8aMUVhYmDkbRvfu3RUUFKTHH39cM2fOVEZGhiZPnqzo6GjzDvCTTz6pefPm6fnnn9ewYcO0bt06LV++XPHx8WYfMTExioqKUuvWrdW2bVvNmTNHOTk5Gjp0qCSVqBcAAADcOco0RJ84cUKDBw/W8ePH5ePjoxYtWmjNmjV68MEHJUmzZ8+Wq6urIiMjlZubK7vdrgULFpiPd3Nz06pVqzRq1CiFhYXJ29tbUVFRmj59ulnToEEDxcfHa9y4cZo7d67q1Kmj9957T3a73azp37+/Tp48qdjYWGVkZCg4OFgJCQlOHza8Vi8AAAC4c5S7eaJvZ8wTDeBGYZ5oACgdt9w80QAAAMCtghANAAAAWESIBgAAACwiRAMAAAAWEaIBAAAAiwjRAAAAgEWEaAAAAMAiQjQAAABgESEaAAAAsIgQDQAAAFhEiAYAAAAsIkQDAAAAFhGiAQAAAIsI0QAAAIBFhGgAAADAIkI0AAAAYBEhGgAAALCIEA0AAABYRIgGAAAALCJEAwAAABYRogEAAACLCNEAAACARYRoAAAAwCJCNAAAAGARIRoAAACwiBANAAAAWESIBgAAACwiRAMAAAAWEaIBAAAAiwjRAAAAgEWEaAAAAMAiQjQAAABgESEaAAAAsIgQDQAAAFhEiAYAAAAsIkQDAAAAFhGiAQAAAIsI0QAAAIBFhGgAAADAIkI0AAAAYBEhGgAAALCoTEP0jBkz1KZNG1WpUkW1atVSnz59dODAAaeazp07y8XFxWl58sknnWqOHTumiIgIVapUSbVq1dL48eN18eJFp5r169erVatW8vDwUKNGjRQXF1ekn/nz56t+/fry9PRUaGiotm7d6rT//Pnzio6OVvXq1VW5cmVFRkYqMzOzdC4GAAAAbhllGqI3bNig6Ohoffvtt0pMTNSFCxfUvXt35eTkONWNHDlSx48fN5eZM2ea+/Lz8xUREaG8vDxt3rxZixcvVlxcnGJjY82aI0eOKCIiQl26dFFqaqrGjh2rESNGaM2aNWbNsmXLFBMToylTpmjHjh1q2bKl7Ha7Tpw4YdaMGzdOX3zxhT755BNt2LBB6enp6tu37w28QgAAACiPXAzDMMq6iUInT55UrVq1tGHDBnXs2FHS73eig4ODNWfOnGIfs3r1avXu3Vvp6eny8/OTJC1atEgTJkzQyZMn5e7urgkTJig+Pl579uwxHzdgwABlZWUpISFBkhQaGqo2bdpo3rx5kqSCggIFBgZqzJgxmjhxorKzs1WzZk0tXbpU/fr1kySlpaWpadOmSk5OVrt27a75/BwOh3x8fJSdnS2bzXbd1+l6fbntzE0/J4Cbo1ebymXdAgDcFkqa18rVmOjs7GxJUrVq1Zy2L1myRDVq1FCzZs00adIknT171tyXnJys5s2bmwFakux2uxwOh/bu3WvWhIeHOx3TbrcrOTlZkpSXl6eUlBSnGldXV4WHh5s1KSkpunDhglNNkyZNVLduXbPmcrm5uXI4HE4LAAAAbn0VyrqBQgUFBRo7dqzat2+vZs2amdsfe+wx1atXTwEBAdq1a5cmTJigAwcO6P/+7/8kSRkZGU4BWpK5npGRcdUah8Ohc+fO6bffflN+fn6xNWlpaeYx3N3d5evrW6Sm8DyXmzFjhqZNm2bxSgAAAKC8KzchOjo6Wnv27NGmTZuctj/xxBPmv5s3b67atWurW7duOnz4sBo2bHiz27Rk0qRJiomJMdcdDocCAwPLsCMAAACUhnIxnGP06NFatWqVvv76a9WpU+eqtaGhoZKkQ4cOSZL8/f2LzJBRuO7v73/VGpvNJi8vL9WoUUNubm7F1lx6jLy8PGVlZV2x5nIeHh6y2WxOCwAAAG59ZRqiDcPQ6NGjtWLFCq1bt04NGjS45mNSU1MlSbVr15YkhYWFaffu3U6zaCQmJspmsykoKMisSUpKcjpOYmKiwsLCJEnu7u4KCQlxqikoKFBSUpJZExISoooVKzrVHDhwQMeOHTNrAAAAcGco0+Ec0dHRWrp0qT777DNVqVLFHFvs4+MjLy8vHT58WEuXLlWvXr1UvXp17dq1S+PGjVPHjh3VokULSVL37t0VFBSkxx9/XDNnzlRGRoYmT56s6OhoeXh4SJKefPJJzZs3T88//7yGDRumdevWafny5YqPjzd7iYmJUVRUlFq3bq22bdtqzpw5ysnJ0dChQ82ehg8frpiYGFWrVk02m01jxoxRWFhYiWbmAAAAwO2jTEP0woULJf0+jd2lPvjgAw0ZMkTu7u5au3atGWgDAwMVGRmpyZMnm7Vubm5atWqVRo0apbCwMHl7eysqKkrTp083axo0aKD4+HiNGzdOc+fOVZ06dfTee+/JbrebNf3799fJkycVGxurjIwMBQcHKyEhwenDhrNnz5arq6siIyOVm5sru92uBQsW3KCrAwAAgPKqXM0TfbtjnmgANwrzRANA6bgl54kGAAAAbgWEaAAAAMAiQjQAAABgESEaAAAAsOi6QvTdd9+tX3/9tcj2rKws3X333X+4KQAAAKA8u64QffToUeXn5xfZnpubq59//vkPNwUAAACUZ5bmif7888/Nf69Zs0Y+Pj7men5+vpKSklS/fv1Saw4AAAAojyyF6D59+kiSXFxcFBUV5bSvYsWKql+/vmbNmlVqzQEAAADlkaUQXVBQIOn3vwC4bds21ahR44Y0BQAAAJRn1/Vnv48cOVLafQAAAAC3jOsK0ZKUlJSkpKQknThxwrxDXej999//w40BAAAA5dV1hehp06Zp+vTpat26tWrXri0XF5fS7gsAAAAot64rRC9atEhxcXF6/PHHS7sfAAAAoNy7rnmi8/Ly9Kc//am0ewEAAABuCdcVokeMGKGlS5eWdi8AAADALeG6hnOcP39e7777rtauXasWLVqoYsWKTvvffPPNUmkOAAAAKI+uK0Tv2rVLwcHBkqQ9e/Y47eNDhgAAALjdXVeI/vrrr0u7DwAAAOCWcV1jogEAAIA72XXdie7SpctVh22sW7fuuhsCAAAAyrvrCtGF46ELXbhwQampqdqzZ4+ioqJKoy8AAACg3LquED179uxit0+dOlVnzpz5Qw0BAAAA5V2pjon+61//qvfff780DwkAAACUO6UaopOTk+Xp6VmahwQAAADKnesaztG3b1+ndcMwdPz4cW3fvl0vvfRSqTQGAAAAlFfXFaJ9fHyc1l1dXdW4cWNNnz5d3bt3L5XGAAAAgPLqukL0Bx98UNp9AAAAALeM6wrRhVJSUrR//35J0n333af777+/VJoCAAAAyrPrCtEnTpzQgAEDtH79evn6+kqSsrKy1KVLF3388ceqWbNmafYIAAAAlCvXNTvHmDFjdPr0ae3du1enTp3SqVOntGfPHjkcDj399NOl3SMAAABQrlzXneiEhAStXbtWTZs2NbcFBQVp/vz5fLAQAAAAt73ruhNdUFCgihUrFtlesWJFFRQU/OGmAAAAgPLsukJ0165d9cwzzyg9Pd3c9vPPP2vcuHHq1q1bqTUHAAAAlEfXFaLnzZsnh8Oh+vXrq2HDhmrYsKEaNGggh8Oht99+u7R7BAAAAMqV6xoTHRgYqB07dmjt2rVKS0uTJDVt2lTh4eGl2hwAAABQHlm6E71u3ToFBQXJ4XDIxcVFDz74oMaMGaMxY8aoTZs2uu+++/Sf//znRvUKAAAAlAuWQvScOXM0cuRI2Wy2Ivt8fHz0t7/9TW+++WapNQcAAACUR5ZC9M6dO9WjR48r7u/evbtSUlL+cFMAAABAeWYpRGdmZhY7tV2hChUq6OTJk3+4KQAAAKA8sxSi77rrLu3Zs+eK+3ft2qXatWv/4aYAAACA8sxSiO7Vq5deeuklnT9/vsi+c+fOacqUKerdu3epNQcAAACUR5ZC9OTJk3Xq1Cnde++9mjlzpj777DN99tlnev3119W4cWOdOnVKL774YomPN2PGDLVp00ZVqlRRrVq11KdPHx04cMCp5vz584qOjlb16tVVuXJlRUZGKjMz06nm2LFjioiIUKVKlVSrVi2NHz9eFy9edKpZv369WrVqJQ8PDzVq1EhxcXFF+pk/f77q168vT09PhYaGauvWrZZ7AQAAwO3PUoj28/PT5s2b1axZM02aNEmPPPKIHnnkEb3wwgtq1qyZNm3aJD8/vxIfb8OGDYqOjta3336rxMREXbhwQd27d1dOTo5ZM27cOH3xxRf65JNPtGHDBqWnp6tv377m/vz8fEVERCgvL0+bN2/W4sWLFRcXp9jYWLPmyJEjioiIUJcuXZSamqqxY8dqxIgRWrNmjVmzbNkyxcTEaMqUKdqxY4datmwpu92uEydOlLgXAAAA3BlcDMMwrueBv/32mw4dOiTDMHTPPfeoatWqf7iZkydPqlatWtqwYYM6duyo7Oxs1axZU0uXLlW/fv0kSWlpaWratKmSk5PVrl07rV69Wr1791Z6eroZ4BctWqQJEybo5MmTcnd314QJExQfH+80nnvAgAHKyspSQkKCJCk0NFRt2rTRvHnzJEkFBQUKDAzUmDFjNHHixBL1ci0Oh0M+Pj7Kzs4udprAG+3LbWdu+jkB3By92lQu6xYA4LZQ0rx2XX/2W5KqVq2qNm3aqG3btqUSoCUpOztbklStWjVJUkpKii5cuOD0lxCbNGmiunXrKjk5WZKUnJys5s2bO90Bt9vtcjgc2rt3r1lz+V9TtNvt5jHy8vKUkpLiVOPq6qrw8HCzpiS9XC43N1cOh8NpAQAAwK3vukN0aSsoKNDYsWPVvn17NWvWTJKUkZEhd3d3+fr6OtX6+fkpIyPDrLl8CEnh+rVqHA6Hzp07p19++UX5+fnF1lx6jGv1crkZM2bIx8fHXAIDA0t4NQAAAFCelZsQHR0drT179ujjjz8u61ZKzaRJk5SdnW0uP/74Y1m3BAAAgFJQoawbkKTRo0dr1apV2rhxo+rUqWNu9/f3V15enrKyspzuAGdmZsrf39+suXwWjcIZMy6tuXwWjczMTNlsNnl5ecnNzU1ubm7F1lx6jGv1cjkPDw95eHhYuBIAAAC4FZTpnWjDMDR69GitWLFC69atU4MGDZz2h4SEqGLFikpKSjK3HThwQMeOHVNYWJgkKSwsTLt373aaRSMxMVE2m01BQUFmzaXHKKwpPIa7u7tCQkKcagoKCpSUlGTWlKQXAAAA3BnK9E50dHS0li5dqs8++0xVqlQxxxb7+PjIy8tLPj4+Gj58uGJiYlStWjXZbDaNGTNGYWFh5mwY3bt3V1BQkB5//HHNnDlTGRkZmjx5sqKjo827wE8++aTmzZun559/XsOGDdO6deu0fPlyxcfHm73ExMQoKipKrVu3Vtu2bTVnzhzl5ORo6NChZk/X6gUAAAB3hjIN0QsXLpQkde7c2Wn7Bx98oCFDhkiSZs+eLVdXV0VGRio3N1d2u10LFiwwa93c3LRq1SqNGjVKYWFh8vb2VlRUlKZPn27WNGjQQPHx8Ro3bpzmzp2rOnXq6L333pPdbjdr+vfvr5MnTyo2NlYZGRkKDg5WQkKC04cNr9ULAAAA7gzXPU80rGOeaAA3CvNEA0DpuOHzRAMAAAB3KkI0AAAAYBEhGgAAALCIEA0AAABYRIgGAAAALCJEAwAAABYRogEAAACLCNEAAACARYRoAAAAwCJCNAAAAGARIRoAAACwiBANAAAAWESIBgAAACwiRAMAAAAWEaIBAAAAiwjRAAAAgEWEaAAAAMAiQjQAAABgESEaAAAAsIgQDQAAAFhEiAYAAAAsIkQDAAAAFhGiAQAAAIsI0QAAAIBFhGgAAADAIkI0AAAAYBEhGgAAALCIEA0AAABYRIgGAAAALCJEAwAAABYRogEAAACLCNEAAACARYRoAAAAwCJCNAAAAGARIRoAAACwiBANAAAAWESIBgAAACwiRAMAAAAWEaIBAAAAiwjRAAAAgEWEaAAAAMCiMg3RGzdu1J///GcFBATIxcVFK1eudNo/ZMgQubi4OC09evRwqjl16pQGDRokm80mX19fDR8+XGfOnHGq2bVrlzp06CBPT08FBgZq5syZRXr55JNP1KRJE3l6eqp58+b68ssvnfYbhqHY2FjVrl1bXl5eCg8P18GDB0vnQgAAAOCWUqYhOicnRy1bttT8+fOvWNOjRw8dP37cXP7973877R80aJD27t2rxMRErVq1Shs3btQTTzxh7nc4HOrevbvq1aunlJQUvfHGG5o6dareffdds2bz5s0aOHCghg8fru+++059+vRRnz59tGfPHrNm5syZeuutt7Ro0SJt2bJF3t7estvtOn/+fCleEQAAANwKXAzDMMq6CUlycXHRihUr1KdPH3PbkCFDlJWVVeQOdaH9+/crKChI27ZtU+vWrSVJCQkJ6tWrl3766ScFBARo4cKFevHFF5WRkSF3d3dJ0sSJE7Vy5UqlpaVJkvr376+cnBytWrXKPHa7du0UHBysRYsWyTAMBQQE6Nlnn9Vzzz0nScrOzpafn5/i4uI0YMCAEj1Hh8MhHx8fZWdny2azWb1Ef9iX285cuwjALalXm8pl3QIA3BZKmtcq3MSersv69etVq1YtVa1aVV27dtUrr7yi6tWrS5KSk5Pl6+trBmhJCg8Pl6urq7Zs2aJHHnlEycnJ6tixoxmgJclut+v111/Xb7/9pqpVqyo5OVkxMTFO57Xb7WZ4P3LkiDIyMhQeHm7u9/HxUWhoqJKTk68YonNzc5Wbm2uuOxyOP3w9AAD/369JH5d1CwBukOrdSnaTsqyU6w8W9ujRQx9++KGSkpL0+uuva8OGDerZs6fy8/MlSRkZGapVq5bTYypUqKBq1aopIyPDrPHz83OqKVy/Vs2l+y99XHE1xZkxY4Z8fHzMJTAw0NLzBwAAQPlUru9EX3qHt3nz5mrRooUaNmyo9evXq1u3bmXYWclMmjTJ6Q63w+EgSAMAANwGyvWd6MvdfffdqlGjhg4dOiRJ8vf314kTJ5xqLl68qFOnTsnf39+syczMdKopXL9WzaX7L31ccTXF8fDwkM1mc1oAAABw67ulQvRPP/2kX3/9VbVr15YkhYWFKSsrSykpKWbNunXrVFBQoNDQULNm48aNunDhglmTmJioxo0bq2rVqmZNUlKS07kSExMVFhYmSWrQoIH8/f2dahwOh7Zs2WLWAAAA4M5RpiH6zJkzSk1NVWpqqqTfP8CXmpqqY8eO6cyZMxo/fry+/fZbHT16VElJSXr44YfVqFEj2e12SVLTpk3Vo0cPjRw5Ulu3btU333yj0aNHa8CAAQoICJAkPfbYY3J3d9fw4cO1d+9eLVu2THPnznUaZvHMM88oISFBs2bNUlpamqZOnart27dr9OjRkn6fOWTs2LF65ZVX9Pnnn2v37t0aPHiwAgICnGYTAQAAwJ2hTMdEb9++XV26dDHXC4NtVFSUFi5cqF27dmnx4sXKyspSQECAunfvrpdfflkeHh7mY5YsWaLRo0erW7ducnV1VWRkpN566y1zv4+Pj7766itFR0crJCRENWrUUGxsrNNc0n/605+0dOlSTZ48WS+88ILuuecerVy5Us2aNTNrnn/+eeXk5OiJJ55QVlaWHnjgASUkJMjT0/NGXiIAAACUQ+Vmnug7AfNEA7hR7tR5opniDrh9ldUUdyXNa7fUmGgAAACgPCBEAwAAABYRogEAAACLCNEAAACARYRoAAAAwCJCNAAAAGARIRoAAACwiBANAAAAWESIBgAAACwiRAMAAAAWEaIBAAAAiwjRAAAAgEWEaAAAAMAiQjQAAABgESEaAAAAsIgQDQAAAFhEiAYAAAAsIkQDAAAAFhGiAQAAAIsI0QAAAIBFhGgAAADAIkI0AAAAYBEhGgAAALCIEA0AAABYRIgGAAAALCJEAwAAABYRogEAAACLCNEAAACARYRoAAAAwCJCNAAAAGARIRoAAACwiBANAAAAWESIBgAAACwiRAMAAAAWEaIBAAAAiwjRAAAAgEWEaAAAAMAiQjQAAABgESEaAAAAsIgQDQAAAFhEiAYAAAAsKtMQvXHjRv35z39WQECAXFxctHLlSqf9hmEoNjZWtWvXlpeXl8LDw3Xw4EGnmlOnTmnQoEGy2Wzy9fXV8OHDdebMGaeaXbt2qUOHDvL09FRgYKBmzpxZpJdPPvlETZo0kaenp5o3b64vv/zSci8AAAC4M5RpiM7JyVHLli01f/78YvfPnDlTb731lhYtWqQtW7bI29tbdrtd58+fN2sGDRqkvXv3KjExUatWrdLGjRv1xBNPmPsdDoe6d++uevXqKSUlRW+88YamTp2qd99916zZvHmzBg4cqOHDh+u7775Tnz591KdPH+3Zs8dSLwAAALgzuBiGYZR1E5Lk4uKiFStWqE+fPpJ+v/MbEBCgZ599Vs8995wkKTs7W35+foqLi9OAAQO0f/9+BQUFadu2bWrdurUkKSEhQb169dJPP/2kgIAALVy4UC+++KIyMjLk7u4uSZo4caJWrlyptLQ0SVL//v2Vk5OjVatWmf20a9dOwcHBWrRoUYl6KQmHwyEfHx9lZ2fLZrOVynWz4sttZ65dBOCW1KtN5bJuoUz8mvRxWbcA4Aap3q1k+aq0lTSvldsx0UeOHFFGRobCw8PNbT4+PgoNDVVycrIkKTk5Wb6+vmaAlqTw8HC5urpqy5YtZk3Hjh3NAC1JdrtdBw4c0G+//WbWXHqewprC85Skl+Lk5ubK4XA4LQAAALj1ldsQnZGRIUny8/Nz2u7n52fuy8jIUK1atZz2V6hQQdWqVXOqKe4Yl57jSjWX7r9WL8WZMWOGfHx8zCUwMPAazxoAAAC3gnIbom8HkyZNUnZ2trn8+OOPZd0SAAAASkG5DdH+/v6SpMzMTKftmZmZ5j5/f3+dOHHCaf/Fixd16tQpp5rijnHpOa5Uc+n+a/VSHA8PD9lsNqcFAAAAt75yG6IbNGggf39/JSUlmdscDoe2bNmisLAwSVJYWJiysrKUkpJi1qxbt04FBQUKDQ01azZu3KgLFy6YNYmJiWrcuLGqVq1q1lx6nsKawvOUpBcAAADcOco0RJ85c0apqalKTU2V9PsH+FJTU3Xs2DG5uLho7NixeuWVV/T5559r9+7dGjx4sAICAswZPJo2baoePXpo5MiR2rp1q7755huNHj1aAwYMUEBAgCTpsccek7u7u4YPH669e/dq2bJlmjt3rmJiYsw+nnnmGSUkJGjWrFlKS0vT1KlTtX37do0ePVqSStQLAAAA7hwVyvLk27dvV5cuXcz1wmAbFRWluLg4Pf/888rJydETTzyhrKwsPfDAA0pISJCnp6f5mCVLlmj06NHq1q2bXF1dFRkZqbfeesvc7+Pjo6+++krR0dEKCQlRjRo1FBsb6zSX9J/+9CctXbpUkydP1gsvvKB77rlHK1euVLNmzcyakvQCAACAO0O5mSf6TsA80QBuFOaJBnC7YZ5oAAAA4DZDiAYAAAAsIkQDAAAAFhGiAQAAAIsI0QAAAIBFhGgAAADAIkI0AAAAYBEhGgAAALCIEA0AAABYRIgGAAAALCJEAwAAABYRogEAAACLCNEAAACARYRoAAAAwCJCNAAAAGARIRoAAACwiBANAAAAWESIBgAAACwiRAMAAAAWEaIBAAAAiwjRAAAAgEWEaAAAAMAiQjQAAABgESEaAAAAsIgQDQAAAFhEiAYAAAAsIkQDAAAAFhGiAQAAAIsI0QAAAIBFhGgAAADAIkI0AAAAYBEhGgAAALCIEA0AAABYRIgGAAAALCJEAwAAABYRogEAAACLCNEAAACARYRoAAAAwCJCNAAAAGARIRoAAACwiBANAAAAWFSuQ/TUqVPl4uLitDRp0sTcf/78eUVHR6t69eqqXLmyIiMjlZmZ6XSMY8eOKSIiQpUqVVKtWrU0fvx4Xbx40alm/fr1atWqlTw8PNSoUSPFxcUV6WX+/PmqX7++PD09FRoaqq1bt96Q5wwAAIDyr1yHaEm67777dPz4cXPZtGmTuW/cuHH64osv9Mknn2jDhg1KT09X3759zf35+fmKiIhQXl6eNm/erMWLFysuLk6xsbFmzZEjRxQREaEuXbooNTVVY8eO1YgRI7RmzRqzZtmyZYqJidGUKVO0Y8cOtWzZUna7XSdOnLg5FwEAAADliothGEZZN3ElU6dO1cqVK5WamlpkX3Z2tmrWrKmlS5eqX79+kqS0tDQ1bdpUycnJateunVavXq3evXsrPT1dfn5+kqRFixZpwoQJOnnypNzd3TVhwgTFx8drz5495rEHDBigrKwsJSQkSJJCQ0PVpk0bzZs3T5JUUFCgwMBAjRkzRhMnTizx83E4HPLx8VF2drZsNtv1Xpbr9uW2Mzf9nABujl5tKpd1C2Xi16SPy7oFADdI9W4DyuS8Jc1r5f5O9MGDBxUQEKC7775bgwYN0rFjxyRJKSkpunDhgsLDw83aJk2aqG7dukpOTpYkJScnq3nz5maAliS73S6Hw6G9e/eaNZceo7Cm8Bh5eXlKSUlxqnF1dVV4eLhZcyW5ublyOBxOCwAAAG595TpEh4aGKi4uTgkJCVq4cKGOHDmiDh066PTp08rIyJC7u7t8fX2dHuPn56eMjAxJUkZGhlOALtxfuO9qNQ6HQ+fOndMvv/yi/Pz8YmsKj3ElM2bMkI+Pj7kEBgZavgYAAAAofyqUdQNX07NnT/PfLVq0UGhoqOrVq6fly5fLy8urDDsrmUmTJikmJsZcdzgcBGkAAIDbQLm+E305X19f3XvvvTp06JD8/f2Vl5enrKwsp5rMzEz5+/tLkvz9/YvM1lG4fq0am80mLy8v1ahRQ25ubsXWFB7jSjw8PGSz2ZwWAAAA3PpuqRB95swZHT58WLVr11ZISIgqVqyopKQkc/+BAwd07NgxhYWFSZLCwsK0e/dup1k0EhMTZbPZFBQUZNZceozCmsJjuLu7KyQkxKmmoKBASUlJZg0AAADuLOU6RD/33HPasGGDjh49qs2bN+uRRx6Rm5ubBg4cKB8fHw0fPlwxMTH6+uuvlZKSoqFDhyosLEzt2rWTJHXv3l1BQUF6/PHHtXPnTq1Zs0aTJ09WdHS0PDw8JElPPvmkvv/+ez3//PNKS0vTggULtHz5co0bN87sIyYmRv/85z+1ePFi7d+/X6NGjVJOTo6GDh1aJtcFAAAAZatcj4n+6aefNHDgQP3666+qWbOmHnjgAX377beqWbOmJGn27NlydXVVZGSkcnNzZbfbtWDBAvPxbm5uWrVqlUaNGqWwsDB5e3srKipK06dPN2saNGig+Ph4jRs3TnPnzlWdOnX03nvvyW63mzX9+/fXyZMnFRsbq4yMDAUHByshIaHIhw0BAABwZyjX80TfbpgnGsCNwjzRAG43zBMNAAAA3GYI0QAAAIBFhGgAAADAIkI0AAAAYBEhGgAAALCIEA0AAABYRIgGAAAALCJEAwAAABYRogEAAACLCNEAAACARYRoAAAAwCJCNAAAAGARIRoAAACwiBANAAAAWESIBgAAACwiRAMAAAAWEaIBAAAAiwjRAAAAgEWEaAAAAMAiQjQAAABgESEaAAAAsIgQDQAAAFhEiAYAAAAsIkQDAAAAFhGiAQAAAIsI0QAAAIBFhGgAAADAIkI0AAAAYBEhGgAAALCIEA0AAABYRIgGAAAALCJEAwAAABYRogEAAACLCNEAAACARYRoAAAAwCJCNAAAAGARIRoAAACwiBANAAAAWESIBgAAACwiRAMAAAAWEaIBAAAAiwjRFs2fP1/169eXp6enQkNDtXXr1rJuCQAAADcZIdqCZcuWKSYmRlOmTNGOHTvUsmVL2e12nThxoqxbAwAAwE1EiLbgzTff1MiRIzV06FAFBQVp0aJFqlSpkt5///2ybg0AAAA3UYWybuBWkZeXp5SUFE2aNMnc5urqqvDwcCUnJxf7mNzcXOXm5prr2dnZkiSHw3Fjm72Cs2fOlMl5Adx4DkdBWbdQJk7nnC3rFgDcIBXLKC8V5jTDMK5aR4guoV9++UX5+fny8/Nz2u7n56e0tLRiHzNjxgxNmzatyPbAwMAb0iMAAMDtY3iZnv306dPy8fG54n5C9A00adIkxcTEmOsFBQU6deqUqlevLhcXlzLsDLc7h8OhwMBA/fjjj7LZbGXdDgD8YXxfw81iGIZOnz6tgICAq9YRokuoRo0acnNzU2ZmptP2zMxM+fv7F/sYDw8PeXh4OG3z9fW9US0CRdhsNv5nA+C2wvc13AxXuwNdiA8WlpC7u7tCQkKUlJRkbisoKFBSUpLCwsLKsDMAAADcbNyJtiAmJkZRUVFq3bq12rZtqzlz5ignJ0dDhw4t69YAAABwExGiLejfv79Onjyp2NhYZWRkKDg4WAkJCUU+bAiUNQ8PD02ZMqXIcCIAuFXxfQ3ljYtxrfk7AAAAADhhTDQAAABgESEaAAAAsIgQDQAAAFhEiAZuM3FxccxHDgDADUaIBsqpIUOGyMXFpchy6NChsm4NAK5bcd/XLl2mTp1a1i0CJcIUd0A51qNHD33wwQdO22rWrFlG3QDAH3f8+HHz38uWLVNsbKwOHDhgbqtcubL5b8MwlJ+frwoViCsof7gTDZRjHh4e8vf3d1rmzp2r5s2by9vbW4GBgXrqqad05syZKx5j586d6tKli6pUqSKbzaaQkBBt377d3L9p0yZ16NBBXl5eCgwM1NNPP62cnJyb8fQA3IEu/X7m4+MjFxcXcz0tLU1VqlTR6tWrFRISIg8PD23atElDhgxRnz59nI4zduxYde7c2VwvKCjQjBkz1KBBA3l5eally5b69NNPb+6Twx2FEA3cYlxdXfXWW29p7969Wrx4sdatW6fnn3/+ivWDBg1SnTp1tG3bNqWkpGjixImqWLGiJOnw4cPq0aOHIiMjtWvXLi1btkybNm3S6NGjb9bTAYAiJk6cqNdee0379+9XixYtSvSYGTNm6MMPP9SiRYu0d+9ejRs3Tn/961+1YcOGG9wt7lT8fgQox1atWuX0q82ePXvqk08+Mdfr16+vV155RU8++aQWLFhQ7DGOHTum8ePHq0mTJpKke+65x9w3Y8YMDRo0SGPHjjX3vfXWW+rUqZMWLlwoT0/PG/CsAODqpk+frgcffLDE9bm5ufr73/+utWvXKiwsTJJ09913a9OmTXrnnXfUqVOnG9Uq7mCEaKAc69KlixYuXGiue3t7a+3atZoxY4bS0tLkcDh08eJFnT9/XmfPnlWlSpWKHCMmJkYjRozQRx99pPDwcP3lL39Rw4YNJf0+1GPXrl1asmSJWW8YhgoKCnTkyBE1bdr0xj9JALhM69atLdUfOnRIZ8+eLRK88/LydP/995dma4CJEA2UY97e3mrUqJG5fvToUfXu3VujRo3Sq6++qmrVqmnTpk0aPny48vLyig3RU6dO1WOPPab4+HitXr1aU6ZM0ccff6xHHnlEZ86c0d/+9jc9/fTTRR5Xt27dG/rcAOBKvL29ndZdXV1lGIbTtgsXLpj/LvxcSHx8vO666y6nOg8PjxvUJe50hGjgFpKSkqKCggLNmjVLrq6/f6Rh+fLl13zcvffeq3vvvVfjxo3TwIED9cEHH+iRRx5Rq1attG/fPqegDgDlTc2aNbVnzx6nbampqebnO4KCguTh4aFjx44xdAM3DR8sBG4hjRo10oULF/T222/r+++/10cffaRFixZdsf7cuXMaPXq01q9frx9++EHffPONtm3bZg7TmDBhgjZv3qzRo0crNTVVBw8e1GeffcYHCwGUK127dtX27dv14Ycf6uDBg5oyZYpTqK5SpYqee+45jRs3TosXL9bhw4e1Y8cOvf3221q8eHEZdo7bGSEauIW0bNlSb775pl5//XU1a9ZMS5Ys0YwZM65Y7+bmpl9//VWDBw/Wvffeq0cffVQ9e/bUtGnTJEktWrTQhg0b9N///lcdOnTQ/fffr9jYWAUEBNyspwQA12S32/XSSy/p+eefV5s2bXT69GkNHjzYqebll1/WSy+9pBkzZqhp06bq0aOH4uPj1aBBgzLqGrc7F+PyQUYAAAAAroo70QAAAIBFhGgAAADAIkI0AAAAYBEhGgAAALCIEA0AAABYRIgGAAAALCJEAwAAABYRogEAAACLCNEAgJvi6NGjcnFxUWpqqiRp/fr1cnFxUVZWVpn2BQDXgxANALeBIUOGqE+fPtf9+BUrVqhdu3by8fFRlSpVdN9992ns2LGl1p8kBQYG6vjx42rWrFmpHhcAykKFsm4AAFC2kpKS1L9/f7366qt66KGH5OLion379ikxMbFUz+Pm5iZ/f/9SPWZeXp7c3d1L9ZgAUBLciQaA29Cnn36q5s2by8vLS9WrV1d4eLhycnKKrf3iiy/Uvn17jR8/Xo0bN9a9996rPn36aP78+WbN1KlTFRwcrHfeeUeBgYGqVKmSHn30UWVnZ5s1BQUFmj59uurUqSMPDw8FBwcrISHB3H/5cI7ibNq0SR06dJCXl5cCAwP19NNPO/Vdv359vfzyyxo8eLBsNpueeOKJP3CVAOD6EaIB4DZz/PhxDRw4UMOGDdP+/fu1fv169e3bV4ZhFFvv7++vvXv3as+ePVc97qFDh7R8+XJ98cUXSkhI0HfffaennnrK3D937lzNmjVL//jHP7Rr1y7Z7XY99NBDOnjwYIn6Pnz4sHr06KHIyEjt2rVLy5Yt06ZNmzR69Ginun/84x9q2bKlvvvuO7300kslOjYAlDYX40rfVQEAt4whQ4YoKytLK1eu1I4dOxQSEqKjR4+qXr1613xsTk6OHn30UX355ZeqV6+e2rVrp+7du2vQoEHy8PCQ9Pud6FdeeUU//PCD7rrrLklSQkKCIiIi9PPPP8vf31933XWXoqOj9cILL5jHbtu2rdq0aaP58+fr6NGjatCggb777jsFBwdr/fr16tKli3777Tf5+vpqxIgRcnNz0zvvvGM+ftOmTerUqZNycnLk6emp+vXr6/7779eKFStK+QoCgDXciQaA20zLli3VrVs3NW/eXH/5y1/0z3/+U7/99tsV6729vRUfH69Dhw5p8uTJqly5sp599lm1bdtWZ8+eNevq1q1rBmhJCgsLU0FBgQ4cOCCHw6H09HS1b9/e6djt27fX/v37S9T3zp07FRcXp8qVK5uL3W5XQUGBjhw5Yta1bt26pJcCAG4YQjQA3Gbc3NyUmJio1atXKygoSG+//bYaN27sFESL07BhQ40YMULvvfeeduzYoX379mnZsmU3qWvpzJkz+tvf/qbU1FRz2blzpw4ePKiGDRuadd7e3jetJwC4EkI0ANyGXFxc1L59e02bNk3fffed3N3dLQ2BqF+/vipVquT0ob5jx44pPT3dXP/222/l6uqqxo0by2azKSAgQN98843Tcb755hsFBQWV6JytWrXSvn371KhRoyILM3AAKG+Y4g4AbjNbtmxRUlKSunfvrlq1amnLli06efKkmjZtWmz91KlTdfbsWfXq1Uv16tVTVlaW3nrrLV24cEEPPvigWefp6amoqCj94x//kMPh0NNPP61HH33UnLZu/PjxmjJliho2bKjg4GB98MEHSk1N1ZIlS0rU94QJE9SuXTuNHj1aI0aMkLe3tznV3rx58/74hQGAUkSIBoDbjM1m08aNGzVnzhw5HA7Vq1dPs2bNUs+ePYut79Spk+bPn6/BgwcrMzNTVatW1f3336+vvvpKjRs3NusaNWqkvn37qlevXjp16pR69+6tBQsWmPuffvppZWdn69lnn9WJEycUFBSkzz//XPfcc0+J+m7RooU2bNigF198UR06dJBhGGrYsKH69+//xy4IANwAzM4BALimqVOnauXKlVed4xkA7iSMiQYAAAAsIkQDAAAAFjGcAwAAALCIO9EAAACARYRoAAAAwCJCNAAAAGARIRoAAACwiBANAAAAWESIBgAAACwiRAMAAAAWEaIBAAAAi/4fZgWSnMzTET0AAAAASUVORK5CYII=",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "/opt/conda/lib/python3.10/site-packages/seaborn/_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n",
+ " with pd.option_context('mode.use_inf_as_na', True):\n"
+ ]
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2wAAAIjCAYAAAB/FZhcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB7bElEQVR4nO3dd3hUZd7G8XsmZdITICQhQApNehEUURBUVlAsqOtaUAGxwyrgIur6YtuFFRXByqqrqCuKuIquuEhHREQNvfdmCISSSvo87x9xBoYESMJMZpJ8P15zmTnnmXN+c5LA3DzlWIwxRgAAAAAAn2P1dgEAAAAAgPIR2AAAAADARxHYAAAAAMBHEdgAAAAAwEcR2AAAAADARxHYAAAAAMBHEdgAAAAAwEcR2AAAAADARxHYAAAAAMBHEdgAoIZ55plnZLFYquVcffr0UZ8+fZzPFy9eLIvFos8//7xazj9kyBAlJSVVy7mqKicnR/fcc4/i4uJksVg0cuRIb5dUrqSkJA0ZMsTbZdRYjt+7w4cPe7sUAHUMgQ0AvGjatGmyWCzOR1BQkOLj49WvXz+9+uqrys7Odst5UlNT9cwzz2j16tVuOZ47+XJtFTF+/HhNmzZNDz74oD766CPdeeedp22blJTk8v0ODQ3VhRdeqA8//LAaK/ae3bt3y2Kx6KWXXvJ2Kac1fvx4zZo1y9tlAICTv7cLAABIzz33nJKTk1VUVKS0tDQtXrxYI0eO1KRJk/T111+rY8eOzrZPPfWUHn/88UodPzU1Vc8++6ySkpLUuXPnCr9u7ty5lTpPVZyptnfeeUd2u93jNZyLhQsX6qKLLtLTTz9dofadO3fWo48+Kkk6cOCA3n33XQ0ePFgFBQW69957PVbnli1bZLXy77RnM378eP3xj3/UwIEDvV0KAEgisAGAT7jqqqvUrVs35/MnnnhCCxcu1DXXXKPrrrtOmzZtUnBwsCTJ399f/v6e/eP7+PHjCgkJUWBgoEfPczYBAQFePX9FHDp0SG3btq1w+8aNG+uOO+5wPh8yZIiaNWumV155xaOBzWazeezYAADP4Z/aAMBHXX755fq///s/7dmzR//+97+d28ubwzZv3jz17NlTUVFRCgsL03nnnacnn3xSUum8swsuuECSNHToUOdwvGnTpkkqnafWvn17paSk6NJLL1VISIjztafOYXMoKSnRk08+qbi4OIWGhuq6667Tvn37XNqcbs7Uycc8W23lzWHLzc3Vo48+qqZNm8pms+m8887TSy+9JGOMSzuLxaIRI0Zo1qxZat++vWw2m9q1a6c5c+aUf8FPcejQIQ0bNkyxsbEKCgpSp06d9MEHHzj3O+bz7dq1S7Nnz3bWvnv37god36Fhw4Zq3bq1duzY4bLdbrdr8uTJateunYKCghQbG6v7779fx44dc7a55ppr1KxZs3KP26NHD5d/BCjv+5GRkaGRI0c6r2WLFi30wgsvuPRqnn/++brxxhtdXtehQwdZLBatXbvWuW3GjBmyWCzatGlTpd5/eQoKCvT000+rRYsWstlsatq0qR577DEVFBS4tKvM93jx4sXq1q2bgoKC1Lx5c/3zn/8s87tksViUm5urDz74wPn9LO+aDRkyRFFRUYqMjNTQoUN1/PhxlzZn+n0EgMqihw0AfNidd96pJ598UnPnzj1t78uGDRt0zTXXqGPHjnruuedks9m0fft2LVu2TJLUpk0bPffccxo3bpzuu+8+9erVS5J08cUXO49x5MgRXXXVVbr11lt1xx13KDY29ox1/f3vf5fFYtHYsWN16NAhTZ48WX379tXq1audPYEVUZHaTmaM0XXXXadFixZp2LBh6ty5s7777juNGTNGv/32m1555RWX9j/88IO++OILPfTQQwoPD9err76qm266SXv37lWDBg1OW1deXp769Omj7du3a8SIEUpOTtbMmTM1ZMgQZWRk6JFHHlGbNm300UcfadSoUWrSpIlzmGPDhg0r/P4lqbi4WPv371e9evVctt9///2aNm2ahg4dqocffli7du3S66+/rlWrVmnZsmUKCAjQLbfcorvuuku//PKLM/hK0p49e/TTTz/pxRdfPO15jx8/rt69e+u3337T/fffr4SEBP3444964okndODAAU2ePFmS1KtXL33yySfO1x09elQbNmyQ1WrV0qVLncN1ly5dqoYNG6pNmzaVev+nstvtuu666/TDDz/ovvvuU5s2bbRu3Tq98sor2rp1a5n5ZRX5Hq9atUr9+/dXo0aN9Oyzz6qkpETPPfdcme/VRx99pHvuuUcXXnih7rvvPklS8+bNXdr86U9/UnJysiZMmKCVK1fq3XffVUxMjF544QVJZ/99BIBKMwAAr3n//feNJPPLL7+ctk1kZKTp0qWL8/nTTz9tTv7j+5VXXjGSTHp6+mmP8csvvxhJ5v333y+zr3fv3kaSmTp1arn7evfu7Xy+aNEiI8k0btzYZGVlObd/9tlnRpKZMmWKc1tiYqIZPHjwWY95ptoGDx5sEhMTnc9nzZplJJm//e1vLu3++Mc/GovFYrZv3+7cJskEBga6bFuzZo2RZF577bUy5zrZ5MmTjSTz73//27mtsLDQ9OjRw4SFhbm898TERDNgwIAzHu/ktldeeaVJT0836enpZt26debOO+80kszw4cOd7ZYuXWokmY8//tjl9XPmzHHZnpmZaWw2m3n00Udd2k2cONFYLBazZ88el3Of/P14/vnnTWhoqNm6davLax9//HHj5+dn9u7da4wxZubMmUaS2bhxozHGmK+//trYbDZz3XXXmVtuucX5uo4dO5obbrjhjO9/165dRpJ58cUXT9vmo48+Mlar1SxdutRl+9SpU40ks2zZMue2in6Pr732WhMSEmJ+++0357Zt27YZf39/c+pHodDQ0HJ/bh2/d3fffbfL9htuuME0aNDA+bwiv48AUBkMiQQAHxcWFnbG1SKjoqIkSV999VWVF+iw2WwaOnRohdvfddddCg8Pdz7/4x//qEaNGunbb7+t0vkr6ttvv5Wfn58efvhhl+2PPvqojDH63//+57K9b9++Lj0kHTt2VEREhHbu3HnW88TFxem2225zbgsICNDDDz+snJwcLVmypMrvYe7cuWrYsKEaNmyoDh066KOPPtLQoUNdesNmzpypyMhI/eEPf9Dhw4edj65duyosLEyLFi2SJEVEROiqq67SZ5995jIkdMaMGbrooouUkJBw2jpmzpypXr16qV69ei7n6Nu3r0pKSvT9999LkrPX0/F86dKluuCCC/SHP/xBS5culVQ6THD9+vXOtudi5syZatOmjVq3bu1S1+WXXy5JzvfucLbvcUlJiebPn6+BAwcqPj7e2a5Fixa66qqrKl3fAw884PK8V69eOnLkiLKysiS55/cRAE5GYAMAH5eTk+MSjk51yy236JJLLtE999yj2NhY3Xrrrfrss88q9WGxcePGlVpgpGXLli7PLRaLWrRoUen5W5W1Z88excfHl7kejmF4e/bscdleXmCpV6+eyzyw052nZcuWZVZVPN15KqN79+6aN2+e5syZo5deeklRUVE6duyYy/Xftm2bMjMzFRMT4wx3jkdOTo4OHTrkbHvLLbdo3759Wr58uSRpx44dSklJ0S233HLGOrZt26Y5c+aUOX7fvn0lyXmO2NhYtWzZ0hnOli5dql69eunSSy9Vamqqdu7cqWXLlslut7slsG3btk0bNmwoU1erVq1c6nI42/f40KFDysvLU4sWLcq0K2/b2Zx6PsdQVsf53PH7CAAnYw4bAPiw/fv3KzMz84wfLIODg/X9999r0aJFmj17tubMmaMZM2bo8ssv19y5c+Xn53fW81Rm3llFne7m3iUlJRWqyR1Odx5zygIl1Sk6OtoZivr166fWrVvrmmuu0ZQpUzR69GhJpfO4YmJi9PHHH5d7jJPnXl177bUKCQnRZ599posvvlifffaZrFarbr755jPWYbfb9Yc//EGPPfZYufsdAUmSevbsqQULFigvL08pKSkaN26c2rdvr6ioKC1dulSbNm1SWFiYunTpUqlrcbq6OnTooEmTJpW7v2nTpi7Pq/t7fLbzueP3EQBORmADAB/20UcfSSr9YH8mVqtVV1xxha644gpNmjRJ48eP11//+lctWrRIffv2PW14qqpt27a5PDfGaPv27S73i6tXr54yMjLKvHbPnj0uKxtWprbExETNnz9f2dnZLr1smzdvdu53h8TERK1du1Z2u92ll83d55GkAQMGqHfv3ho/frzuv/9+hYaGqnnz5po/f74uueSSs4bp0NBQXXPNNZo5c6YmTZqkGTNmqFevXi7D/8rTvHlz5eTkOMPjmfTq1Uvvv/++Pv30U5WUlOjiiy+W1WpVz549nYHt4osvdksYad68udasWaMrrrjCLT+3MTExCgoK0vbt28vsK2+bO855tt9HAKgMhkQCgI9auHChnn/+eSUnJ2vQoEGnbXf06NEy2xw3oHYsgx4aGipJ5Qaoqvjwww9d5tV9/vnnOnDggMucoObNm+unn35SYWGhc9s333xTZvn/ytR29dVXq6SkRK+//rrL9ldeeUUWi6VKc5JOd560tDTNmDHDua24uFivvfaawsLC1Lt3b7ecx2Hs2LE6cuSI3nnnHUmlKxGWlJTo+eefL9O2uLi4zLW65ZZblJqaqnfffVdr1qw563BIxzmWL1+u7777rsy+jIwMFRcXO587hjq+8MIL6tixoyIjI53bFyxYoF9//dUtwyEddf3222/Oa3GyvLw85ebmVup4fn5+6tu3r2bNmqXU1FTn9u3bt5eZ8yiV/jyey+9JRX4fAaAy6GEDAB/wv//9T5s3b1ZxcbEOHjyohQsXat68eUpMTNTXX3+toKCg0772ueee0/fff68BAwYoMTFRhw4d0ptvvqkmTZqoZ8+ekkrDU1RUlKZOnarw8HCFhoaqe/fuSk5OrlK99evXV8+ePTV06FAdPHhQkydPVosWLVxuPXDPPffo888/V//+/fWnP/1JO3bs0L///e8yy6RXprZrr71Wl112mf76179q9+7d6tSpk+bOnauvvvpKI0eOLHPsqrrvvvv0z3/+U0OGDFFKSoqSkpL0+eefa9myZZo8efIZ5xRWxVVXXaX27dtr0qRJGj58uHr37q37779fEyZM0OrVq3XllVcqICBA27Zt08yZMzVlyhT98Y9/dL7+6quvVnh4uP7yl7/Iz89PN91001nPOWbMGH399de65pprNGTIEHXt2lW5ublat26dPv/8c+3evVvR0dGSSud6xcXFacuWLfrzn//sPMall16qsWPHSlKlAtuCBQuUn59fZvvAgQN155136rPPPtMDDzygRYsW6ZJLLlFJSYk2b96szz77TN99953L/eUq4plnntHcuXN1ySWX6MEHH3SG/vbt22v16tUubbt27ar58+dr0qRJio+PV3Jysrp3717hc1Xk9xEAKsWbS1QCQF3nWNbf8QgMDDRxcXHmD3/4g5kyZYrL8vEOpy7rv2DBAnP99deb+Ph4ExgYaOLj481tt91WZrn2r776yrRt29a5lLljGf3evXubdu3alVvf6Zb1/+STT8wTTzxhYmJiTHBwsBkwYIDLEvIOL7/8smncuLGx2WzmkksuMb/++muZY56ptlOX9TfGmOzsbDNq1CgTHx9vAgICTMuWLc2LL75o7Ha7SzudslS+w+luN3CqgwcPmqFDh5ro6GgTGBhoOnToUO6tByq7rP/p2k6bNq3M7Q3efvtt07VrVxMcHGzCw8NNhw4dzGOPPWZSU1PLvH7QoEFGkunbt+9pz33q+87OzjZPPPGEadGihQkMDDTR0dHm4osvNi+99JIpLCx0aXvzzTcbSWbGjBnObYWFhSYkJMQEBgaavLy8s75/x7L+p3t89NFHzuO+8MILpl27dsZms5l69eqZrl27mmeffdZkZmY6j1eZ7/GCBQtMly5dTGBgoGnevLl59913zaOPPmqCgoJc2m3evNlceumlJjg42EhyHsfxe3fqcv2O3+Fdu3Y5z1OR30cAqCiLMV6ceQ0AAOAlAwcO1IYNG8rMyQQAX8IcNgAAUOvl5eW5PN+2bZu+/fZb9enTxzsFAUAF0cMGAABqvUaNGmnIkCFq1qyZ9uzZo7feeksFBQVatWpVmfsKAoAvYdERAABQ6/Xv31+ffPKJ0tLSZLPZ1KNHD40fP56wBsDn0cMGAAAAAD6KOWwAAAAA4KMIbAAAAADgo5jDVo3sdrtSU1MVHh4ui8Xi7XIAAAAAeIkxRtnZ2YqPj5fVevp+NAJbNUpNTVXTpk29XQYAAAAAH7Fv3z41adLktPsJbNUoPDxcUuk3JSIiwsvVAAAAAPCWrKwsNW3a1JkRTofAVo0cwyAjIiIIbAAAAADOOlWKRUcAAAAAwEcR2AAAAADARxHYAAAAAMBHEdgAAAAAwEcR2AAAAADARxHYAAAAAMBHEdgAAAAAwEcR2AAAAADARxHYAAAAAMBHEdgAAAAAwEcR2AAAAADARxHYAAAAAMBHEdgAAAAAwEcR2AAAAADARxHYAAAAAMBHEdgAAAAAwEcR2AAAAADARxHY4BWZ+zKVuS/T22UAAAAAPo3AhmpXUlSidy54R293fVsF2QXeLgcAAADwWQQ2VLv8jHzlHszV8fTj2v6/7d4uBwAAAPBZBDZUu6LjRc6vN/1nkxcrAQAAAHwbgQ3V7uTAtnX2VhXlFZ2hNQAAAFB3EdhQ7Ypyi1y+3jlvpxerAQAAAHwXgQ3V7uQeNolhkQAAAMDpENhQ7RyBzRpQ+uO35estKikq8WZJAAAAgE8isKHaOQJbfLd4hcaEKj8jX7sX7fZuUQAAAIAPIrCh2hXmFkqSbOE2tb6htSRp4382erMkAAAAwCcR2FDtHD1sASEBanNjG0nSlllbZC+xe7MsAAAAwOcQ2FDtTg5sSZclKahekHIP5Wrfsn1ergwAAADwLQQ2VDtHYPMP8ZdfgJ/Ou/Y8SdK2b7d5sywAAADA5xDYUO0c92ELDA2UJEW3jZYk5aTleK0mAAAAwBcR2FDtTh4SKUlBkUGSpILMAq/VBAAAAPgiAhuq3amBzRZpkyTlZ+Z7rSYAAADAFxHYUO3K9LBF0cMGAAAAlIfAhmrnmMMWEOo6JJIeNgAAAMAVgQ3V7rRDIjMIbAAAAMDJCGyodmdadMQY47W6AAAAAF9DYEO1O10Pm73YruK8Yq/VBQAAAPgaAhuqXWFuoaQT92ELDAuUxWqRxDw2AAAA4GQENlS7U3vYLBaLbBGlvWysFAkAAACcQGBDtTs1sEnciw0AAAAoD4EN1a68wMa92AAAAICyCGyoVsZunAuLuAQ27sUGAAAAlEFgQ7Uqyityfu24cbbEvdgAAACA8hDYUK0cwyElKSC4bA8bQyIBAACAEwhsqFaOwOYf5O9cyl9i0REAAACgPAQ2VKvyFhyRTgQ2etgAAACAEwhsqFZFub8HtlDXwMaQSAAAAKAsAhuq1dl62BgSCQAAAJxAYEO1Ol1g4z5sAAAAQFkENlSr0wY27sMGAAAAlEFgQ7UqzC2UJAWGBrps5z5sAAAAQFkENlSrs/WwMSQSAAAAOIHAhmpVkUVHjDHVXhcAAADgiwhsqFbOG2eH+Ltsd/SwmRLjbAMAAADUdV4NbBMmTNAFF1yg8PBwxcTEaODAgdqyZYtLmz59+shisbg8HnjgAZc2e/fu1YABAxQSEqKYmBiNGTNGxcXFLm0WL16s888/XzabTS1atNC0adPK1PPGG28oKSlJQUFB6t69u37++WeX/fn5+Ro+fLgaNGigsLAw3XTTTTp48KB7LkYd4bgP26lz2AJCA2Txs0hiWCQAAADg4NXAtmTJEg0fPlw//fST5s2bp6KiIl155ZXKzc11aXfvvffqwIEDzsfEiROd+0pKSjRgwAAVFhbqxx9/1AcffKBp06Zp3Lhxzja7du3SgAEDdNlll2n16tUaOXKk7rnnHn333XfONjNmzNDo0aP19NNPa+XKlerUqZP69eunQ4cOOduMGjVK//3vfzVz5kwtWbJEqampuvHGGz14hWqf0w2JtFgsskVwLzYAAADgZP5nb+I5c+bMcXk+bdo0xcTEKCUlRZdeeqlze0hIiOLi4so9xty5c7Vx40bNnz9fsbGx6ty5s55//nmNHTtWzzzzjAIDAzV16lQlJyfr5ZdfliS1adNGP/zwg1555RX169dPkjRp0iTde++9Gjp0qCRp6tSpmj17tt577z09/vjjyszM1L/+9S9Nnz5dl19+uSTp/fffV5s2bfTTTz/poosucvv1qY1OF9ik0nux5R/Lp4cNAAAA+J1PzWHLzMyUJNWvX99l+8cff6zo6Gi1b99eTzzxhI4fP+7ct3z5cnXo0EGxsbHObf369VNWVpY2bNjgbNO3b1+XY/br10/Lly+XJBUWFiolJcWljdVqVd++fZ1tUlJSVFRU5NKmdevWSkhIcLY5VUFBgbKyslwedd0ZAxv3YgMAAABceLWH7WR2u10jR47UJZdcovbt2zu333777UpMTFR8fLzWrl2rsWPHasuWLfriiy8kSWlpaS5hTZLzeVpa2hnbZGVlKS8vT8eOHVNJSUm5bTZv3uw8RmBgoKKiosq0cZznVBMmTNCzzz5byStRuznmsAWElg1s3IsNAAAAcOUzgW348OFav369fvjhB5ft9913n/PrDh06qFGjRrriiiu0Y8cONW/evLrLrJQnnnhCo0ePdj7PyspS06ZNvViR91Wkh40hkQAAAEApnxgSOWLECH3zzTdatGiRmjRpcsa23bt3lyRt375dkhQXF1dmpUbHc8e8t9O1iYiIUHBwsKKjo+Xn51dum5OPUVhYqIyMjNO2OZXNZlNERITLo647U2A7+V5sAAAAALwc2IwxGjFihL788kstXLhQycnJZ33N6tWrJUmNGjWSJPXo0UPr1q1zWc1x3rx5ioiIUNu2bZ1tFixY4HKcefPmqUePHpKkwMBAde3a1aWN3W7XggULnG26du2qgIAAlzZbtmzR3r17nW1wdhUJbPSwAQAAAKW8OiRy+PDhmj59ur766iuFh4c754JFRkYqODhYO3bs0PTp03X11VerQYMGWrt2rUaNGqVLL71UHTt2lCRdeeWVatu2re68805NnDhRaWlpeuqppzR8+HDZbKUB4IEHHtDrr7+uxx57THfffbcWLlyozz77TLNnz3bWMnr0aA0ePFjdunXThRdeqMmTJys3N9e5amRkZKSGDRum0aNHq379+oqIiNCf//xn9ejRgxUiK6Ewt1BS2fuwSSw6AgAAAJzKq4HtrbfeklR6c+yTvf/++xoyZIgCAwM1f/58Z3hq2rSpbrrpJj311FPOtn5+fvrmm2/04IMPqkePHgoNDdXgwYP13HPPOdskJydr9uzZGjVqlKZMmaImTZro3XffdS7pL0m33HKL0tPTNW7cOKWlpalz586aM2eOy0Ikr7zyiqxWq2666SYVFBSoX79+evPNNz10dWonetgAAACAirMYY4y3i6grsrKyFBkZqczMzDo7n21i9ETlHcnTQxseUsO2DV32pbyTom/u+0bnXXeebv3qVi9VCAAAAHheRbOBTyw6grqD+7ABAAAAFUdgQ7UxdqPivGJJZ1klkvuwAQAAAJIIbKhGRXlFzq/Lu3E292EDAAAAXBHYUG0cwyElKSCY+7ABAAAAZ0NgQ7VxBDb/IH9ZrJYy+509bFkFYi0cAAAAgMCGanSmBUekEz1spsSoKLeo3DYAAABAXUJgQ7VxhLDy5q9JpUHO4lfa88awSAAAAIDAhmp0th42i8XCwiMAAADASQhsqDZnC2ySFBTFvdgAAAAABwIbqk1FAhv3YgMAAABOILCh2hTmFkqSAkMDT9uGIZEAAADACQQ2VJtK9bAxJBIAAAAgsKH6VGgOGz1sAAAAgBOBDdXGeePsEP/TtqGHDQAAADiBwIZq47gP25nmsDkCGz1sAAAAAIEN1YghkQAAAEDlENhQbbgPGwAAAFA5BDZUG+7DBgAAAFQOgQ3VxjGHLSCUIZEAAABARRDYUG24DxsAAABQOQQ2VBsWHQEAAAAqh8CGalOZHraCrAIZY6qlLgAAAMBXEdhQbQpzCyWd+T5sjh42YzcqzCmslroAAAAAX0VgQ7WpSA+bf7C/rAGlP5asFAkAAIC6jsCGalORwGaxWE7ci43ABgAAgDqOwIZqU5HAJknB9YIlEdgAAAAAAhuqhbEbFecVSzp7YHP2sB0jsAEAAKBuI7ChWhTlFTm/PtONsyUpqF5pYMs7lufRmgAAAABfR2BDtXAMh5SkgOAK9rAxJBIAAAB1HIEN1cIR2PyD/GWxWs7Y1tHDxpBIAAAA1HUENlSLii44IrHoCAAAAOBAYEO1KMr9PbCdZf6axKIjAAAAgAOBDdWiMj1sLDoCAAAAlCKwoVpUKrCx6AgAAAAgSfL3dgGovfbu3avDhw9Lkg6sPyBJKrAXaOXKlWd8XfrhdEnSsdRjp20bHR2thIQEN1YLAAAA+B4CGzxi7969atO6jY7nHZckdVRH3agb9cuaX/RI10fO+NpGaqT7db/279ivrl27ltsmJDhEmzZvIrQBAACgViOwwSMOHz6s43nH9eQNTyqxYaJyN+Yq64cstUtqp39e+c8zvrY4q1jpn6Yryj9K/7y7bNs96Xs0/svxOnz4MIENAAAAtRqBDR6V2DBRrRq10v7d+5WlLEWGR6pVo1ZnfE1RVJHSlS5TbNQipoWsfky1BAAAQN3EJ2FUi5KiEkmS1f/sP3L+thP/jlCcX+yxmgAAAABfR2BDtXAENr9Av7O2tVgt8rOVtiOwAQAAoC4jsKFa2IvskiRrQMV+5PyDSnvZCGwAAACoywhsqBaOwObnf/YeNumkwJZHYAMAAEDdRWBDtbCXlAY2i7+lQu39g+lhAwAAAAhsqBb24t+HRFZg0RFJCggKkERgAwAAQN1GYEO1cPSwVXSJfoZEAgAAAAQ2VBNTbCRVvIeNRUcAAAAAAhuqiXNIZEV72JjDBgAAABDYUD2cQyIr2cNWlF/ksZoAAAAAX0dgQ7Vw9LBVeJVIhkQCAAAABDZUj0oPiWTREQAAAIDAhuphSiq56Ahz2AAAAAACG6pHZe/DxpBIAAAAgMCGauJYdMTiV/k5bMYYj9UFAAAA+DICG6pFZXvYAoIDSr8wUklhiafKAgAAAHwagQ3VorKBzepvdfbGsfAIAAAA6ioCGzzOGHNi0ZEKrhIpnehlYx4bAAAA6ioCGzzO2E/MQatoD5vEwiMAAAAAgQ0e5xgOKVV80RGJe7EBAAAABDZ43MmBrVI9bNyLDQAAAHUcgQ0e55i/ZrFaZLFUvoetKL/II3UBAAAAvo7ABo+r7AqRDgyJBAAAQF1HYIPHnXNgY0gkAAAA6igCGzzOXlIa2Cqz4IhEYAMAAAAIbPC4KvewsegIAAAA6jgCGzzOGdgqcdNsSQoI4sbZAAAAqNsIbPA4xyqRle1h8wvyk8SiIwAAAKi7CGzwOEcPm8W/cnPYAoLpYQMAAEDdRmCDxzkWHanskEgWHQEAAEBdR2CDx53rsv72YrvzGAAAAEBd4tXANmHCBF1wwQUKDw9XTEyMBg4cqC1btri0yc/P1/Dhw9WgQQOFhYXppptu0sGDB13a7N27VwMGDFBISIhiYmI0ZswYFRe79sosXrxY559/vmw2m1q0aKFp06aVqeeNN95QUlKSgoKC1L17d/3888+VrgVlmeIqzmGz+Um/j6Kklw0AAAB1kVcD25IlSzR8+HD99NNPmjdvnoqKinTllVcqNzfX2WbUqFH673//q5kzZ2rJkiVKTU3VjTfe6NxfUlKiAQMGqLCwUD/++KM++OADTZs2TePGjXO22bVrlwYMGKDLLrtMq1ev1siRI3XPPffou+++c7aZMWOGRo8eraefflorV65Up06d1K9fPx06dKjCtaB8VR0SabFY5G8r7WUryitye10AAACAr7MYY4y3i3BIT09XTEyMlixZoksvvVSZmZlq2LChpk+frj/+8Y+SpM2bN6tNmzZavny5LrroIv3vf//TNddco9TUVMXGxkqSpk6dqrFjxyo9PV2BgYEaO3asZs+erfXr1zvPdeuttyojI0Nz5syRJHXv3l0XXHCBXn/9dUmS3W5X06ZN9ec//1mPP/54hWo5m6ysLEVGRiozM1MRERFuvXa+ZuXKleratav+ed8/FbwrWDvn7VRMxxi1uaFNpY6z4tUVyj+Wr853d1Zk00hJ0tYDW3X/2/crJSVF559/vifKBwAAADyqotnAp+awZWZmSpLq168vSUpJSVFRUZH69u3rbNO6dWslJCRo+fLlkqTly5erQ4cOzrAmSf369VNWVpY2bNjgbHPyMRxtHMcoLCxUSkqKSxur1aq+ffs621SkllMVFBQoKyvL5VEXVfU+bBILjwAAAKBu85nAZrfbNXLkSF1yySVq3769JCktLU2BgYGKiopyaRsbG6u0tDRnm5PDmmO/Y9+Z2mRlZSkvL0+HDx9WSUlJuW1OPsbZajnVhAkTFBkZ6Xw0bdq0glejdnEOiazkHDaJwAYAAIC6zWcC2/Dhw7V+/Xp9+umn3i7FbZ544gllZmY6H/v27fN2SV7hXHSkKj1swb8HNm6eDQAAgDrI39sFSNKIESP0zTff6Pvvv1eTJk2c2+Pi4lRYWKiMjAyXnq2DBw8qLi7O2ebU1RwdKzee3ObU1RwPHjyoiIgIBQcHy8/PT35+fuW2OfkYZ6vlVDabTTabrRJXonaq6o2zJTkXHaGHDQAAAHWRV3vYjDEaMWKEvvzySy1cuFDJycku+7t27aqAgAAtWLDAuW3Lli3au3evevToIUnq0aOH1q1b57Ka47x58xQREaG2bds625x8DEcbxzECAwPVtWtXlzZ2u10LFixwtqlILSjfOQ2JDCawAQAAoO7yag/b8OHDNX36dH311VcKDw93zgWLjIxUcHCwIiMjNWzYMI0ePVr169dXRESE/vznP6tHjx7OVRmvvPJKtW3bVnfeeacmTpyotLQ0PfXUUxo+fLizd+uBBx7Q66+/rscee0x33323Fi5cqM8++0yzZ8921jJ69GgNHjxY3bp104UXXqjJkycrNzdXQ4cOddZ0tlpQvqou6y9JAUEBkhgSCQAAgLrJq4HtrbfekiT16dPHZfv777+vIUOGSJJeeeUVWa1W3XTTTSooKFC/fv305ptvOtv6+fnpm2++0YMPPqgePXooNDRUgwcP1nPPPedsk5ycrNmzZ2vUqFGaMmWKmjRponfffVf9+vVztrnllluUnp6ucePGKS0tTZ07d9acOXNcFiI5Wy0oX1VvnC2d6GHjPmwAAACoi3zqPmy1XV29D1vR90U6vPmwWl7dUvEXxFfqOIc3HdaGzzYoommEutzdRRL3YQMAAEDNVyPvw4ba6VzmsAWElg6JLMqlhw0AAAB1D4ENHncuq0Q6AlthbqFbawIAAABqAgIbPM4R2Kqy6EhgaKAkqaSgxHkcAAAAoK4gsMHjTEnVFx3xs/nJYi3tmaOXDQAAAHUNgQ0e5+xhq0Jgs1gszGMDAABAnUVgg8c5Fh2x+FV+Dpt0YlgkPWwAAACoawhs8Lhz6WGTWCkSAAAAdReBDR53roHN0cNGYAMAAEBdQ2CDxzkXHanCKpESS/sDAACg7iKwwePcNiTyOD1sAAAAqFsIbPAoY8yJG2ez6AgAAABQKQQ2eJY58SWLjgAAAACVQ2CDRznmr0ksOgIAAABUFoENnlVy4kt3LDpijDlLawAAAKD2ILDBoxw9bBarRRZr1eawBYQEOI9VUlhyltYAAABA7UFgg0c5A1sVFxyRJL8AP/kF+kliWCQAAADqFgIbPMp5D7Yqzl9z4F5sAAAAqIsIbPCs30cwVnX+mgMrRQIAAKAuIrDBo9zVw8a92AAAAFAXEdjgUW4bEhlCDxsAAADqHgIbPMte+r9zWXRE4l5sAAAAqJsIbPAoU8yiIwAAAEBVEdjgUcbu3jls9LABAACgLiGwwaOcc9jctEokPWwAAACoSwhs8Kzfl/W3+J/bHDaW9QcAAEBdRGCDR7l7Wf+i40XOYZYAAABAbUdgg0e5bUjk78v6S5K9wH5OxwIAAABqCgIbPOv3IZHnGtgsVov8g/0lSfY8AhsAAADqBgIbPMpdQyKlE8Mi7fkENgAAANQNBDZ4lCOwneuiI9KJhUfoYQMAAEBdQWCDZ7lpSKR0Ug8bgQ0AAAB1BIENHuWuG2dL9LABAACg7iGwwaNMsXtWiZQIbAAAAKh7CGzwKHf2sDmGRJbkl5zzsQAAAICagMAGz/o9W7HoCAAAAFB5BDZ4lLtunC2x6AgAAADqHgIbPMqd92Gjhw0AAAB1DYENnuVY1t+Nc9hMkZG//M/5eAAAAICvI7DBo5w3zvY79zlsfjY/WaylxwlRyDkfDwAAAPB1BDZ4lDuHRFosFuewyDCFnfPxAAAAAF9HYINHuTOwSZIt3CZJCle4W44HAAAA+DICGzzr9/VB3LFKpCQFhpfOYyOwAQAAoC4gsMGjTLFnetgiFOGW4wEAAAC+jMAGjzJ29y06IkmBEfSwAQAAoO4gsMGz3Lisv8QcNgAAANQtBDZ4lLsXHXHMYWNIJAAAAOoCAhs8xiqrZH7/2k2Ljtgi6GEDAABA3UFgg8f4yc/5tbuHRAYrWMV5xW45JgAAAOCrCGzwGH/5O792V2Dzs/nJ4l+6gEnB4QK3HBMAAADwVVX6FL1z505314FayNnDZpEsVvesEmmxWGQNLf2xzTuU55ZjAgAAAL6qSoGtRYsWuuyyy/Tvf/9b+fn57q4JtYSjh81d89cc/EJKg2BBOj1sAAAAqN2q9El65cqV6tixo0aPHq24uDjdf//9+vnnn91dG2o4Z2Bz03BIB0cPW/4h/rEAAAAAtVuVPkl37txZU6ZMUWpqqt577z0dOHBAPXv2VPv27TVp0iSlp6e7u07UQI4hke4ObI4etrx0hkQCAACgdjunT9L+/v668cYbNXPmTL3wwgvavn27/vKXv6hp06a66667dODAAXfViRrI0cNm8XPP/DUHv9DSwEYPGwAAAGq7cwpsv/76qx566CE1atRIkyZN0l/+8hft2LFD8+bNU2pqqq6//np31YkayONDItMJbAAAAKjd/M/epKxJkybp/fff15YtW3T11Vfrww8/1NVXXy2rtfSDdHJysqZNm6akpCR31ooaxtNDIglsAAAAqO2qFNjeeust3X333RoyZIgaNWpUbpuYmBj961//OqfiULN5apVIRw9bQXqBjDGyWNw75BIAAADwFVUKbNu2bTtrm8DAQA0ePLgqh0ct4ZzD5u/mOWy/97DZi+zKO5KnkOgQtx4fAAAA8BVV6vp4//33NXPmzDLbZ86cqQ8++OCci0Lt4KkhkRY/i3KVK0nK+i3LrccGAAAAfEmVPklPmDBB0dHRZbbHxMRo/Pjx51wUagdPDYmUpCyVBrXs37LdfmwAAADAV1Tpk/TevXuVnJxcZntiYqL27t17zkWhdvBUD5skZas0qGWnEtgAAABQe1Xpk3RMTIzWrl1bZvuaNWvUoEGDcy4KtYMne9gcgY0hkQAAAKjNqvRJ+rbbbtPDDz+sRYsWqaSkRCUlJVq4cKEeeeQR3Xrrre6uETWUp+7DJjEkEgAAAHVDlVaJfP7557V7925dccUV8vcvPYTdbtddd93FHDY4OYZEWvzcv+y+c0gkgQ0AAAC1WJUCW2BgoGbMmKHnn39ea9asUXBwsDp06KDExER314cazJM9bMxhAwAAQF1QpcDm0KpVK7Vq1cpdtaCWqY4hkcxhAwAAQG1WpcBWUlKiadOmacGCBTp06JDsdrvL/oULF7qlONRszlUiPbjoyPH04youKJa/7Zz+7QEAAADwSVX6lPvII49o2rRpGjBggNq3by+Lxf1zlFDzOXrYLP7u//k4ruOyBlhlL7IrJy1HUYlRbj8HAAAA4G1VCmyffvqpPvvsM1199dXurge1iCeX9ZckW0Ob8lLzlP1bNoENAAAAtVKVPkkHBgaqRYsW53zy77//Xtdee63i4+NlsVg0a9Ysl/1DhgyRxWJxefTv39+lzdGjRzVo0CBFREQoKipKw4YNU05OjkubtWvXqlevXgoKClLTpk01ceLEMrXMnDlTrVu3VlBQkDp06KBvv/3WZb8xRuPGjVOjRo0UHBysvn37atu2bed8DWozT944W5KCGgZJYh4bAAAAaq8qfZJ+9NFHNWXKFBljzunkubm56tSpk954443Ttunfv78OHDjgfHzyyScu+wcNGqQNGzZo3rx5+uabb/T999/rvvvuc+7PysrSlVdeqcTERKWkpOjFF1/UM888o7ffftvZ5scff9Rtt92mYcOGadWqVRo4cKAGDhyo9evXO9tMnDhRr776qqZOnaoVK1YoNDRU/fr1U35+/jldg9rMk4uOSFJwTLAklvYHAABA7VWlIZE//PCDFi1apP/9739q166dAgICXPZ/8cUXFTrOVVddpauuuuqMbWw2m+Li4srdt2nTJs2ZM0e//PKLunXrJkl67bXXdPXVV+ull15SfHy8Pv74YxUWFuq9995TYGCg2rVrp9WrV2vSpEnOYDdlyhT1799fY8aMkVR6n7l58+bp9ddf19SpU2WM0eTJk/XUU0/p+uuvlyR9+OGHio2N1axZs7hZ+Gl4ctERqXRIpMTS/gAAAKi9qvRJOioqSjfccIN69+6t6OhoRUZGujzcafHixYqJidF5552nBx98UEeOHHHuW758uaKiopxhTZL69u0rq9WqFStWONtceumlCgwMdLbp16+ftmzZomPHjjnb9O3b1+W8/fr10/LlyyVJu3btUlpamkubyMhIde/e3dmmPAUFBcrKynJ51CWeXHREkoIb0sMGAACA2q1KPWzvv/++u+soV//+/XXjjTcqOTlZO3bs0JNPPqmrrrpKy5cvl5+fn9LS0hQTE+PyGn9/f9WvX19paWmSpLS0NCUnJ7u0iY2Nde6rV6+e0tLSnNtObnPyMU5+XXltyjNhwgQ9++yzVXjntYOnh0QGxfw+h21/3QrCAAAAqDuqfPOq4uJiLV68WDt27NDtt9+u8PBwpaamKiIiQmFhYW4p7uShhh06dFDHjh3VvHlzLV68WFdccYVbzuFJTzzxhEaPHu18npWVpaZNm3qxourl6SGRwfGlPWwZezI8cnwAAADA26r0SXrPnj3q0KGDrr/+eg0fPlzp6emSpBdeeEF/+ctf3FrgyZo1a6bo6Ght375dkhQXF6dDhw65tCkuLtbRo0ed897i4uJ08OBBlzaO52drc/L+k19XXpvy2Gw2RUREuDzqEk/3sIU0CpFU2sNmL7afpTUAAABQ81Tpk/Qjjzyibt266dixYwoODnZuv+GGG7RgwQK3FXeq/fv368iRI2rUqJEkqUePHsrIyFBKSoqzzcKFC2W329W9e3dnm++//15FRUXONvPmzdN5552nevXqOducWve8efPUo0cPSVJycrLi4uJc2mRlZWnFihXONijL04HN1sAmP5ufTIlhWCQAAABqpSp9kl66dKmeeuopl4U8JCkpKUm//fZbhY+Tk5Oj1atXa/Xq1ZJKF/dYvXq19u7dq5ycHI0ZM0Y//fSTdu/erQULFuj6669XixYt1K9fP0lSmzZt1L9/f9177736+eeftWzZMo0YMUK33nqr4uPjJUm33367AgMDNWzYMG3YsEEzZszQlClTXIYqPvLII5ozZ45efvllbd68Wc8884x+/fVXjRgxQpJksVg0cuRI/e1vf9PXX3+tdevW6a677lJ8fLwGDhxYlUtYJziGRFr8PLPoiMVqcd4wO2N3hkfOAQAAAHhTleaw2e12lZSUlNm+f/9+hYeHV/g4v/76qy677DLnc0eIGjx4sN566y2tXbtWH3zwgTIyMhQfH68rr7xSzz//vGw2m/M1H3/8sUaMGKErrrhCVqtVN910k1599VXn/sjISM2dO1fDhw9X165dFR0drXHjxrncq+3iiy/W9OnT9dRTT+nJJ59Uy5YtNWvWLLVv397Z5rHHHlNubq7uu+8+ZWRkqGfPnpozZ46CgoIq/H7rGk/3sElSZGKkjmw9QmADAABArWQxVbj79S233KLIyEi9/fbbCg8P19q1a9WwYUNdf/31SkhIqLZVJGuarKwsRUZGKjMzs9bPZ1u5cqX+0/U/ClSgLvzzhQquH3z2F1XQ1gNbdf/b9yslJUW/Tf1NK99Zqd5P91afZ/q47RwAAACAJ1U0G1Sph+3ll19Wv3791LZtW+Xn5+v222/Xtm3bFB0drU8++aTKRaN2ca4S6cEetqikKEkMiQQAAEDtVKXA1qRJE61Zs0affvqp1q5dq5ycHA0bNkyDBg1yWYQEdZexGwIbAAAAcI6qfB82f39/3XHHHe6sBbWIvfDEMvueWnREIrABAACgdqtSYPvwww/PuP+uu+6qUjGoPUoKTyxKUx09bI57sXnyXAAAAEB1q1Jge+SRR1yeFxUV6fjx4woMDFRISAiBDa49bFbP9bCFxYXJL9BPJYUlytqf5QxwAAAAQG1Qpe6IY8eOuTxycnK0ZcsW9ezZk0VHIEmyF/0e2PxK72PnKRarRZGJkZIYFgkAAIDax23jx1q2bKl//OMfZXrfUDeV5JUOibT4ey6sOTCPDQAAALWVWyf8+Pv7KzU11Z2HRA1VfLxYkmQN8PycMgIbAAAAaqsqzWH7+uuvXZ4bY3TgwAG9/vrruuSSS9xSGGo2R2CzBNDDBgAAAFRVlQLbwIEDXZ5bLBY1bNhQl19+uV5++WV31IUarjiXwAYAAACcqyoFNrvdfvZGqNOcc9gIbAAAAECVcdMqeIQ3etgc92IDAAAAaosq9bCNHj26wm0nTZpUlVOghivOq75FR7gXGwAAAGqrKgW2VatWadWqVSoqKtJ5550nSdq6dav8/Px0/vnnO9t58v5b8G3V2cPmuBfb0W1HlbE7g8AGAACAWqNKge3aa69VeHi4PvjgA9WrV09S6c20hw4dql69eunRRx91a5GoeapzDptUOizSEdgAAACA2qJK49VefvllTZgwwRnWJKlevXr629/+xiqRkFS9PWwSC48AAACgdqpSYMvKylJ6enqZ7enp6crOzj7nolDzVeeNsyUCGwAAAGqnKn2avuGGGzR06FB98cUX2r9/v/bv36///Oc/GjZsmG688UZ314gaqDpvnC1JkYmRkghsAAAAqF2qNIdt6tSp+stf/qLbb79dRUVFpQfy99ewYcP04osvurVA1EzVHdjoYQMAAEBtVKXAFhISojfffFMvvviiduzYIUlq3ry5QkND3Vocaq6S49W/6Ih04l5sVn9uMQgAAICa75w+1R44cEAHDhxQy5YtFRoaKmOMu+pCDVfdc9jCG4XLGmCVKTHK2p9VLecEAAAAPK1Kn6aPHDmiK664Qq1atdLVV1+tAwcOSJKGDRvGkv6QVP1DIi1Wi6ISoyRJx3Ydq5ZzAgAAAJ5WpcA2atQoBQQEaO/evQoJCXFuv+WWWzRnzhy3FYeaq7oDmyTVb1lfknRk65FqOycAAADgSVUKbHPnztULL7ygJk2auGxv2bKl9uzZ45bCUHMZu6n2G2dLUnTraEnS4c2Hq+2cAAAAgCdVKbDl5ua69Kw5HD16VDab7ZyLQs1WdLxI+n06Y7UGtja/B7ZNBDYAAADUDlUKbL169dKHH37ofG6xWGS32zVx4kRddtllbisONVNBdoEkycjI4k8PGwAAAFBVVVrWf+LEibriiiv066+/qrCwUI899pg2bNigo0ePatmyZe6uETVMYU5h6f9VKIul+gNb5p5MFeYWKjA0sNrODQAAAHhClXrY2rdvr61bt6pnz566/vrrlZubqxtvvFGrVq1S8+bN3V0japjC7NLAVqCCaj1vaMNQBTcIlsTCIwAAAKgdKt3DVlRUpP79+2vq1Kn661//6omaUMOd3MNW3aJbR2vfsn06vPmwGnVpVO3nBwAAANyp0j1sAQEBWrt2rSdqQS3hmMPmlcDGwiMAAACoRao0JPKOO+7Qv/71L3fXglrC0cNW3UMiJRYeAQAAQO1SpUVHiouL9d5772n+/Pnq2rWrQkNDXfZPmjTJLcWhZnLMYfNGD1vDNg0lEdgAAABQO1QqsO3cuVNJSUlav369zj//fEnS1q1bXdpU56qA8E3ensMmlS46Yi+xy+pXpU5kAAAAwCdUKrC1bNlSBw4c0KJFiyRJt9xyi1599VXFxsZ6pDjUTN6cwxaZGCk/m59KCkqUsTtD9ZvXr/YaAAAAAHepVPeDMcbl+f/+9z/l5ua6tSDUfN5a1l+SrH5WRZ/HwiMAAACoHc5pvNipAQ6QvDskUmLhEQAAANQelQpsFoulzBw15qzhVN5cdEQ6aWl/AhsAAABquErNYTPGaMiQIbLZbJKk/Px8PfDAA2VWifziiy/cVyFqHG8u6y+d1MPGkEgAAADUcJUKbIMHD3Z5fscdd7i1GNQO3lx0RDrRw5a+KV3GGHqBAQAAUGNVKrC9//77nqoDtYi357A1aNVAskj5x/J1PP24QmNCz/4iAAAAwAdxkyq4nbfnsAUEBygqKUoS89gAAABQsxHY4HbensMmsVIkAAAAagcCG9zO23PYpBOBLX1TutdqAAAAAM4VgQ1uZYzx+pBI6cTCI0c2H/FaDQAAAMC5IrDBrUoKS2Qvtkvy7pDIhm0bSpLS1qR5rQYAAADgXBHY4FaO3jVJKlKR1+qI6xwni9WinAM5yk7N9lodAAAAwLkgsMGtHAuOWG1W2WX3Wh2BoYHOXrbUX1O9VgcAAABwLghscCvHgiP+IZW6xZ9HxHeLl0RgAwAAQM1FYINbOXrYfCKwXfB7YPuFwAYAAICayfufqlGrOOawVUdg27Rp0xn3Z4VlSZL2/rRXKSkpslgsFT52dHS0EhISzqk+AAAA4FwR2OBWjh42vxA/j53jaM5RSdIdd9xxxnb+8tcTekKFGYW6otsVylRmhc8REhyiTZs3EdoAAADgVQQ2uFV1zGHLyc+RJD102UPq1LLTGdumf5Gu4sPFerbvswpuFlyh4+9J36PxX47X4cOHCWwAAADwKgIb3Ko6h0Q2rtdYrRq1OnOjBOnA4QMKzwtXs0bNPF4TAAAA4E4sOgK3ci46Euob/xYQHh8uSdyLDQAAADUSgQ1u5RwSGewjga3xicBmjPFyNQAAAEDlENjgVs5FR0I9t+hIZYQ0DJHFz6KSghLlHc3zdjkAAABApRDY4FbOOWw+0sNm9bMqLC5MkpSTmuPlagAAAIDKIbDBrXxtDpt0Yh5bVmqWlysBAAAAKofABrfytR426URgo4cNAAAANQ2BDW7la3PYpJNWijyQLWNn4REAAADUHAQ2uJWvrRIpSSHRIbIGWGUvsuv44ePeLgcAAACoMAIb3Mo5JNKH5rBZrBaFN/p9HttvzGMDAABAzUFgg1s5Fx0J8Z3AJkkRTSMkSZl7M71cCQAAAFBxBDa4lXNIpI8FtqikKElS5h4CGwAAAGoOAhvcxl5iV3FesSTJL8R3Fh2Rfu9hs0j5x/JVkFXg7XIAAACACiGwwW0cwyEl3+th87f5O2+gnbEnw7vFAAAAABVEYIPbOAKb1d8qa6Dv/WhFJkZKYlgkAAAAag7f+1SNGsuxQmRgWKAsFouXqykrKjFKEoENAAAANQeBDW7jWHAkMDzQy5WULzKhtIft+OHjKswtPEtrAAAAwPu8Gti+//57XXvttYqPj5fFYtGsWbNc9htjNG7cODVq1EjBwcHq27evtm3b5tLm6NGjGjRokCIiIhQVFaVhw4YpJyfHpc3atWvVq1cvBQUFqWnTppo4cWKZWmbOnKnWrVsrKChIHTp00LffflvpWuo6x5DIwDDfDGwBIQEKjQmVxPL+AAAAqBm8Gthyc3PVqVMnvfHGG+Xunzhxol599VVNnTpVK1asUGhoqPr166f8/Hxnm0GDBmnDhg2aN2+evvnmG33//fe67777nPuzsrJ05ZVXKjExUSkpKXrxxRf1zDPP6O2333a2+fHHH3Xbbbdp2LBhWrVqlQYOHKiBAwdq/fr1laqlrnMMibSF27xcyek5etkYFgkAAICawKuB7aqrrtLf/vY33XDDDWX2GWM0efJkPfXUU7r++uvVsWNHffjhh0pNTXX2xG3atElz5szRu+++q+7du6tnz5567bXX9Omnnyo1NVWS9PHHH6uwsFDvvfee2rVrp1tvvVUPP/ywJk2a5DzXlClT1L9/f40ZM0Zt2rTR888/r/PPP1+vv/56hWvBST1sPjokUmLhEQAAANQsPjuHbdeuXUpLS1Pfvn2d2yIjI9W9e3ctX75ckrR8+XJFRUWpW7duzjZ9+/aV1WrVihUrnG0uvfRSBQaeCBH9+vXTli1bdOzYMWebk8/jaOM4T0VqKU9BQYGysrJcHrWZcw6bjw6JlE4Etpy0HBXnF3u5GgAAAODMfDawpaWlSZJiY2NdtsfGxjr3paWlKSYmxmW/v7+/6tev79KmvGOcfI7TtTl5/9lqKc+ECRMUGRnpfDRt2vQs77pmc/Sw+fKQSFu4TcH1gyUxjw0AAAC+z2cDW23wxBNPKDMz0/nYt2+ft0vyKMcctoCwAC9XcmbMYwMAAEBN4bOBLS4uTpJ08OBBl+0HDx507ouLi9OhQ4dc9hcXF+vo0aMubco7xsnnOF2bk/efrZby2Gw2RUREuDxqs5rQwyZJkUmlgS1jb4Z3CwEAAADOwmcDW3JysuLi4rRgwQLntqysLK1YsUI9evSQJPXo0UMZGRlKSUlxtlm4cKHsdru6d+/ubPP999+rqKjI2WbevHk677zzVK9ePWebk8/jaOM4T0VqQc2YwyaduIF2TmqOSgpLvFsMAAAAcAZeDWw5OTlavXq1Vq9eLal0cY/Vq1dr7969slgsGjlypP72t7/p66+/1rp163TXXXcpPj5eAwcOlCS1adNG/fv317333quff/5Zy5Yt04gRI3TrrbcqPj5eknT77bcrMDBQw4YN04YNGzRjxgxNmTJFo0ePdtbxyCOPaM6cOXr55Ze1efNmPfPMM/r11181YsQISapQLTgxJNKXV4mUJFukTbYIm4zdKGt/7V4IBgAAADWbvzdP/uuvv+qyyy5zPneEqMGDB2vatGl67LHHlJubq/vuu08ZGRnq2bOn5syZo6CgIOdrPv74Y40YMUJXXHGFrFarbrrpJr366qvO/ZGRkZo7d66GDx+url27Kjo6WuPGjXO5V9vFF1+s6dOn66mnntKTTz6pli1batasWWrfvr2zTUVqqeuy9pWGn7C4MBWp6CytvcdisSgyMVKH1h1Sxp4M1WtWz9slAQAAAOXyamDr06ePjDGn3W+xWPTcc8/pueeeO22b+vXra/r06Wc8T8eOHbV06dIztrn55pt18803n1MtdZkxRoc2lM4njGkXo9+Kf/NyRWfmCGwsPAIAAABf5rNz2FCz5KTlKP9YvixWixq0auDtcs7KMY8ta3+W7MV27xYDAAAAnAaBDW6RvjFdklSveT35B3m147ZCghsEKyA0QKbEKOs35rEBAADANxHY4BbpG0oDW0y7mLO09A2OeWwS92MDAACA7yKwwS0cPWzRbaO9XEnFRSVESZIy9xLYAAAA4JsIbHCLmtbDJulED9veTBn76Re/AQAAALyFwIZzdvIKkQ3bNvRyNRUXGhMq/yB/2Yvsyj6Q7e1yAAAAgDIIbDhnuQdzT6wQeZ7vrxDpYLFaFJnAPDYAAAD4LgIbzplzhchm9RQQHODlaiqHhUcAAADgywhsOGfO4ZDtas5wSAeXeWxnuIk7AAAA4A0ENpwzRw9bTZq/5hAWFyZrgFXF+cXKPZTr7XIAAAAAFwQ2nDPHCpE1sYfN6mdVZNPSXraM3RneLQYAAAA4BYEN58QYcyKw1cAeNkmKSoqSRGADAACA7yGw4ZzkHspV3tE8ySJFt645N80+WVRylCQpczf3YwMAAIBvIbDhnNTkFSIdwuPD5WfzU3F+MfdjAwAAgE8hsOGcOIZDxrSL8XIlVWexWk4Mi9yV4dVaAAAAgJMR2HBOHD1s0W1r5nBIBwIbAAAAfBGBDeekNvSwSaVDOqXf78dWwjw2AAAA+AYCG85JTb4H28lCGoYoIDRA9mK7Cg8WerscAAAAQBKBDecg91Cujh8+XqNXiHSwWCyql1zay1aYSmADAACAbyCwocpSU1IlSfWb11dASM1cIfJkjuX9C34r8G4hAAAAwO8IbKiyXQt3SZISeyd6uRL3cAS2okNFClSgd4sBAAAARGDDOdi9cLckKfnyZO8W4ibB9YIVFBUkGSlRtSOEAgAAoGYjsKFK8o7m6cCqA5KkpMuSvFuMGzl62ZJVO0IoAAAAajYCG6pk95LdkildHTK8Ubi3y3Ebx8IjzdTMy5UAAAAABDZU0a4FpfPXki5P8m4hbuboYYtTnPIO5Xm3GAAAANR5BDZUiWPBkdoyf80hMCxQAbGlK16mLU7zcjUAAACo6whsqLTsA9k6vOmwZJGSeid5uxy3C0oKkiSlLSSwAQAAwLsIbKi03Yt2S5IadWmk4PrB3i3GA4KSSwPbkZVHdPzIcS9XAwAAgLqMwIZKcw6HvKJ2DYd08I/wV5rSZEqMtv53q7fLAQAAQB1GYEOl1db5ayfbpE2l//9ik5crAQAAQF1GYEOlHNt1TBm7MmT1tyqhZ4K3y/EYR2DbMXeHCrILvFwNAAAA6ioCGyrF0bvWuHtjBYYFerkazzmkQwptGqqSghJtn7Pd2+UAAACgjiKwoVJ2L9wtqXYPh3SIuyxOkrT5i81ergQAAAB1FYENlZK+MV2S1PjCxl6uxPMaXd5IkrR19lYVFxR7uRoAAADURQQ2VErWb1mSpIgmEV6uxPOi2kUpPD5chdmF2rVgl7fLAQAAQB1EYEOFlRSW6Hh66X3JwhuHe7kaz7NYLWp9Q2tJ0rqP13m5GgAAANRFBDZUWPaBbEmSNcCqkAYhXq6menQe0lmStPE/G5V3NM+7xQAAAKDOIbChwrJ/Kw1s4fHhslgtXq6mejTq2kixnWJVUlCitf9e6+1yAAAAUMcQ2FBh2amlgS2ice2fv+ZgsVh0/r3nS5JWvrNSxhgvVwQAAIC6hMCGCnMsOFIX5q+drMPtHeQf5K9D6w/pt59/83Y5AAAAqEMIbKgwRw9beHzdCmzB9YLV9ua2kkp72QAAAIDqQmBDhTnnsNWxHjZJOv+e0mGR6z9dr4LsAi9XAwAAgLqCwIYKcwS2ujSHzSGhV4IatGqgotwirf90vbfLAQAAQB1BYEOF1dUhkVLp4iNd7ukiiWGRAAAAqD4ENlSIMabOLjri0HlwZ1kDrEr9JZXFRwAAAFAtCGyokIKsAhXlFkmqmz1skhQaE6oOt3WQJP340o9ergYAAAB1AYENFeIYDmmLtCkwNNDL1XhPj7/0kCRt+s8mHdt5zMvVAAAAoLYjsKFC6vKCIyeL7RCr5v2ay9iNlr+y3NvlAAAAoJYjsKFC6vr8tZNdPOZiSdLq91br+JHjXq4GAAAAtRmBDRVSl1eIPFXy5cmK6xynouNF+vWtX71dDgAAAGoxAhsqpC7fNPtUFovFOZft59d+VnF+sZcrAgAAQG1FYEOFMIfNVbs/tVNE0wjlHsrVmo/WeLscAAAA1FL+3i4ANUNdHBK5adOmM+5vcnMTbZy0UQufXSjTycjqX7F//4iOjlZCQoI7SgQAAEAtR2BDhdSlRUeO5hyVJN1xxx1nbBegAI3USOk36Z7u92iNKtbTFhIcok2bNxHaAAAAcFYENpyVvcSunLQcSXVjSGROful7feiyh9SpZaczt12do+yfs/XHyD/qwZsflMVqOWP7Pel7NP7L8Tp8+DCBDQAAAGdFYMNZ5R7KlSkxslgtCo0J9XY51aZxvcZq1ajVGdsU1y/WinUrVJxZrHpH6ymmQ0w1VQcAAIC6gEVHcFaOBUfC4sIqPE+rrvC3+avJRU0kSXu+3yNjjJcrAgAAQG3Cp2+cVV2av1YVjS9sLP8gfx0/fFyHNx72djkAAACoRQhsOKu6uEJkZfgH+atx98aS6GUDAACAexHYcFbcNPvsGndvLD+bn3IP5dLLBgAAALchsOGsuGn22QUEBzjnsu1evFvGTi8bAAAAzh2BDWfFkMiKadKjifyDS+eyHVx70NvlAAAAoBYgsOGsWHSkYvxt/kq4pPTeanuW7JG9xO7ligAAAFDTEdhwVgyJrLj4C+MVGBao/Ix8pa1M83Y5AAAAqOEIbDijouNFys/Il8SQyIrwC/BTQq/fe9mW7lFJUYmXKwIAAEBNRmDDGTnmrwWEBMgWafNyNTVDo66NZIu0qTC7UKm/pHq7HAAAANRgBDackXPBkcbhslgsXq6mZrD6WZXUO0mStHfpXhUdL/JuQQAAAKixCGw4o5y0HElSWFyYlyupWWI7xSo0NlTF+cXavWi3t8sBAABADUVgwxnlpudKkkIbhnq5kprFYrWoRf8WkqTUlFTlHsr1ckUAAACoiXw6sD3zzDOyWCwuj9atWzv35+fna/jw4WrQoIHCwsJ000036eBB1/tf7d27VwMGDFBISIhiYmI0ZswYFRcXu7RZvHixzj//fNlsNrVo0ULTpk0rU8sbb7yhpKQkBQUFqXv37vr555898p6r0969e7Vy5cozPnas3SFJOm45fta2Jz82bdrk5XfnfVFJUYpuEy0Zacd3O2QMN9MGAABA5fh7u4CzadeunebPn+987u9/ouRRo0Zp9uzZmjlzpiIjIzVixAjdeOONWrZsmSSppKREAwYMUFxcnH788UcdOHBAd911lwICAjR+/HhJ0q5duzRgwAA98MAD+vjjj7VgwQLdc889atSokfr16ydJmjFjhkaPHq2pU6eqe/fumjx5svr166ctW7YoJiamGq+G++zdu1dtWrfR8bzjZ2x3ta7WhbpQH/7nQy36z6JKnycnJ6eqJdYKzfo205GtR3Rs5zEd3XZUYqFNAAAAVILPBzZ/f3/FxcWV2Z6Zmal//etfmj59ui6//HJJ0vvvv682bdrop59+0kUXXaS5c+dq48aNmj9/vmJjY9W5c2c9//zzGjt2rJ555hkFBgZq6tSpSk5O1ssvvyxJatOmjX744Qe98sorzsA2adIk3XvvvRo6dKgkaerUqZo9e7bee+89Pf7449V0Jdzr8OHDOp53XE/e8KQSGyaett2x+ceUvzNf1158rW5tf2uFj79i2wq9t+g95efnu6PcGiu4frCadG+ifT/u0465OxQ5MNLbJQEAAKAG8fnAtm3bNsXHxysoKEg9evTQhAkTlJCQoJSUFBUVFalv377Otq1bt1ZCQoKWL1+uiy66SMuXL1eHDh0UGxvrbNOvXz89+OCD2rBhg7p06aLly5e7HMPRZuTIkZKkwsJCpaSk6IknnnDut1qt6tu3r5YvX37G2gsKClRQUOB8npWVdS6XwiMSGyaqVaNWp92/2r5a+cpX47jGimlU8d7EvYf3uqO8WiHh0gSlrUlT3pE8+a/z+V85AAAA+BCfnsPWvXt3TZs2TXPmzNFbb72lXbt2qVevXsrOzlZaWpoCAwMVFRXl8prY2FilpaVJktLS0lzCmmO/Y9+Z2mRlZSkvL0+HDx9WSUlJuW0cxzidCRMmKDIy0vlo2rRppa+BtxXlli5JHxAa4OVKai5/m7+a/6G5JCk7JVtRivJuQQAAAKgxfPqf+6+66irn1x07dlT37t2VmJiozz77TMHBwV6srGKeeOIJjR492vk8KyurxoU2xz3ECGznJqZjjNJWpyljd4YGaAALkAAAAKBCfLqH7VRRUVFq1aqVtm/frri4OBUWFiojI8OlzcGDB51z3uLi4sqsGul4frY2ERERCg4OVnR0tPz8/MptU97cupPZbDZFRES4PGoSY8yJwBZCYDsXFotFLQe0lKxSS7XUgQUHvF0SAAAAaoAaFdhycnK0Y8cONWrUSF27dlVAQIAWLFjg3L9lyxbt3btXPXr0kCT16NFD69at06FDh5xt5s2bp4iICLVt29bZ5uRjONo4jhEYGKiuXbu6tLHb7VqwYIGzTW1VnFcs/d4RRGA7dyHRIQrrXHoD8g0vbVBBVsFZXgEAAIC6zqcD21/+8hctWbJEu3fv1o8//qgbbrhBfn5+uu222xQZGalhw4Zp9OjRWrRokVJSUjR06FD16NFDF110kSTpyiuvVNu2bXXnnXdqzZo1+u677/TUU09p+PDhstlskqQHHnhAO3fu1GOPPabNmzfrzTff1GeffaZRo0Y56xg9erTeeecdffDBB9q0aZMefPBB5ebmOleNrK0KcwslSf5B/rL6+fSPSo0R1jlMR3VU+en5WvDXBWd/AQAAAOo0n57Dtn//ft122206cuSIGjZsqJ49e+qnn35Sw4YNJUmvvPKKrFarbrrpJhUUFKhfv3568803na/38/PTN998owcffFA9evRQaGioBg8erOeee87ZJjk5WbNnz9aoUaM0ZcoUNWnSRO+++65zSX9JuuWWW5Senq5x48YpLS1NnTt31pw5c8osRFLbMBzS/Sz+Fn2jb3SX7tIvr/+itn9sq6TeSd4uCwAAAD7KpwPbp59+esb9QUFBeuONN/TGG2+ctk1iYqK+/fbbMx6nT58+WrVq1RnbjBgxQiNGjDhjm9qGFSI9Y6d2KmFggvbO2quvhn6lB9c+qMCwQG+XBQAAAB/EODecFj1sntN2VFtFJkQqY1eG5o6Z6+1yAAAA4KMIbDgtZw8bgc3tAsICdP3710uSUqamaMe8HV6uCAAAAL6IwIbT4h5snpV8ebIuGH6BJOnru79Wfka+lysCAACAryGw4bQKj5euEhkYwvwqT+n7Ql/Va15PWfuz9NXQr7ihNgAAAFwQ2HBaLDrieYGhgbrpk5tkDbBq86zNWj5pubdLAgAAgA8hsOG0WHSkejS+oLH6T+4vSZo/dr72Ltvr5YoAAADgKwhsOC162KpPtwe7qf1t7WVKjD6/5XPlHsr1dkkAAADwAQQ2lMsY4+xhCwxlDpunWSwWXfv2tYpuE63s37L1+S2fq7ig2NtlAQAAwMsIbChXSUGJjL10AQyGRFaPwLBA/enzPykwPFC7F+/Wl3d8KXuJ3dtlAQAAwIsIbChXYW7pCpF+gX6y+vNjUl0atm2oW2fdKr9AP238fKO+HfEtK0cCAADUYf7eLgC+iXuwedamTZtOvzNK6vx8Z6U8nqKUqSnKtmfrvPvPq/Cxo6OjlZCQcO5FAgAAwOsIbCiXc8ERhkO61dGco5KkO+6446xtu6mbrtE12vr2Vr3+9uv6UT9W6BwhwSHatHkToQ0AAKAWILChXKwQ6Rk5+TmSpIcue0idWnY6a/vsldnK+TVHV+pK3djtRoWfH37G9nvS92j8l+N1+PBhAhsAAEAtQGBDuQqPl85hCwxhhUhPaFyvsVo1anX2hgOkPeF7tHvRbuX8mqP6IfWV1CdJFovF80UCAADA61hNAuViSKTvSLw0Uc36NpMk7f1+r3Yt2MVCJAAAAHUEgQ3lYtER39L0kqZq3q+5JGnfsn3aMXcHoQ0AAKAOILChXM7ARg+bz2hyURO1vLqlJOm3n37T9v9tJ7QBAADUcgQ2lItFR3xT/AXxanVt6dy31F9Ste2bbYQ2AACAWozAhnLRw+a7Gp3fSK0HtpYs0oGVB7T1v1sJbQAAALUUgQ1lGGNUmPv7KpGhrBLpi2I7xarNDW0ki5S2Ko3hkQAAALUUy/qjjJLCEpmS0g//9LD5rpgOMTJ2o82zNiv1l1RZ/awyHQhtAAAAtQmBDWU4hkNaA6zyC/TzcjU4k9hOsbKX2LX1v1u1/6f9Cs0P9XZJAAAAcCOGRKIM7sFWszQ6v5FaXNVCkpS7OldX62oZOz1tAAAAtQGBDWU4etiYv1ZzNL6wsXPJ/wt1oVY+tVIlhSVergoAAADnisCGMuhhq5niL4hX1BVRKlGJUr9L1SfXfaLCnEJvlwUAAIBzQGBDGYXHSz/kcw+2mie4ebCma7r8gvy047sdeufCd3RowyFvlwUAAIAqIrChDHrYarYd2qEeU3sorFGYDm86rHcvfFerP1jt7bIAAABQBQQ2lMFNs2u+eh3q6f5V96tZ32YqOl6kr4Z8pa+GfeX83gIAAKBmILChDGcPG0Mia7Sw2DANmjNIfZ7tI1mk1e+t1rvd39XhzYe9XRoAAAAqiMCGMuhhqz2sflb1Htdbd82/S6GxoTq0/pDe7va21n681tulAQAAoAIIbCijIKtAkmQLt3m5ErhL8uXJemD1A0q6LElFuUX68o4v9dXQr5zfawAAAPgmf28XAN9SUlTiXAo+KCrIy9WgqjZt2lTu9vYvtFfA2wHa9q9tWj1ttbbO26ouz3VR/c71K3Tc6OhoJSQkuLNUAAAAnAGBDS4KMkt7XPwC/eQfzI9HTXM056gk6Y477jhju0Ql6gbdIP0mLR22VMu0TEu0RMUqPuPrQoJDtGnzJkIbAABANeETOVzkZ+RLKu1ds1gsXq4GlZWTnyNJeuiyh9SpZacztrUX2pW1LEt52/LUS73UJ6yPwi8KV1By+d/7Pel7NP7L8Tp8+DCBDQAAoJoQ2OAi/9jvga0ewyFrssb1GqtVo1Znb5gopW9K1445O1SQVaCM+RmKTIpU8yubK7xRuOcLBQAAwBkR2OAiLyNPEvPX6pKGbRqqfov62vfDPu37cZ8yd2dq5dsr1eC8BkrsnUhwAwAA8CICG1wUZJTOYSOw1S1+AX5KuixJcV3itGvhLh1ad0hHthzRkS1HnMENAAAA1Y/ABhcnz2FD3RMUFaQ2N7ZR4qWJ2vP9HpfgZku0KU5x3i4RAACgTuE+bHCRd+z3IZHMYavTQqJD1ObGNrpg+AWK6RAjWaSCPQV6QA/o18d+1dEdR71dIgAAQJ1AYINTcUGxivNKl3Wnhw3SScHtoQsU1CJIdtl1YMEBvdn2Tc0dM1f5mfneLhEAAKBWI7DByTEc0j/YX/42RsvihJDoENW7vJ6maqqiu0erpLBEy19artdavKYfXvhBBdkF3i4RAACgViKwwYn5azibQzqki964SLd9c5sanNdAxw8f14LHF2hK0hQteX6J82cIAAAA7kFgg5PzHmwENpyBxWJRqwGt9ND6hzTwg4Fq0KqB8o7mafG4xXo5/mXNGjJL+37cJ2OMt0sFAACo8Rj3Bid62FARmzZtOvGkvdTj3z2UOi9V297fpuzt2VrzwRqt+WCNwpqFKfGGRDUZ0ESBkYEVOnZ0dLQSEhI8VDkAAEDNQ2CDkzOwsUIkynE0p3RlyDvuuOO0bZqoibqqq9qrvXJ25mjDyxu05uU12qiNWqmV2qM9Mjp9z1tIcIg2bd5EaAMAAPgdgQ1O9LDhTHLycyRJD132kDq17HTGtvZCu/K25en45uPSEanj7//5hfkpuGWwglsGyz/K9Y+fPel7NP7L8Tp8+DCBDQAA4HcENkiSjDEENlRI43qN1apRq7M3TJTMFUbZqdlKW5mmQxsOqSSnRDmrcpSzKkfhTcIV1zFODds3VEBwgOcLBwAAqIEIbJAkFecXq6SgRBKBDe5jsVgU0ThCEY0j1Lx/cx3ZckQH1x7U0e1Hlb0/W9n7s7X9u+1qcF4DlSSUyCKLt0sGAADwKQQ2SDqxQmRgWKD8Avy8XA1qI78AP8W0j1FM+xgV5hTq4LqDOrjmoHIP5urwxsPSRmmURmnzm5vVZGQTNWzXUBYLAQ4AANRtBDZIOjF/zRZl83IlqAsCwwLVtEdTNe3RVDlpOUpbnabU1amKKIjQtn9t07Z/bVODVg3U+sbWaj2wteK7xcvqx11IAABA3UNgg6QTgS04KtjLlaCuCYsLU4v+LVTSvkSv/utV/bnXn3V4xWEd2XpEy/6xTMv+sUy2SJuSL0tW8hXJata3mRqc14DeNwAAUCcQ2CCJm2bD+yx+Fm3URl04+UK1a9FO2/63TZv+s0k75u5QQWaBNs/arM2zNkuSwuPD1axvMzX7QzO1HNBSwfX4hwYAAFA7EdggiSX94TucN+ZuKTV/vLmajWmmzM2ZSl+RrsO/HNbR1UeVnZqtNR+u0ZoP18jiZ1H0BdGKuyxOcX3iFBRd/s8wN+UGAAA1EYENkrhpNryvIjfmliR/+aupmqqZmqmVWim2JFbpP6Ur/ad0rZ2wVvu0T5u0SZu1Wcd0zPk6bsoNAABqIgIbuAcbfEJlbsx9suKMYuXvzlf+rnwVpRcp4ff/+qmf/ML8FBgfqOywbL2+8nVuyg0AAGocAhtUlFske7FdkmSLZJVIeFeFb8zt0EhSm9IvC7IKdHjzYaVvSlfW3iyV5JQob2ue/OWvkRqp+dfM194r9yqpT5KS+iQpKinKE28BAADAbQhsOLGkf4SNpdNRo9kibGp8YWM1vrCxSgpLlLkvUxm7M5S2LU35B/OVdyBPaz5YozUfrJEkRSZEKrF3ohJ7JyqpT5LqNavH6pMAAMCnENig40eOS2L+GmoXv0A/1W9eX/Wb11dx22L9+e0/66vXv1LAbwHavXi3Un9JVebeTK39aK3WfrRWkhTeOFxJvZPUuHtp6IvrHCf/IP6YBAAA3sMnEejottLFHiKaRHi5EsBzClWoI1FH1KZHG9X7Yz11yOugY2uP6UjKER1JOaJj648p+7dsrZu+Tuumr5NUequBsKQw5yM0MVRhiWEKSwxTQHiA89isQAkAADyFwFbHmWKjI1uPSJKi20R7uRrAMyqyAmWAAtRETZSgBMUrXo3VWGElYcreka3sHdll2mcrW0d0RId1WFn+WRr/zni16dVGUUlRPjW02Bij4+nHlXc0T/kZ+co7lieLxaLQmFDnwy/Qz9tlAgCA0yCw1XEF+wtkL7LLFmlTeHy4t8sBPKIqK1AaY2TPtavoaJGKM4pVklmi4oxiFWcUy55nV/jv/yUpSSqW5g+dr/maXzoUs0V91W9ZX5EJkYpoGqHIppEKbhAsW4RNQZFBskXaZIuwKSAkwC1z5uzFdmXsydCxHcd0dMdRHd1+VMd2HCt97DymouNFp3+xRWrUpZGa92uu5v2aq+nFTeUXQIADAMBXENjquPxdpQuORLeOZrEF1HqVXoHyNIrzi3X8yHHlHcnT/t37tWLVCnVp2kXFB4tVUlii9I3pSt+YftbjWPws8g/zV2BkoAKjAhVY7/f/RwXKFmVTYFSgrDariouLFRAQIHuJXYUZhSo8VqiCYwXKS81T7v5c5R3IkykxZziRFBAWoICIAPmH+UtGpcc4WiBTYnRg5QEdWHlAP0z4QUH1gtR5aGd1e6CbGrRscM7XCgAAnBsCWx3mJz/l7/k9sDEcEqgw/yB/RTSOUETjCO0K3qWZq2Zq5r6ZssiiSEUqWtGqp3qKUIQiFakIRShYwbKd9J9VVpkSo6LMIhVlFil3b+451VSsYh3VUR3TMR39/T/H15kmUyXZJdIpIzstsqhhUEN9Mv4TZfyaoR1zd+j44eP6adJP+mnST2rWt5m6P9JdLa9uKYuVf9ABAMAbCGx1WLKSZQqNAkIDFNk00tvlADVSVYdbmmIjU2hkL7DLFBiV5JfI5BvZ8+2y59lL/19gV2Z2pg5kHFDjyMYKCw2TNcjqfPiF+ckvwk/+Ef6yhlrV1NK0UrXvSd+j8V+OV1TvKF0+6nLZS+zaPme7fn3rV237dpt2zt+pnfN3qmG7hrp4zMXqcFsH5rsBAFDNCGx1WJvf7zYc3Tqafz0HzpG7hlueav66+frgiw/09yv+rh4derj9+JK0adOmE08aSa2fa62E+xO0e+Zu7flij9I3pOurIV/pu8e+U7PbmynhhgQFhAWc/oAnYQVNAADODYGtjrIX29VarSVJDds29HI1ALyhIqtn2mRTN3XTRbpIOiRtnLxRKyev1C/6RT/rZ2WfOs7yFCHBIdq0eROhDQCAKiKw1VFHVx1VqEJlsVkUmchwSKAuqsxwTlNilLctTzlrchSUGaRe6qVell4KSg5SSLsQBcYFllm4yDHk8vDhwwQ2AACqiMBWRx1YeECSFJQY5FP3jAJQ/So8nLOJZPoYHdlyRPt+3KesfVnK35mv/J35Co0JVUyHGMW0j1FQVJDniwYAoI4gsNVBxm5OBLZmfLACUHEWi0XRraMV3TpaOWk5Sv0lVQfXHVTuoVztWrBLuxbsUkTTCEW3jlZR5Bnu/wYAACqErpVKeuONN5SUlKSgoCB1795dP//8s7dLqrTCnELF9ozVUR2VrbHN2+UAqKHC4sLU6tpWumjURWp5TUtFJpUOr87al6Wd83bq8OeHNVqjtWrcKv38+s/au2yvCnMKvVw1AAA1Cz1slTBjxgyNHj1aU6dOVffu3TV58mT169dPW7ZsUUxMjLfLqzBbhE2d/q+T7p51t/7p909vlwOghgsIDlB813jFd41XQVaB0jem6+iOozq265giSiK0f/Z+7Z+9v7SxRYpsGqmopChFJkYqMiFSIQ1DFNIgRMENghUSfeJrW4StzLw4AADqGgJbJUyaNEn33nuvhg4dKkmaOnWqZs+erffee0+PP/64l6sDAO+zRdjU5KImanJRE23Zt0UT35uoR65/RAFHApS1JUv56fnK3JupzL2ZZz2Wxc8iv2A/+Yf4yy/YT35BfvIP/v3rYD8FhwUrPCJcFj+LrP5Wl0d526z+Vln9rKW3Mfk9B1ospV+7/F8qu+0s+5zHKvMmTvPeThdEvdTereeozeriW+b7XCfUte9zaGyoEnsleruMCiOwVVBhYaFSUlL0xBNPOLdZrVb17dtXy5cvL/c1BQUFKigocD7PzCz9gJKVleXZYisgJ6d0dbitqVuVV5jn9uPvSd8jSdqVvkuhe0JrzLE9fXxq987xa+qxPX18T9e+Yd8G7dROPfLVI85tIQpRPdVThCIUqUiFK1whClHwKf8FKEAqkZTz+wMAADdp3LOx7pp9l7fLcGYCY8wZ21nM2VpAkpSamqrGjRvrxx9/VI8eJ25e+9hjj2nJkiVasWJFmdc888wzevbZZ6uzTAAAAAA1yL59+9SkSZPT7qeHzYOeeOIJjR492vncbrfr6NGjatCggVe7nrOystS0aVPt27dPERERXqujLuLaewfX3Tu47t7Bdfcerr13cN29g+t+7owxys7OVnx8/BnbEdgqKDo6Wn5+fjp48KDL9oMHDyouLq7c19hsNtlsrqswRkVFearESouIiOAXzEu49t7BdfcOrrt3cN29h2vvHVx37+C6n5vIyMiztmFZ/woKDAxU165dtWDBAuc2u92uBQsWuAyRBAAAAAB3oYetEkaPHq3BgwerW7duuvDCCzV58mTl5uY6V40EAAAAAHcisFXCLbfcovT0dI0bN05paWnq3Lmz5syZo9jYWG+XVik2m01PP/10meGa8DyuvXdw3b2D6+4dXHfv4dp7B9fdO7ju1YdVIgEAAADARzGHDQAAAAB8FIENAAAAAHwUgQ0AAAAAfBSBDQAAAAB8FIGtDnrjjTeUlJSkoKAgde/eXT///LO3S6oxJkyYoAsuuEDh4eGKiYnRwIEDtWXLFpc2+fn5Gj58uBo0aKCwsDDddNNNZW64vnfvXg0YMEAhISGKiYnRmDFjVFxc7NJm8eLFOv/882Wz2dSiRQtNmzbN02+vxvjHP/4hi8WikSNHOrdx3T3nt99+0x133KEGDRooODhYHTp00K+//urcb4zRuHHj1KhRIwUHB6tv377atm2byzGOHj2qQYMGKSIiQlFRURo2bJhycnJc2qxdu1a9evVSUFCQmjZtqokTJ1bL+/NFJSUl+r//+z8lJycrODhYzZs31/PPP6+T1wnjup+777//Xtdee63i4+NlsVg0a9Ysl/3VeY1nzpyp1q1bKygoSB06dNC3337r9vfrS8507YuKijR27Fh16NBBoaGhio+P11133aXU1FSXY3DtK+9sP/Mne+CBB2SxWDR58mSX7Vx3LzCoUz799FMTGBho3nvvPbNhwwZz7733mqioKHPw4EFvl1Yj9OvXz7z//vtm/fr1ZvXq1ebqq682CQkJJicnx9nmgQceME2bNjULFiwwv/76q7nooovMxRdf7NxfXFxs2rdvb/r27WtWrVplvv32WxMdHW2eeOIJZ5udO3eakJAQM3r0aLNx40bz2muvGT8/PzNnzpxqfb++6OeffzZJSUmmY8eO5pFHHnFu57p7xtGjR01iYqIZMmSIWbFihdm5c6f57rvvzPbt251t/vGPf5jIyEgza9Yss2bNGnPdddeZ5ORkk5eX52zTv39/06lTJ/PTTz+ZpUuXmhYtWpjbbrvNuT8zM9PExsaaQYMGmfXr15tPPvnEBAcHm3/+85/V+n59xd///nfToEED880335hdu3aZmTNnmrCwMDNlyhRnG677ufv222/NX//6V/PFF18YSebLL7902V9d13jZsmXGz8/PTJw40WzcuNE89dRTJiAgwKxbt87j18BbznTtMzIyTN++fc2MGTPM5s2bzfLly82FF15ounbt6nIMrn3lne1n3uGLL74wnTp1MvHx8eaVV15x2cd1r34EtjrmwgsvNMOHD3c+LykpMfHx8WbChAlerKrmOnTokJFklixZYowp/UsmICDAzJw509lm06ZNRpJZvny5Mab0D0ur1WrS0tKcbd566y0TERFhCgoKjDHGPPbYY6Zdu3Yu57rllltMv379PP2WfFp2drZp2bKlmTdvnundu7czsHHdPWfs2LGmZ8+ep91vt9tNXFycefHFF53bMjIyjM1mM5988okxxpiNGzcaSeaXX35xtvnf//5nLBaL+e2334wxxrz55pumXr16zu+F49znnXeeu99SjTBgwABz9913u2y78cYbzaBBg4wxXHdPOPXDa3Ve4z/96U9mwIABLvV0797d3H///W59j77qTMHB4eeffzaSzJ49e4wxXHt3ON11379/v2ncuLFZv369SUxMdAlsXHfvYEhkHVJYWKiUlBT17dvXuc1qtapv375avny5FyuruTIzMyVJ9evXlySlpKSoqKjI5Rq3bt1aCQkJzmu8fPlydejQweWG6/369VNWVpY2bNjgbHPyMRxt6vr3afjw4RowYECZa8N195yvv/5a3bp1080336yYmBh16dJF77zzjnP/rl27lJaW5nLdIiMj1b17d5drHxUVpW7dujnb9O3bV1arVStWrHC2ufTSSxUYGOhs069fP23ZskXHjh3z9Nv0ORdffLEWLFigrVu3SpLWrFmjH374QVdddZUkrnt1qM5rzJ89Z5eZmSmLxaKoqChJXHtPsdvtuvPOOzVmzBi1a9euzH6uu3cQ2OqQw4cPq6SkxOUDqyTFxsYqLS3NS1XVXHa7XSNHjtQll1yi9u3bS5LS0tIUGBjo/AvF4eRrnJaWVu73wLHvTG2ysrKUl5fnibfj8z799FOtXLlSEyZMKLOP6+45O3fu1FtvvaWWLVvqu+++04MPPqiHH35YH3zwgaQT1+5Mf66kpaUpJibGZb+/v7/q169fqe9PXfL444/r1ltvVevWrRUQEKAuXbpo5MiRGjRokCSue3Wozmt8ujZ1/XvgkJ+fr7Fjx+q2225TRESEJK69p7zwwgvy9/fXww8/XO5+rrt3+Hu7AKCmGj58uNavX68ffvjB26XUevv27dMjjzyiefPmKSgoyNvl1Cl2u13dunXT+PHjJUldunTR+vXrNXXqVA0ePNjL1dVen332mT7++GNNnz5d7dq10+rVqzVy5EjFx8dz3VGnFBUV6U9/+pOMMXrrrbe8XU6tlpKSoilTpmjlypWyWCzeLgcnoYetDomOjpafn1+ZlfMOHjyouLg4L1VVM40YMULffPONFi1apCZNmji3x8XFqbCwUBkZGS7tT77GcXFx5X4PHPvO1CYiIkLBwcHufjs+LyUlRYcOHdL5558vf39/+fv7a8mSJXr11Vfl7++v2NhYrruHNGrUSG3btnXZ1qZNG+3du1fSiWt3pj9X4uLidOjQIZf9xcXFOnr0aKW+P3XJmDFjnL1sHTp00J133qlRo0Y5e5i57p5Xndf4dG3q+vfAEdb27NmjefPmOXvXJK69JyxdulSHDh1SQkKC8+/aPXv26NFHH1VSUpIkrru3ENjqkMDAQHXt2lULFixwbrPb7VqwYIF69OjhxcpqDmOMRowYoS+//FILFy5UcnKyy/6uXbsqICDA5Rpv2bJFe/fudV7jHj16aN26dS5/4Dn+InJ8MO7Ro4fLMRxt6ur36YorrtC6deu0evVq56Nbt24aNGiQ82uuu2dccsklZW5dsXXrViUmJkqSkpOTFRcX53LdsrKytGLFCpdrn5GRoZSUFGebhQsXym63q3v37s4233//vYqKipxt5s2bp/POO0/16tXz2PvzVcePH5fV6vpXtJ+fn+x2uySue3WozmvMnz1lOcLatm3bNH/+fDVo0MBlP9fe/e68806tXbvW5e/a+Ph4jRkzRt99950krrvXeHvVE1SvTz/91NhsNjNt2jSzceNGc99995moqCiXlfNweg8++KCJjIw0ixcvNgcOHHA+jh8/7mzzwAMPmISEBLNw4ULz66+/mh49epgePXo49zuWl7/yyivN6tWrzZw5c0zDhg3LXV5+zJgxZtOmTeaNN96o88vLn+rkVSKN4bp7ys8//2z8/f3N3//+d7Nt2zbz8ccfm5CQEPPvf//b2eYf//iHiYqKMl999ZVZu3atuf7668td+rxLly5mxYoV5ocffjAtW7Z0WQY6IyPDxMbGmjvvvNOsX7/efPrppyYkJKTOLC9/qsGDB5vGjRs7l/X/4osvTHR0tHnsscecbbju5y47O9usWrXKrFq1ykgykyZNMqtWrXKuRFhd13jZsmXG39/fvPTSS2bTpk3m6aefrvVLnJ/p2hcWFprrrrvONGnSxKxevdrl79uTVx7k2lfe2X7mT3XqKpHGcN29gcBWB7322msmISHBBAYGmgsvvND89NNP3i6pxpBU7uP99993tsnLyzMPPfSQqVevngkJCTE33HCDOXDggMtxdu/eba666ioTHBxsoqOjzaOPPmqKiopc2ixatMh07tzZBAYGmmbNmrmcA2UDG9fdc/773/+a9u3bG5vNZlq3bm3efvttl/12u9383//9n4mNjTU2m81cccUVZsuWLS5tjhw5Ym677TYTFhZmIiIizNChQ012drZLmzVr1piePXsam81mGjdubP7xj394/L35qqysLPPII4+YhIQEExQUZJo1a2b++te/unxY5bqfu0WLFpX7Z/rgwYONMdV7jT/77DPTqlUrExgYaNq1a2dmz57tsfftC8507Xft2nXav28XLVrkPAbXvvLO9jN/qvICG9e9+lmMMaY6evIAAAAAAJXDHDYAAAAA8FEENgAAAADwUQQ2AAAAAPBRBDYAAAAA8FEENgAAAADwUQQ2AAAAAPBRBDYAAAAA8FEENgAAAADwUQQ2AADKYbFYNGvWLG+X4RP69OmjkSNHersMAKiTCGwAgBplyJAhslgsslgsCggIUHJysh577DHl5+e79TwHDhzQVVdd5dZjnokvhKLFixfLYrEoIyPDq3UAAE7w93YBAABUVv/+/fX++++rqKhIKSkpGjx4sCwWi1544QW3nSMuLs5txwIAoKroYQMA1Dg2m01xcXFq2rSpBg4cqL59+2revHnO/Xa7XRMmTFBycrKCg4PVqVMnff755859TZo00VtvveVyzFWrVslqtWrPnj2Syg6J3Ldvn/70pz8pKipK9evX1/XXX6/du3dLktavXy+r1ar09HRJ0tGjR2W1WnXrrbc6X/+3v/1NPXv2rPJ7/uGHH9SrVy8FBweradOmevjhh5Wbm+vcn5SUpPHjx+vuu+9WeHi4EhIS9Pbbb7sc48cff1Tnzp0VFBSkbt26adasWbJYLFq9erV2796tyy67TJJUr149WSwWDRkyxOWaPvbYY6pfv77i4uL0zDPPVPm9AAAqjsAGAKjR1q9frx9//FGBgYHObRMmTNCHH36oqVOnasOGDRo1apTuuOMOLVmyRFarVbfddpumT5/ucpyPP/5Yl1xyiRITE8uco6ioSP369VN4eLiWLl2qZcuWKSwsTP3791dhYaHatWunBg0aaMmSJZKkpUuXujyXpCVLlqhPnz5Veo87duxQ//79ddNNN2nt2rWaMWOGfvjhB40YMcKl3csvv6xu3bpp1apVeuihh/Tggw9qy5YtkqSsrCxde+216tChg1auXKnnn39eY8eOdb62adOm+s9//iNJ2rJliw4cOKApU6Y493/wwQcKDQ3VihUrNHHiRD333HMuIRkA4CEGAIAaZPDgwcbPz8+EhoYam81mJBmr1Wo+//xzY4wx+fn5JiQkxPz4448urxs2bJi57bbbjDHGrFq1ylgsFrNnzx5jjDElJSWmcePG5q233nK2l2S+/PJLY4wxH330kTnvvPOM3W537i8oKDDBwcHmu+++M8YYc+ONN5rhw4cbY4wZOXKkGTNmjKlXr57ZtGmTKSwsNCEhIWbu3LmnfV+9e/c2jzzySLn7hg0bZu677z6XbUuXLjVWq9Xk5eUZY4xJTEw0d9xxh3O/3W43MTExzvf01ltvmQYNGjjbG2PMO++8YySZVatWGWOMWbRokZFkjh07Vqa2nj17umy74IILzNixY0/7fgAA7sEcNgBAjXPZZZfprbfeUm5url555RX5+/vrpptukiRt375dx48f1x/+8AeX1xQWFqpLly6SpM6dO6tNmzaaPn26Hn/8cS1ZskSHDh3SzTffXO751qxZo+3btys8PNxle35+vnbs2CFJ6t27t3MI4pIlSzR+/Hht3bpVixcv1tGjR1VUVKRLLrmkSu93zZo1Wrt2rT7++GPnNmOM7Ha7du3apTZt2kiSOnbs6NxvsVgUFxenQ4cOSSrtNevYsaOCgoKcbS688MIK13DysSWpUaNGzmMDADyHwAYAqHFCQ0PVokULSdJ7772nTp066V//+peGDRumnJwcSdLs2bPVuHFjl9fZbDbn14MGDXIGtunTp6t///5q0KBBuefLyclR165dXQKTQ8OGDSWdWOVx27Zt2rhxo3r27KnNmzdr8eLFOnbsmLp166aQkJAqvd+cnBzdf//9evjhh8vsS0hIcH4dEBDgss9ischut1fpnKfy5LEBAKdHYAMA1GhWq1VPPvmkRo8erdtvv11t27aVzWbT3r171bt379O+7vbbb9dTTz2llJQUff7555o6depp255//vmaMWOGYmJiFBERUW6bDh06qF69evrb3/6mzp07KywsTH369NELL7ygY8eOVXn+muP8GzdudIbUqjjvvPP073//WwUFBc7g+ssvv7i0ccwDLCkpqfJ5AADuxaIjAIAa7+abb5afn5/eeOMNhYeH6y9/+YtGjRqlDz74QDt27NDKlSv12muv6YMPPnC+JikpSRdffLGGDRumkpISXXfddac9/qBBgxQdHa3rr79eS5cu1a5du7R48WI9/PDD2r9/v6TSHqdLL71UH3/8sTOcdezYUQUFBVqwYMEZw6NDenq6Vq9e7fI4ePCgxo4dqx9//FEjRozQ6tWrtW3bNn311VdlFh05k9tvv112u1333XefNm3apO+++04vvfSSs3ZJSkxMlMVi0TfffKP09HRnbyUAwHsIbACAGs/f318jRozQxIkTlZubq+eff17/93//pwkTJqhNmzbq37+/Zs+ereTkZJfXDRo0SGvWrNENN9yg4ODg0x4/JCRE33//vRISEnTjjTeqTZs2GjZsmPLz81163Hr37q2SkhJnYLNarbr00ktlsVgqNH9t+vTp6tKli8vjnXfeUceOHbVkyRJt3bpVvXr1UpcuXTRu3DjFx8dX+BpFRETov//9r1avXq3OnTvrr3/9q8aNGydJznltjRs31rPPPqvHH39csbGxlQqEAADPsBhjjLeLAAAA1e/jjz/W0KFDlZmZecbACgDwHuawAQBQR3z44Ydq1qyZGjdurDVr1mjs2LH605/+RFgDAB9GYAMAoI5IS0vTuHHjlJaWpkaNGunmm2/W3//+d2+XBQA4A4ZEAgAAAICPYtERAAAAAPBRBDYAAAAA8FEENgAAAADwUQQ2AAAAAPBRBDYAAAAA8FEENgAAAADwUQQ2AAAAAPBRBDYAAAAA8FH/D2BEm2DxbF1hAAAAAElFTkSuQmCC",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAskAAAIjCAYAAADx6oYJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABf8klEQVR4nO3deVxU9f7H8fcgmyKLIksUohkqpqlpKalQ6hWXUivLrcUyvd20UsvKSsUyLcvMyqtZt6yuPrK8VyUtEzfUNLdcciMstzIWUTYXQOf8/vDHXGcABVlmBl7Px2MeD+Z8vnPmM4PA2zPf8z0mwzAMAQAAALBwsXcDAAAAgKMhJAMAAAA2CMkAAACADUIyAAAAYIOQDAAAANggJAMAAAA2CMkAAACADUIyAAAAYIOQDAAAANggJAOodubNmyeTyaQjR47YuxWnZTKZNHLkSHu34TQaNGigIUOGWO6vW7dOJpNJ69ats1tPAK6MkAzALgqCasHN1dVV119/vYYMGaI///zT3u1ViiFDhqh27dr2bqNYmzZtUmxsrDIyMuzdSrnIycnRxIkT1bx5c3l5ecnf31+tWrXSs88+qxMnTti7PQAOxtXeDQCo3l577TU1bNhQ58+f108//aR58+Zp48aN2rt3rzw9PSvkOR9++GENGDBAHh4eFbL/qmLTpk2aNGmShgwZIj8/P3u3Uyb5+fmKiorSwYMH9eijj+rpp59WTk6O9u3bpwULFujee+9VSEhIhT1/YmKiXFw4LgU4E0IyALvq0aOH2rZtK0l64oknVK9ePb311luKi4vTgw8+WCHPWaNGDdWoUaNC9g3HtGTJEu3cuVPz58/XoEGDrGrnz59XXl5ehT5/Rf+H7MyZM/Ly8qrQ5wCqG/5bC8ChdOrUSZL022+/WW0/ePCg+vXrp7p168rT01Nt27ZVXFycpb59+3aZTCZ9/vnnhfb5ww8/yGQyadmyZZKKn5P8/fffq1OnTvLy8pK3t7d69eqlffv2WepxcXEymUzas2ePZdt//vMfmUwm3XfffVb7ioiIUP/+/a/tTbCxZcsWde/eXb6+vqpVq5aio6P1448/Wo2JjY2VyWTSoUOHLEd+fX199dhjj+ns2bNWY8+dO6dnnnlG9erVk7e3t3r37q0///xTJpNJsbGxlv2NHTtWktSwYUPLtBjb92zJkiVq3ry5PDw8dPPNN2vFihVXfC0pKSlydXXVpEmTCtUSExNlMpn04YcfSrp09HfSpEkKDw+Xp6en/P391bFjR8XHx5fm7ZP0v39PHTp0KFTz9PSUj4+P5X7BNJjff/9dMTEx8vLyUkhIiF577TUZhmH12DNnzui5555TaGioPDw81KRJE73zzjuFxtnOSS5Oab7X+/fv16BBg1SnTh117NixpG8FgBIiJANwKAUhrE6dOpZt+/btU/v27XXgwAG99NJLmj59ury8vNS3b18tXrxYktS2bVvdeOON+vrrrwvtc+HChapTp45iYmKKfd4vv/xSvXr1Uu3atfXWW29p/Pjx2r9/vzp27GjpqWPHjjKZTFq/fr3lcRs2bJCLi4s2btxo2ZaWlqaDBw8qKiqqLG+FJGnNmjWKiopSVlaWJk6cqClTpigjI0OdO3fW1q1bC41/8MEHlZ2dralTp+rBBx/UvHnzCgXSIUOG6IMPPlDPnj311ltvqWbNmurVq5fVmPvuu08DBw6UJM2YMUNffvmlvvzySwUEBFjGbNy4UU899ZQGDBigadOm6fz587r//vuVnp5e7OsJCgpSdHR0sd+nGjVq6IEHHpB0KQxOmjRJd911lz788EO98sorql+/vn7++eeSv4H/LywsTJL0xRdfFAqwRbl48aK6d++uoKAgTZs2TW3atNHEiRM1ceJEyxjDMNS7d2/NmDFD3bt317vvvqsmTZpo7NixGjNmTKl7LO33+oEHHtDZs2c1ZcoUDRs2rNTPB+AqDACwg88++8yQZKxatcpIS0szjh8/bixatMgICAgwPDw8jOPHj1vGdunSxWjRooVx/vx5yzaz2WzccccdRnh4uGXbuHHjDDc3N+PUqVOWbbm5uYafn5/x+OOPF3ruw4cPG4ZhGNnZ2Yafn58xbNgwqx6Tk5MNX19fq+0333yz8eCDD1ru33rrrcYDDzxgSDIOHDhgGIZh/Pe//zUkGbt3777ie/Doo48aXl5exdbNZrMRHh5uxMTEGGaz2bL97NmzRsOGDY2//e1vlm0TJ040JFm9TsMwjHvvvdfw9/e33N+xY4chyRg1apTVuCFDhhiSjIkTJ1q2vf3221bv0+UkGe7u7sahQ4cs23bv3m1IMj744IMrvu6PPvrIkGT88ssvVtubNWtmdO7c2XK/ZcuWRq9eva64r5I6e/as0aRJE0OSERYWZgwZMsT417/+ZaSkpBQa++ijjxqSjKefftqyzWw2G7169TLc3d2NtLQ0wzAMY8mSJYYkY/LkyVaP79evn2Eymazem7CwMOPRRx+13F+7dq0hyVi7dq1l/6X9Xg8cOLBM7wmAK+NIMgC76tq1qwICAhQaGqp+/frJy8tLcXFxuuGGGyRJp06d0po1ayxHSE+ePKmTJ08qPT1dMTExSkpKsqyG0b9/f+Xn5+u///2vZf8rV65URkbGFac+xMfHKyMjQwMHDrTs/+TJk6pRo4batWuntWvXWsZ26tRJGzZskCRlZ2dr9+7dGj58uOrVq2fZvmHDBvn5+al58+Zlem927dqlpKQkDRo0SOnp6Za+zpw5oy5dumj9+vUym81Wj3nyySet7nfq1Enp6enKysqSJMt0iKeeespq3NNPP13q/rp27apGjRpZ7t9yyy3y8fHR77//fsXH3XfffXJ1ddXChQst2/bu3av9+/dbfZ/8/Py0b98+JSUllbo3WzVr1tSWLVssU0jmzZunoUOH6rrrrtPTTz+t3NzcQo+5fIm7giXv8vLytGrVKknSd999pxo1auiZZ56xetxzzz0nwzD0/fffl7i/8vheAyhfhGQAdjVr1izFx8dr0aJF6tmzp06ePGl1ktOhQ4dkGIbGjx+vgIAAq1vBR9+pqamSpJYtW6pp06ZW4WvhwoWqV6+eOnfuXGwPBSGsc+fOhZ5j5cqVlv1Ll0LnX3/9pUOHDmnTpk0ymUyKjIy0Cs8bNmxQhw4dyryaQUFfjz76aKG+PvnkE+Xm5iozM9PqMfXr17e6XzBt5fTp05Kko0ePysXFRQ0bNrQad9NNN5W6P9vnKni+gucqTr169dSlSxerKRcLFy6Uq6ur1dzu1157TRkZGWrcuLFatGihsWPHWs0HLy1fX19NmzZNR44c0ZEjR/Svf/1LTZo00YcffqjXX3/daqyLi4tuvPFGq22NGzeW9L8pQUePHlVISIi8vb2txkVERFjqJXUt32vb7yGA8sXqFgDs6vbbb7esbtG3b1917NhRgwYNUmJiomrXrm05evb8888XO6f48oDXv39/vfHGGzp58qS8vb0VFxengQMHytW1+F93Bc/x5ZdfKjg4uFD98scWnCC1fv16/f7777r11lvl5eWlTp066f3331dOTo527typN954o5TvRPF9vf3222rVqlWRY2zXWS5u1Q6jBPNwS6sszzVgwAA99thj2rVrl1q1aqWvv/5aXbp0Ub169SxjoqKi9Ntvv2np0qVauXKlPvnkE82YMUNz5szRE088Uabew8LC9Pjjj+vee+/VjTfeqPnz52vy5Mll2mdZXMv3umbNmhXdFlCtEZIBOIwaNWpo6tSplhO1XnrpJcvRPDc3N3Xt2vWq++jfv78mTZqk//znPwoKClJWVpYGDBhwxccUTBkIDAy86nPUr19f9evX14YNG/T7779bVuOIiorSmDFj9M033+jixYvlctJeQV8+Pj4leu0lERYWJrPZrMOHDys8PNyy/dChQ4XGmkymcnnOovTt21d///vfLUf9f/31V40bN67QuLp16+qxxx7TY489ppycHEVFRSk2NrbMIblAnTp11KhRI+3du9dqu9ls1u+//245elzQo3RppQrp0nu5atUqZWdnWx1NPnjwoKVeUhXxvQZQNky3AOBQ7rzzTt1+++167733dP78eQUGBurOO+/URx99pL/++qvQ+LS0NKv7ERERatGihRYuXKiFCxfquuuuu2pgjYmJkY+Pj6ZMmaL8/PyrPkenTp20Zs0abd261RKSW7VqJW9vb7355puqWbOm2rRpU9qXXkibNm3UqFEjvfPOO8rJyblqXyVRcDT+n//8p9X2Dz74oNDYgnV3K+KKe35+foqJidHXX3+tr776Su7u7urbt6/VGNtVMmrXrq2bbrrJav5wZmamDh48WGgqgq3du3fr5MmThbYfPXpU+/fvV5MmTQrVCpaiky4dHf/www/l5uamLl26SJJ69uypixcvWo2TLq0GYjKZ1KNHjyv2dLmK+F4DKBuOJANwOGPHjtUDDzygefPm6cknn9SsWbPUsWNHtWjRQsOGDdONN96olJQUbd68WX/88Yd2795t9fj+/ftrwoQJ8vT01NChQ686N9jHx0ezZ8/Www8/rFtvvVUDBgxQQECAjh07puXLl6tDhw5WQahTp06aP3++TCaTZfpFjRo1dMcdd+iHH37QnXfeKXd39xK91vz8/CI/5q9bt66eeuopffLJJ+rRo4duvvlmPfbYY7r++uv1559/au3atfLx8dG3335boucp0KZNG91///167733lJ6ervbt2yshIcFylPTyo8cFQf+VV17RgAED5ObmpnvuuafcLlrRv39/PfTQQ/rnP/+pmJiYQlf1a9asme688061adNGdevW1fbt27Vo0SKrE+oWL16sxx57TJ999tkV1yGOj4/XxIkT1bt3b7Vv396yDvKnn36q3Nxcy/rQBTw9PbVixQo9+uijateunb7//nstX75cL7/8smUZvHvuuUd33XWXXnnlFR05ckQtW7bUypUrtXTpUo0aNcrqpMarcXFxKffvNYAysuvaGgCqrYJl2LZt21aodvHiRaNRo0ZGo0aNjAsXLhiGYRi//fab8cgjjxjBwcGGm5ubcf311xt33323sWjRokKPT0pKMiQZkoyNGzcW+9y2S5utXbvWiImJMXx9fQ1PT0+jUaNGxpAhQ4zt27dbjdu3b58hyYiIiLDaPnnyZEOSMX78+BK9BwVLjRV1a9SokWXczp07jfvuu8/w9/c3PDw8jLCwMOPBBx80Vq9ebRlTsCxYwfJkV3qtZ86cMUaMGGHUrVvXqF27ttG3b18jMTHRkGS8+eabVo9//fXXjeuvv95wcXGx2o8kY8SIEYVek+1SZ1eSlZVl1KxZ05Bk/Pvf/y5Unzx5snH77bcbfn5+Rs2aNY2mTZsab7zxhpGXl1fo9X322WdXfK7ff//dmDBhgtG+fXsjMDDQcHV1NQICAoxevXoZa9assRpbsDTfb7/9ZnTr1s2oVauWERQUZEycONG4ePGi1djs7Gxj9OjRRkhIiOHm5maEh4cbb7/9ttUybkW9L7ZLwBUoy/caQPkyGUYFnM0BAHAqu3btUuvWrfXvf/9bgwcPtnc7djVkyBAtWrSoyGkPAKoP5iQDQDVz7ty5Qtvee+89ubi4lMsJhwBQFTAnGQCqmWnTpmnHjh2666675Orqqu+//17ff/+9hg8frtDQUHu3BwAOgZAMANXMHXfcofj4eL3++uvKyclR/fr1FRsbq1deecXerQGAw2BOMgAAAGCDOckAAACADUIyAAAAYIM5yeXEbDbrxIkT8vb2rtBLuQIAAODaGIah7OxshYSEXPVCU4TkcnLixAnOCgcAAHACx48f1w033HDFMYTkcuLt7S3p0pvu4+Nj524AAABgKysrS6GhoZbcdiWE5HJSMMXCx8eHkAwAAODASjI1lhP3AAAAABuEZAAAAMAGIRkAAACwQUgGAAAAbBCSAQAAABuEZAAAAMAGIRkAAACwQUgGAAAAbBCSAQAAABuEZAAAAMAGIRkAAACwQUgGAAAAbBCSAQAAABuEZMDJHDhwQNOmTdOBAwfs3QoAAFUWIRlwInl5eVq6dKkyMjK0dOlS5eXl2bslAACqJEIy4EQSEhKUnZ0tScrOzlZCQoKdOwIAoGoiJANOIj09XQkJCTIMQ5JkGIYSEhKUnp5u584AAKh6CMmAEzAMQ3FxcUXW4uLiLMEZAACUD0Iy4ATS0tKUlJQks9lstd1sNispKUlpaWl26gwAgKqJkAw4gYCAAIWHh8vFxfpH1sXFReHh4QoICLBTZwAAVE2EZMAJmEwm9e7du8ha7969ZTKZKrkjAACqNkIy4CT8/f0VHR1tCcQmk0nR0dHy9/e3c2cAAFQ9hGTAiURHR8vb21uS5O3trejoaDt3BABA1URIBpyIu7u7+vTpIz8/P/Xp00fu7u72bgkAgCrJ1d4NACidiIgIRURE2LsNAACqNI4kAwAAADYIyQAAAIANQjIAAABgg5AMAAAA2CAkAwAAADYIyQAAAIANQjIAALCrAwcOaNq0aTpw4IC9WwEsCMkAAMBu8vLytHTpUmVkZGjp0qXKy8uzd0uAJEIyAACwo4SEBGVnZ0uSsrOzlZCQYOeOgEsIyQAAwC7S09OVkJAgwzAkSYZhKCEhQenp6XbuDCAkAwAAOzAMQ3FxcUXW4uLiLMEZsBdCMgAAqHRpaWlKSkqS2Wy22m42m5WUlKS0tDQ7dQZcQkgGAACVLiAgQOHh4XJxsY4iLi4uCg8PV0BAgJ06Ay4hJAMAgEpnMpnUu3fvImu9e/eWyWSq5I4Aa4RkAABgF/7+/urYsaPVto4dO8rf399OHQH/Q0gGAAAAbNg1JK9fv1733HOPQkJCZDKZtGTJkmLHPvnkkzKZTHrvvfestp86dUqDBw+Wj4+P/Pz8NHToUOXk5FiN2bNnjzp16iRPT0+FhoZq2rRphfb/zTffqGnTpvL09FSLFi303XfflcdLBAAAxUhPT9fGjRuttm3cuJEl4OAQ7BqSz5w5o5YtW2rWrFlXHLd48WL99NNPCgkJKVQbPHiw9u3bp/j4eC1btkzr16/X8OHDLfWsrCx169ZNYWFh2rFjh95++23FxsZq7ty5ljGbNm3SwIEDNXToUO3cuVN9+/ZV3759tXfv3vJ7sQAAwIIl4ODoTIaD/Cs0mUxavHix+vbta7X9zz//VLt27fTDDz+oV69eGjVqlEaNGiXp0rXemzVrpm3btqlt27aSpBUrVqhnz576448/FBISotmzZ+uVV15RcnKy3N3dJUkvvfSSlixZooMHD0qS+vfvrzNnzmjZsmWW523fvr1atWqlOXPmlKj/rKws+fr6KjMzUz4+PmV8NwAAqNpSU1MLfTp8uVGjRikwMLDyGkK1UJq85tBzks1msx5++GGNHTtWN998c6H65s2b5efnZwnIktS1a1e5uLhoy5YtljFRUVGWgCxJMTExSkxM1OnTpy1junbtarXvmJgYbd68udjecnNzlZWVZXUDAAAlwxJwcHQOHZLfeustubq66plnnimynpycXOh/ma6urqpbt66Sk5MtY4KCgqzGFNy/2piCelGmTp0qX19fyy00NLR0Lw4AgGqMJeDg6Bw2JO/YsUMzZ87UvHnzHPIHZdy4ccrMzLTcjh8/bu+WAABwKv7+/oqOjrb8nTeZTIqOjmYJODgEhw3JGzZsUGpqqurXry9XV1e5urrq6NGjeu6559SgQQNJUnBwsFJTU60ed+HCBZ06dUrBwcGWMSkpKVZjCu5fbUxBvSgeHh7y8fGxugEAgNKJjo6Wt7e3JMnb21vR0dF27gi4xGFD8sMPP6w9e/Zo165dlltISIjGjh2rH374QZIUGRmpjIwM7dixw/K4NWvWyGw2q127dpYx69evV35+vmVMfHy8mjRpojp16ljGrF692ur54+PjFRkZWdEvEwCAas3d3V19+vSRn5+f+vTpY3UOEWBPrvZ88pycHB06dMhy//Dhw9q1a5fq1q2r+vXrF/q4xc3NTcHBwWrSpIkkKSIiQt27d9ewYcM0Z84c5efna+TIkRowYIBlubhBgwZp0qRJGjp0qF588UXt3btXM2fO1IwZMyz7ffbZZxUdHa3p06erV69e+uqrr7R9+3arZeIAAEDFiIiIUEREhL3bAKzY9Ujy9u3b1bp1a7Vu3VqSNGbMGLVu3VoTJkwo8T7mz5+vpk2bqkuXLurZs6c6duxoFW59fX21cuVKHT58WG3atNFzzz2nCRMmWK2lfMcdd2jBggWaO3euWrZsqUWLFmnJkiVq3rx5+b1YAAAAOA2HWSfZ2bFOMgAAgGOrMuskAwAAAPZASAYAAABsEJIBAAAAG4RkAAAAwAYhGQAAALBBSAYAAABsEJIBAAAAG4RkAAAAwAYhGQAAALBBSAYAAABsEJIBAAAAG4RkAAAAwAYhGQAAALBBSAYAAABsEJIBAAAAG4RkAAAAwAYhGQAAALBBSAYAAABsEJIBAAAAG4RkAAAAwAYhGQAAALBBSAYAAABsEJIBAAAAG4RkAAAAwAYhGQAAALBBSAYAAABsEJIBJ3PgwAFNmzZNBw4csHcrAABUWYRkwInk5eVp6dKlysjI0NKlS5WXl2fvlgAAqJIIyYATSUhIUHZ2tiQpOztbCQkJdu4IAICqiZAMOIn09HQlJCTIMAxJkmEYSkhIUHp6up07AwCg6iEkA07AMAzFxcUVWYuLi7MEZwBwRpxrAUdESAacQFpampKSkmQ2m622m81mJSUlKS0tzU6dAUDZ5OXladGiRcrIyNCiRYs41wIOg5AMOIGAgACFh4fLxcX6R9bFxUXh4eEKCAiwU2cAUDZr1qzRuXPnJEnnzp3TmjVr7NwRcAkhGXACJpNJvXv3LrLWu3dvmUymSu4IAMouPT1dGzZssNq2YcMGzrWAQyAkA07C399f0dHRlkBsMpkUHR0tf39/O3cGAKVnGIYWLVpU6JyK4rYDlY2QDDiR6OhoeXt7S5K8vb0VHR1t544A4Nqkpqbq6NGjRdaOHj2q1NTUSu4IsEZIBpyIu7u7+vTpIz8/P/Xp00fu7u72bgkAgCrJ1d4NACidiIgIRURE2LsNACiTwMBAhYWFFXk0OSwsTIGBgXboCvgfjiQDAIBKZzKZ1K9fvyJr/fr144Rk2B0hGQAA2IW/v7+ioqKstkVFRXFCMhwCIRkAANhN586dVbNmTUlSzZo11blzZzt3BFxCSAYAAHbj7u6ufv36yc/PT/369eOEZDgMTtwDAAB2xQnJcEQcSQYAAABsEJIBAAAAG3YNyevXr9c999yjkJAQmUwmLVmyxFLLz8/Xiy++qBYtWsjLy0shISF65JFHdOLECat9nDp1SoMHD5aPj4/8/Pw0dOhQ5eTkWI3Zs2ePOnXqJE9PT4WGhmratGmFevnmm2/UtGlTeXp6qkWLFvruu+8q5DUDAADA8dk1JJ85c0YtW7bUrFmzCtXOnj2rn3/+WePHj9fPP/+s//73v0pMTFTv3r2txg0ePFj79u1TfHy8li1bpvXr12v48OGWelZWlrp166awsDDt2LFDb7/9tmJjYzV37lzLmE2bNmngwIEaOnSodu7cqb59+6pv377au3dvxb14AAAgSTpw4ICmTZumAwcO2LsVwMJkGIZh7yakS4uKL168WH379i12zLZt23T77bfr6NGjql+/vg4cOKBmzZpp27Ztatu2rSRpxYoV6tmzp/744w+FhIRo9uzZeuWVV5ScnGw5Y/all17SkiVLdPDgQUlS//79debMGS1btszyXO3bt1erVq00Z86cEvWflZUlX19fZWZmysfH5xrfBQAAqpe8vDy99dZbOnfunGrWrKkXX3yRFS5QYUqT15xqTnJmZqZMJpP8/PwkSZs3b5afn58lIEtS165d5eLioi1btljGREVFWf3AxcTEKDExUadPn7aM6dq1q9VzxcTEaPPmzcX2kpubq6ysLKsbUBk44gKgKlmzZo3OnTsnSTp37pzWrFlj546AS5wmJJ8/f14vvviiBg4caEn+ycnJha7t7urqqrp16yo5OdkyJigoyGpMwf2rjSmoF2Xq1Kny9fW13EJDQ8v2AoESyMvL09KlS5WRkaGlS5cqLy/P3i0BwDVLT0/X+vXrrbatX79e6enpduoI+B+nCMn5+fl68MEHZRiGZs+ebe92JEnjxo1TZmam5Xb8+HF7t4RqICEhQdnZ2ZKk7OxsJSQk2LkjALg2hmFo0aJFRdYWLVokB5kNimrM4UNyQUA+evSo4uPjreaPBAcHKzU11Wr8hQsXdOrUKQUHB1vGpKSkWI0puH+1MQX1onh4eMjHx8fqBlSk9PR0JSQkWP5wGIahhIQEjrgAcEqpqak6evRokbWjR48W+vsOVDaHDskFATkpKUmrVq2Sv7+/VT0yMlIZGRnasWOHZduaNWtkNpvVrl07y5j169crPz/fMiY+Pl5NmjRRnTp1LGNWr15tte/4+HhFRkZW1EsDSsUwDMXFxRVZi4uL44gLAADlzK4hOScnR7t27dKuXbskSYcPH9auXbt07Ngx5efnq1+/ftq+fbvmz5+vixcvKjk5WcnJyZZ5mBEREerevbuGDRumrVu36scff9TIkSM1YMAAhYSESJIGDRokd3d3DR06VPv27dPChQs1c+ZMjRkzxtLHs88+qxUrVmj69Ok6ePCgYmNjtX37do0cObLS3xOgKGlpaUpKSpLZbLbabjablZSUpLS0NDt1BgDXJjAwUGFhYUXWGjRoUOicI6Cy2TUkb9++Xa1bt1br1q0lSWPGjFHr1q01YcIE/fnnn4qLi9Mff/yhVq1a6brrrrPcNm3aZNnH/Pnz1bRpU3Xp0kU9e/ZUx44drdZA9vX11cqVK3X48GG1adNGzz33nCZMmGC1lvIdd9yhBQsWaO7cuWrZsqUWLVqkJUuWqHnz5pX3ZgBXEBAQoPDwcLm4WP/Iuri4KDw8XAEBAXbqDACujclkUpcuXYqsde7cWSaTqZI7Aqw5zDrJzo51klHR0tPTNWPGDKujyS4uLho9enShqUgA4OgMw9C8efN06NChQlPGwsPDNWTIEIIyyl2VXScZqM78/f0VHR1t+aNhMpkUHR1NQAbglAqmkRV1rI5pZHAEhGTAiURHR8vb21uS5O3trejoaDt3BADXhmlkcHSEZMCJuLu7q0+fPvLz81OfPn24dCsAp2UymdS7d+8ia71792aqBeyOkAwAAOyCaWRwZIRkwIlwWWoAVQ3TyOCoCMmAE+Gy1ACqGqaRwVG52rsBACVT3GWpb731Vj6aBODUIiIiFBERYe82ACscSQacQMFlqW2XSipuOwAAKBtCMuAEiltP1DAM1hMFAKACEJIBJxAQEKCwsLAia2FhYawnCgBAOSMkAwAAuzpw4ICmTZumAwcO2LsVwIKQDDiBtLQ0HT16tMja0aNHmW4BwGmxtCUcFSEZcAIFl2+1vQIVl28F4OxY2hKOipAMOIGCy7cWdZlWLt8KwFkVt7Rlenq6nTsDCMmA0+DyrQCqkoIlLIvC0pZwBIRkwIlw+VYAVUXB0pZms9lqu9lsZmlLOARCMuBEuHwrgKqi4FwLFxfrKMK5FnAUXJYacDJcvhVAVVBwrsWMGTMK1TjXAo6AI8kAAMAu/P391bFjR6ttHTt25FwLOARCMgAAAGCDkAwAAOwiPT1dGzdutNq2ceNGloCDQyAkAwCASscScHB0hGQAAFDpWAIOjo6QDAAAKh1LwMHREZIBAEClK1gCrigsAQdHQEgGAAB24e/vr+joaEsgNplMio6OZgk4OARCMgAAsJvo6Gh5enpKkjw9PRUdHW3njoBLCMkAAACADUIyAACwm4SEBJ07d06SdO7cOSUkJNi5I+ASQjIAALCL9PT0QqE4ISGBi4nAIRCSAQBApSu4mIjtRUPMZjMXE4FDICQDAIBKV3AxkaLCMBcTgSMgJAMAgEpXr1491apVq8harVq1VK9evUruCLBGSAYAAJXu5MmTOnv2bJG1s2fP6uTJk5XcEWCNkAwAACpdwWWpi8JlqeEICMkAAKDSFVyW2vby08VtByobIRlwMitXrtQrr7yilStX2rsVACgTf39/1a9f32pb/fr1uSw1HAIhGXAiOTk5WrdunQzD0Lp165STk2PvlgDgmqWnp+vYsWNW244dO8Y6yXAIhGTAifz73/++4n0AcBbFrZNc3HagshGSASdx6NChIo+4HDp0yE4dAcC1K1gnuSiskwxHQEgGnIDZbNaCBQuKrC1YsEBms7mSOwKAsgkICFBISEiRtZCQEFa3gN0RkgEnkJiYqPPnzxdZO3/+vBITEyu5IwAoG8MwdOrUqSJrp06dYroF7I6QDDiBOnXqlKkOAI7m119/veJ//n/99ddK7giwRkgGnEBQUNAVP5YMCgqq5I4AoGwaN24sT0/PImuenp5q3LhxJXcEWCMkA07AZDJp4MCBRdYGDhzIovsAnI7JZFLdunWLrNWtW5ffa7A7u4bk9evX65577lFISIhMJpOWLFliVTcMQxMmTNB1112nmjVrqmvXroXOhD116pQGDx4sHx8f+fn5aejQoYXWjt2zZ486deokT09PhYaGatq0aYV6+eabb9S0aVN5enqqRYsW+u6778r99QJl4e/vrw4dOlht69ChA4vuA3BKaWlpOnHiRJG1EydOsLoF7M6uIfnMmTNq2bKlZs2aVWR92rRpev/99zVnzhxt2bJFXl5eiomJsZrDNHjwYO3bt0/x8fFatmyZ1q9fr+HDh1vqWVlZ6tatm8LCwrRjxw69/fbbio2N1dy5cy1jNm3apIEDB2ro0KHauXOn+vbtq759+2rv3r0V9+KBa/C3v/1N7u7ukiR3d3f97W9/s3NHAHBtAgICFBYWVmStQYMGrG4BuzMZDnL6qMlk0uLFi9W3b19Jl44ih4SE6LnnntPzzz8vScrMzFRQUJDmzZunAQMG6MCBA2rWrJm2bdumtm3bSpJWrFihnj176o8//lBISIhmz56tV155RcnJyZZw8dJLL2nJkiU6ePCgJKl///46c+aMli1bZumnffv2atWqlebMmVOi/rOysuTr66vMzEz5+PiU19sCFHLgwAF9++23uueeexQREWHvdgDgmhiGoVmzZhV5NDkkJEQjRoxgygXKXWnymsPOST58+LCSk5PVtWtXyzZfX1+1a9dOmzdvliRt3rxZfn5+loAsSV27dpWLi4u2bNliGRMVFWUJyJIUExOjxMREnT592jLm8ucpGFPwPEXJzc1VVlaW1Q0AAJRMamrqFadbpKamVnJHgDWHDcnJycmSVOis/aCgIEstOTlZgYGBVnVXV1fVrVvXakxR+7j8OYobU1AvytSpU+Xr62u5hYaGlvYlAqWWl5enpUuXKiMjQ0uXLlVeXp69WwKAa3K1D7Id5INuVGMOG5Id3bhx45SZmWm5HT9+3N4toRpISEhQdna2JCk7O1sJCQl27ggAgKrJYUNycHCwJCklJcVqe0pKiqUWHBxc6OOYCxcu6NSpU1ZjitrH5c9R3JiCelE8PDzk4+NjdQMqUnp6uhISEixHVwzDUEJCgtLT0+3cGQAAVY/DhuSGDRsqODhYq1evtmzLysrSli1bFBkZKUmKjIxURkaGduzYYRmzZs0amc1mtWvXzjJm/fr1ys/Pt4yJj49XkyZNLFcpi4yMtHqegjEFzwPYm2EYiouLK7IWFxfHx5IAAJQzu4bknJwc7dq1S7t27ZJ06WS9Xbt26dixYzKZTBo1apQmT56suLg4/fLLL3rkkUcUEhJiWQEjIiJC3bt317Bhw7R161b9+OOPGjlypAYMGGC5OtmgQYPk7u6uoUOHat++fVq4cKFmzpypMWPGWPp49tlntWLFCk2fPl0HDx5UbGystm/frpEjR1b2WwIUKS0tTUlJSTKbzVbbzWazkpKSWE8UgNO52soVrGwBe7NrSN6+fbtat26t1q1bS5LGjBmj1q1ba8KECZKkF154QU8//bSGDx+u2267TTk5OVqxYoXVZSznz5+vpk2bqkuXLurZs6c6duxotQayr6+vVq5cqcOHD6tNmzZ67rnnNGHCBKu1lO+44w4tWLBAc+fOVcuWLbVo0SItWbJEzZs3r6R3AriygIAAhYeHy8XF+kfWxcVF4eHhrCcKwOkEBgYWOmm+QFBQUKET84HK5jDrJDs71klGRUtPT9eMGTOsjia7uLho9OjRXHUPgNMxm816/fXXlZubW6jm4eGh8ePHFzowAJRVlVgnGYA1f39/RUdHW22Ljo4mIANwSomJiUUGZOnStQgSExMruSPAGiEZcCKRkZGWeXomk4mTSwE4LT8/vzLVgYpGSAacyObNm62WgLvSVSEBwJFdbSoFUy1gb/wLBJxEwTrJl2OdZADOKjAwUGFhYUXWGjRowIl7sDtCMuAEWCcZQFVjMpnUr1+/Imv3338/S8DB7gjJgBNgnWQAVZG/v7/q169vta1+/fqckAyHQEgGnEDBOslFYZ1kAM4qPT1dx48ft9p2/PhxppHBIRCSASdgMpnUqVOnImtRUVF8LAnA6TCNDI6OkAw4AcMwtHr16iJrq1at4o8JAKdTMI3M9veXYRhMI4NDICQDTiA1NVVHjx4tsnb06FGlpqZWckcAUDYBAQHFrm4RFhbGNDLYHSEZAADYRX5+fqm2A5WJkAw4gYCAAHl6ehZZ8/T05IgLAKeTmpqqEydOFFk7ceIEn5DB7gjJgBM4efKkzp8/X2Tt/PnzOnnyZCV3BABA1UZIBpxAvXr1VKtWrSJrtWrVUr169Sq5IwAoG664B0dHSAacwMmTJ3X27Nkia2fPnuVIMgCnU3DFPdslLE0mE1fcg0NwvZYHrV69WqtXr1ZqamqhK4B9+umn5dIYgP8pOAu8qBUuOAscgLPy9/eXt7e3srKyLNu8vb254h4cQqmPJE+aNEndunXT6tWrdfLkSZ0+fdrqBgAAUBKHDh2yCsiSlJWVpUOHDtmpI+B/Sn0kec6cOZo3b54efvjhiugHQBHS0tKuuE5yWloa8/cAOBWz2ayvvvqqyNpXX32ll19+WS4uzAqF/ZT6X19eXp7uuOOOiugFQDH8/f2LnZ9nMpn4aBKA0/n111+veK7Fr7/+WskdAdZKHZKfeOIJLViwoCJ6AVCMxMTEYi89bRiGEhMTK7kjACibxo0bX3HVnsaNG1dyR4C1Ek23GDNmjOVrs9msuXPnatWqVbrlllvk5uZmNfbdd98t3w4BFDpBtrR1AHA0Li4uGjBgQJEn/A8cOJCpFrC7EoXknTt3Wt1v1aqVJGnv3r3l3hCAwq72x4I/JgCcUZ06dYrc7ufnV7mNAEUoUUheu3ZtRfcB4AqaNm0qV1dXXbhwoVDN1dVVTZs2tUNXAHDtDMNQXFxckbW4uDgNGTKEtZJhV6U+/PT4448rOzu70PYzZ87o8ccfL5emABRW3NFijiIDcEZpaWlKSkoqspaUlKS0tLRK7giwVuq/rp9//rnOnTtXaPu5c+f0xRdflEtTAKwlJiYqLy+vyFpeXh4n7gFwOgEBAQoJCSmyFhISwkWSYHclXic5KytLhmHIMAxlZ2fL09PTUrt48aK+++471mkFKkhx8/ZKWgcAR2MYhk6ePFlk7eTJkzIMg+kWsKsSh2Q/Pz+ZTCaZTKYil2UxmUyaNGlSuTYH4JKgoCAFBQUpJSWl2BoAOJODBw9e8ROygwcPqlmzZpXcFfA/JQ7Ja9eulWEY6ty5s/7zn/+obt26lpq7u7vCwsKK/dgEAADgcsWt/V7SOlDRShySo6OjJUmHDx9W/fr1+QgEqEQpKSlFHkW+vBYcHFzJXQHAtbvalUK5kijsrcQhuUBmZqZ++eWXQttNJpM8PT1Vv359eXh4lEtzAC45ffr0VeuEZADOJDAwUB4eHsrNzS1U8/Dw4Dwn2F2pQ3KrVq2ueBTZzc1N/fv310cffWR1ch+Aa9e4cWO5uLgUeWU9FxcXLt8KwOmcPHmyyIAsSbm5uTp58iRBGXZV6iXgFi9erPDwcM2dO1e7du3Srl27NHfuXDVp0kQLFizQv/71L61Zs0avvvpqRfQLVEvp6enFXnrabDYrPT29kjsCgLKpV69esQfTPD09Va9evUruCLBW6iPJb7zxhmbOnKmYmBjLthYtWuiGG27Q+PHjtXXrVnl5eem5557TO++8U67NAtVVQECAwsPDi1x4Pzw8nPVEATidtLQ0nT9/vsja+fPnlZaWxso9sKtSH0n+5ZdfFBYWVmh7WFiYZa5yq1at9Ndff5W9OwCSLs3579SpU5G1qKgoTqQFAKCclTokN23aVG+++abV2ob5+fl688031bRpU0nSn3/+yf/+gHJkGIZWr15dZG3VqlUslQTA6QQEBFxxugWfkMHeSj3dYtasWerdu7duuOEG3XLLLZIuHV2+ePGili1bJkn6/fff9dRTT5Vvp0A1lpqaqqNHjxZZO3r0qFJTU/mPKQCncvLkyStOt+DEPdhbqUPyHXfcocOHD2v+/Pn69ddfJUkPPPCABg0aJG9vb0nSww8/XL5dAgCAKqVevXqqVauWzp49W6hWq1YtTtyD3ZU6JEuSt7e3nnzyyfLuBUAxAgMDFRgYqNTU1EK1oKAgjrYAcDonT54sMiBL0tmzZzmSDLu7ppCclJSktWvXKjU1tdCyVBMmTCiXxgD8j2EYysrKKrKWmZkpwzA4eQ+AUwkICFBYWFiRU8nCwsKYkwy7K3VI/vjjj/WPf/xD9erVU3BwsNUfZpPJREgGKsCvv/56xbl7v/76q+XEWQAAUHalDsmTJ0/WG2+8oRdffLEi+gFQhMaNG8vT07PIoOzp6ckV9wA4nbS0tCuekJyWlsZ0C9hVqZeAO336tB544IGK6AVAMUwmk7y8vIqseXl5MdUCgNPhintwdKUOyQ888IBWrlxZEb0AKEZKSkqxl55OT09XSkpKJXcEAGVTkivuAfZU6ukWN910k8aPH6+ffvpJLVq0kJubm1X9mWeeKbfmAFxSXEC+vB4cHFxJ3QBA2dme+F/aOlDRSh2S586dq9q1ayshIUEJCQlWNZPJREgGKsDVrqjHFfcAOJuMjIyr1q+77rrKaQYoQqlD8uHDhyuiDwBX4OJy5ZlRV6sDgKMJDw8vUx2oaNf8lzUvL0+JiYm6cOFCefZj5eLFixo/frwaNmyomjVrqlGjRnr99detjpoZhqEJEybouuuuU82aNdW1a1clJSVZ7efUqVMaPHiwfHx85Ofnp6FDhyonJ8dqzJ49e9SpUyd5enoqNDRU06ZNq7DXBZTW1VavYHULAM7G9m91aetARSt1SD579qyGDh2qWrVq6eabb9axY8ckSU8//bTefPPNcm3urbfe0uzZs/Xhhx/qwIEDeuuttzRt2jR98MEHljHTpk3T+++/rzlz5mjLli3y8vJSTEyM1ckAgwcP1r59+xQfH69ly5Zp/fr1Gj58uKWelZWlbt26KSwsTDt27NDbb7+t2NhYzZ07t1xfD3CtCi4Bf611AHA0vr6+ZaoDFa3UIXncuHHavXu31q1bZ7V0S9euXbVw4cJybW7Tpk3q06ePevXqpQYNGqhfv37q1q2btm7dKunSUeT33ntPr776qvr06aNbbrlFX3zxhU6cOKElS5ZIkg4cOKAVK1bok08+Ubt27dSxY0d98MEH+uqrr3TixAlJ0vz585WXl6dPP/1UN998swYMGKBnnnlG7777brG95ebmKisry+oGAABK5siRI2WqAxWt1CF5yZIl+vDDD9WxY0ertVlvvvlm/fbbb+Xa3B133KHVq1dbjpLt3r1bGzduVI8ePSRdmh+dnJysrl27Wh7j6+urdu3aafPmzZKkzZs3y8/PT23btrWM6dq1q1xcXLRlyxbLmKioKLm7u1vGxMTEKDExUadPny6yt6lTp8rX19dyCw0NLdfXDlyuadOm8vDwKLLm4eHB1fYAOB0fH58y1YGKVuqQXNwVcM6cOVPuFzR46aWXNGDAADVt2lRubm5q3bq1Ro0apcGDB0uSkpOTJUlBQUFWjwsKCrLUkpOTC/Xr6uqqunXrWo0pah+XP4etcePGKTMz03I7fvx4GV8tUDwXFxfdddddRdY6d+7MiXsAnI6/v3+Z6kBFK/Vf1rZt22r58uWW+wXB+JNPPlFkZGT5dSbp66+/1vz587VgwQL9/PPP+vzzz/XOO+/o888/L9fnuRYeHh7y8fGxugEVxWw2a926dUXW1q5dy3qiAJxOSZaAA+yp1EvATZkyRT169ND+/ft14cIFzZw5U/v379emTZsKrZtcVmPHjrUcTZakFi1a6OjRo5o6daoeffRRy8UTUlJSrNZSTElJUatWrSRJwcHBSk1NtdrvhQsXdOrUKcvjg4ODC12xrOA+F2iAI0hMTLzilakSExMVERFRyV0BwLVr3LixTCZTkeu8m0wmVu2B3ZX6SHLHjh21a9cuXbhwQS1atNDKlSsVGBiozZs3q02bNuXa3NmzZwt9jFyjRg3LUbOGDRsqODhYq1evttSzsrK0ZcsWy1HtyMhIZWRkaMeOHZYxa9askdlsVrt27Sxj1q9fr/z8fMuY+Ph4NWnSRHXq1CnX1wRci6v9O+TfKQBnk56eXuyFkAzDuOqVRoGKdk0TGRs1aqSPP/5YW7du1f79+/Xvf/9bQUFBmjJlSrk2d8899+iNN97Q8uXLdeTIES1evFjvvvuu7r33XkmX/qc5atQoTZ48WXFxcfrll1/0yCOPKCQkRH379pUkRUREqHv37ho2bJi2bt2qH3/8USNHjtSAAQMUEhIiSRo0aJDc3d01dOhQ7du3TwsXLtTMmTM1ZsyYcn09wLUKCgqy/Hu1df311xeaUw8Ajs7f37/Yc5lMJhNzkmF35Xa2z19//aXx48eX1+4kSR988IH69eunp556ShEREXr++ef197//Xa+//rplzAsvvKCnn35aw4cP12233aacnBytWLHCanm6+fPnq2nTpurSpYt69uypjh07Wq2B7Ovrq5UrV+rw4cNq06aNnnvuOU2YMMFqLWXAnkwmk7p3715krXv37uV+0iwAVLTExMQrHklOTEys5I4AayajuH+hpbR7927deuutunjxYnnszulkZWXJ19dXmZmZnMSHcmcYhubNm1fkFajCw8M1ZMgQgjIAp1LwSXRxHnroITVr1qwSO0J1UJq8xrpRgBNIS0sr9hKtSUlJSktLq+SOAKBsGjVqVKY6UNEIyYATqFu3bpnqAOBovv/++zLVgYpW4iXgrnYSG0eygIqzbdu2q9bLe51yAKhIt912m7Zu3XrFOmBPJQ7JO3fuvOqYqKioMjUDoGhhYWFlqgOAo7nuuutUo0aNIs9lcnV1tbr+AWAPJQ7Ja9eurcg+AFzB1U7K46Q9AM7m5MmTxZ7sf+HCBZ08eVKBgYGV3BXwP8xJBpzA6dOny1QHAEcTEBCg8PDwImvh4eEKCAio5I4Aa4RkwAlwxT0AVY3JZFKnTp2KrEVFRfEJGeyOkAw4gastZ15Oy50DQKUxDEPLli0rsvbtt9/yew12R0gGnMDRo0fLVAcAR5OcnKzU1NQia6mpqUpOTq7kjgBrhGTACdSvX79MdQBwNEeOHClTHahopQ7JUVFRmjBhglavXq3z589XRE8AbGRmZpapDgCO5vrrry9THahopQ7J3bp1008//aQ+ffrIz89PHTt21Kuvvqr4+HidPXu2InoEqj1O3ANQ1WzYsKFMdaCilTokv/rqq1q5cqUyMjK0du1a3X333dq+fbt69erFpXGBCpKenl6mOgA4mubNm5epDlS0El9MxNbvv/+uX375Rbt379aePXvk7e3NFfeACpKVlVWmOgA4mqCgoDLVgYpW6pA8aNAgJSQkKDc3V1FRUYqOjtZLL72kW265hTUNgQrSoEGDMtUBwNEEBgbKw8NDubm5hWoeHh5cbQ92V+qQ/NVXX6levXp64okn1LlzZ3Xs2FG1atWqiN4A/D8XlyvPjLpaHQAczcmTJ4sMyJKUm5vLZalhd6X+y5qenq5PPvlEeXl5GjdunOrVq6c77rhDL7/8slauXFkRPQLVHhcTAVDVXO08Js5zgr2VOiTXqVNHvXv31rvvvqsdO3Zoz549aty4sd5++2316NGjInoEqr3Tp0+XqQ4Ajmbbtm1lqgMVrdTTLdLT05WQkKB169Zp3bp12r9/v/z8/HTPPfcoOjq6InoEqj0/P78y1QHA0fj4+JSpDlS0UofkwMBA1atXT506ddKwYcN05513qkWLFhXRG4D/l5GRcdV6SEhI5TQDAOWgSZMmZaoDFa3UIXnPnj26+eabK6IXAMXgYiIAqppDhw5dtd60adNK6gYorNRzkm+++WZduHBBq1at0kcffaTs7GxJ0okTJ5STk1PuDQJgdQsAVQ9LW8LRlfov69GjR9WiRQv16dNHI0aMUFpamiTprbfe0vPPP1/uDQLgLHAAVc/ixYvLVAcqWqlD8rPPPqu2bdvq9OnTqlmzpmX7vffeq9WrV5drcwAuWbt2bZnqAOBoOnToUKY6UNFKPSd5w4YN2rRpk9zd3a22N2jQQH/++We5NQbgf4KDg8tUBwBHUzBd81rrQEUr9ZFks9msixcvFtr+xx9/yNvbu1yaAmDtapd855LwAACUr1KH5G7duum9996z3DeZTMrJydHEiRPVs2fP8uwNwP/LysoqUx0AHA3rJMPRlTokT58+XT/++KOaNWum8+fPa9CgQZapFm+99VZF9AhUe7Vr1y5THQAcDVfcg6Mr9ZzkG264Qbt379ZXX32lPXv2KCcnR0OHDtXgwYOtTuQDUH5Ksp5oy5YtK6kbACi7hg0bavv27VesA/ZU6pAsSa6urnrooYfKuxcAxWjUqJF27NhxxToAOJOUlJQy1YGKVqKQHBcXpx49esjNzU1xcXFXHNu7d+9yaQzA/yQlJV213qpVq8ppBgDKQa1atcpUBypaiUJy3759lZycrMDAQPXt27fYcSaTqciVLwCUjdlsLlMdABxNRkZGmepARStRSL78DzB/jIHKR0gGUNWcOHGiTHWgopV6dYvjx49XRB8AriA9Pb1MdQBwNGfPni1THahopQ7JDRo0UHR0tD7++GOdPn26InoCYKN+/fplqgOAo7na6hWsbgF7K3VI3r59u26//Xa99tpruu6669S3b18tWrRIubm5FdEfAElubm5lqgOAo/nzzz/LVAcqWqlDcuvWrfX222/r2LFj+v777xUQEKDhw4crKChIjz/+eEX0CFR7AQEBZaoDgKPhxD04ulKH5AImk0l33XWXPv74Y61atUoNGzbU559/Xp69Afh/q1atKlMdABzN1T6B5hNq2Ns1h+Q//vhD06ZNU6tWrXT77berdu3amjVrVnn2BuD/ZWVllakOAI7makvGsqQs7K3UV9z76KOPtGDBAv34449q2rSpBg8erKVLlyosLKwi+gOgS9Mp0tLSrlgHAADlp9QhefLkyRo4cKDef/99tWzZsiJ6AmAjLy+vTHUAAFA6pQ7Jx44dk8lkqoheABQjMzOzTHUAAFA6pZ6TbDKZtGHDBj300EOKjIy0LNHy5ZdfauPGjeXeIAAAAFDZSh2S//Of/ygmJkY1a9bUzp07LWefZmZmasqUKeXeIAAAAFDZSh2SJ0+erDlz5ujjjz+2uoBBhw4d9PPPP5drcwAAAIA9lDokJyYmKioqqtB2X1/fCln4+88//9RDDz0kf39/1axZUy1atND27dstdcMwNGHCBF133XWqWbOmunbtqqSkJKt9nDp1SoMHD5aPj4/8/Pw0dOhQ5eTkWI3Zs2ePOnXqJE9PT4WGhmratGnl/loAAADgHEodkoODg3Xo0KFC2zdu3Kgbb7yxXJoqcPr0aXXo0EFubm76/vvvtX//fk2fPl116tSxjJk2bZref/99zZkzR1u2bJGXl5diYmJ0/vx5y5jBgwdr3759io+P17Jly7R+/XoNHz7cUs/KylK3bt0UFhamHTt26O2331ZsbKzmzp1brq8HAAAAzqHUq1sMGzZMzz77rD799FOZTCadOHFCmzdv1vPPP6/x48eXa3NvvfWWQkND9dlnn1m2NWzY0PK1YRh677339Oqrr6pPnz6SpC+++EJBQUFasmSJBgwYoAMHDmjFihXatm2b2rZtK0n64IMP1LNnT73zzjsKCQnR/PnzlZeXp08//VTu7u66+eabtWvXLr377rtWYRoAAADVQ6mPJL/00ksaNGiQunTpopycHEVFRemJJ57Q3//+dz399NPl2lxcXJzatm2rBx54QIGBgWrdurU+/vhjS/3w4cNKTk5W165dLdt8fX3Vrl07bd68WZK0efNm+fn5WQKyJHXt2lUuLi7asmWLZUxUVJTc3d0tY2JiYpSYmKjTp08X2Vtubq6ysrKsbgAAAKgarmkJuFdeeUWnTp3S3r179dNPPyktLU2vv/66zp07V67N/f7775o9e7bCw8P1ww8/6B//+IeeeeYZff7555Kk5ORkSVJQUJDV44KCgiy15ORkBQYGWtVdXV1Vt25dqzFF7ePy57A1depU+fr6Wm6hoaFlfLUAAABwFKUOyQXc3d3VrFkz3X777XJzc9O7775rNRWiPJjNZt16662aMmWKWrdureHDh2vYsGGaM2dOuT7PtRg3bpwyMzMtt+PHj9u7JQAAAJSTEofk3NxcjRs3Tm3bttUdd9yhJUuWSJI+++wzNWzYUDNmzNDo0aPLtbnrrrtOzZo1s9oWERGhY8eOSbp0EqEkpaSkWI1JSUmx1IKDg5WammpVv3Dhgk6dOmU1pqh9XP4ctjw8POTj42N1AwAAQNVQ4pA8YcIEzZ49Ww0aNNCRI0f0wAMPaPjw4ZoxY4beffddHTlyRC+++GK5NtehQwclJiZabfv1118VFhYm6dJJfMHBwVq9erWlnpWVpS1btigyMlKSFBkZqYyMDO3YscMyZs2aNTKbzWrXrp1lzPr165Wfn28ZEx8fryZNmlitpAEAAIDqocQh+ZtvvtEXX3yhRYsWaeXKlbp48aIuXLig3bt3a8CAAapRo0a5Nzd69Gj99NNPmjJlig4dOqQFCxZo7ty5GjFihKRL86NHjRqlyZMnKy4uTr/88oseeeQRhYSEqG/fvpIuHXnu3r27hg0bpq1bt+rHH3/UyJEjNWDAAIWEhEiSBg0aJHd3dw0dOlT79u3TwoULNXPmTI0ZM6bcXxMAAAAcX4mXgPvjjz/Upk0bSVLz5s3l4eGh0aNHy2QyVVhzt912mxYvXqxx48bptddeU8OGDfXee+9p8ODBljEvvPCCzpw5o+HDhysjI0MdO3bUihUr5OnpaRkzf/58jRw5Ul26dJGLi4vuv/9+vf/++5a6r6+vVq5cqREjRqhNmzaqV6+eJkyYwPJvAAAA1VSJQ/LFixetlkhzdXVV7dq1K6Spy9199926++67i62bTCa99tpreu2114odU7duXS1YsOCKz3PLLbdow4YN19wnAAAAqo4Sh2TDMDRkyBB5eHhIks6fP68nn3xSXl5eVuP++9//lm+HAAAAQCUrcUh+9NFHre4/9NBD5d4MAAAA4AhKHJIvvzQ0AAAAUJVd88VEAAAAgKqKkAwAAADYICQDAAAANgjJAAAAgA1CMgAAAGCDkAwAAADYICQDAAAANgjJAAAAgA1CMgAAAGCDkAwAAADYICQDAAAANgjJAAAAgA1CMgAAAGCDkAwAAADYICQDAAAANgjJAAAAgA1CMgAAAGCDkAwAAADYICQDAAAANgjJAAAAgA1CMgAAAGCDkAwAAADYcLV3AwAAQDIMQ/n5+fZuw6Hk5eXZu4VK4ebmJpPJZO82YIOQDACAA8jPz1dsbKy923Ao1eX9iI2Nlbu7u73bgA2mWwAAAAA2OJIMAIADcHNzqzZHTqWSHSWuLu+Hm5ubvVtAEQjJAAA4AJPJVK0+cp8yZYpefvnlK9YBe2K6BQAAsIvigjABGY6AkAwAAADYICQDAAC7sZ13zFFkOApCMgAAcAjV5UQ9OAdCMgAAAGCDkAwAAADYICQDAAAANgjJAAAAgA1CMgAAAGCDkAwAAADYICQDAAAANgjJAAAAgA1CMgAAAGCDkAwAAADYICQDAAAANpwqJL/55psymUwaNWqUZdv58+c1YsQI+fv7q3bt2rr//vuVkpJi9bhjx46pV69eqlWrlgIDAzV27FhduHDBasy6det06623ysPDQzfddJPmzZtXCa8IAAAAjshpQvK2bdv00Ucf6ZZbbrHaPnr0aH377bf65ptvlJCQoBMnTui+++6z1C9evKhevXopLy9PmzZt0ueff6558+ZpwoQJljGHDx9Wr169dNddd2nXrl0aNWqUnnjiCf3www+V9voAAADgOJwiJOfk5Gjw4MH6+OOPVadOHcv2zMxM/etf/9K7776rzp07q02bNvrss8+0adMm/fTTT5KklStXav/+/fr3v/+tVq1aqUePHnr99dc1a9Ys5eXlSZLmzJmjhg0bavr06YqIiNDIkSPVr18/zZgxwy6vFwAAAPblFCF5xIgR6tWrl7p27Wq1fceOHcrPz7fa3rRpU9WvX1+bN2+WJG3evFktWrRQUFCQZUxMTIyysrK0b98+yxjbfcfExFj2UZTc3FxlZWVZ3QAAAFA1uNq7gav56quv9PPPP2vbtm2FasnJyXJ3d5efn5/V9qCgICUnJ1vGXB6QC+oFtSuNycrK0rlz51SzZs1Czz116lRNmjTpml8XAAAAHJdDH0k+fvy4nn32Wc2fP1+enp72bsfKuHHjlJmZabkdP37c3i0BAACgnDh0SN6xY4dSU1N16623ytXVVa6urkpISND7778vV1dXBQUFKS8vTxkZGVaPS0lJUXBwsCQpODi40GoXBfevNsbHx6fIo8iS5OHhIR8fH6sbAAAAqgaHDsldunTRL7/8ol27dllubdu21eDBgy1fu7m5afXq1ZbHJCYm6tixY4qMjJQkRUZG6pdfflFqaqplTHx8vHx8fNSsWTPLmMv3UTCmYB8AAACoXhx6TrK3t7eaN29utc3Ly0v+/v6W7UOHDtWYMWNUt25d+fj46Omnn1ZkZKTat28vSerWrZuaNWumhx9+WNOmTVNycrJeffVVjRgxQh4eHpKkJ598Uh9++KFeeOEFPf7441qzZo2+/vprLV++vHJfMAAAAByCQ4fkkpgxY4ZcXFx0//33Kzc3VzExMfrnP/9pqdeoUUPLli3TP/7xD0VGRsrLy0uPPvqoXnvtNcuYhg0bavny5Ro9erRmzpypG264QZ988oliYmLs8ZIAAABgZ04XktetW2d139PTU7NmzdKsWbOKfUxYWJi+++67K+73zjvv1M6dO8ujRQAAADg5h56TDAAAANgDIRkAAACwQUgGAAAAbBCSAQAAABuEZAAAAMAGIRkAAACwQUgGAAAAbBCSAQAAABuEZAAAAMAGIRkAAACwQUgGAAAAbBCSAQAAABuEZAAAAMAGIRkAAACwQUgGAAAAbBCSAQAAABuEZAAAAMAGIRkAAACwQUgGAAAAbBCSAQAAABuEZAAAAMCGq70bAK6FYRjKz8+3dxsOJS8vz94tVAo3NzeZTCZ7twEAqOIIyXBK+fn5io2NtXcbDqW6vB+xsbFyd3e3dxsAgCqO6RYAAACADY4kwym5ublVmyOnUsmOEleX98PNzc3eLQAAqgFCMpySyWSqVh+5T5kyRS+//PIV6wAAoPww3QJwEsUFYQIyAADlj5AMAAAA2CAkA07Edt4xR5EBAKgYhGTASVWXE/UAALAHQjIAAABgg5AMAAAA2CAkAwAAADYIyQAAAIANLiYCAHAohmEoPz/f3m2gkuTl5RX5Nao+Nzc3mUwme7dRLEIyAMCh5Ofns3pLNcWyltVLbGysQ189l+kWAAAAgA2OJAMAHNY/OjWTWw2O51RlhmHogtmQJLm6mBz643eUXf5Fs2Zv2G/vNkqEkAwAcFhuNVwIydWA437gjuqM3zwAAACADUIyAAAAYIOQDAAAANggJAMAAAA2CMkAAACADUIyAAAAYMOhQ/LUqVN12223ydvbW4GBgerbt68SExOtxpw/f14jRoyQv7+/ateurfvvv18pKSlWY44dO6ZevXqpVq1aCgwM1NixY3XhwgWrMevWrdOtt94qDw8P3XTTTZo3b15FvzwAAAA4KIcOyQkJCRoxYoR++uknxcfHKz8/X926ddOZM2csY0aPHq1vv/1W33zzjRISEnTixAndd999lvrFixfVq1cv5eXladOmTfr88881b948TZgwwTLm8OHD6tWrl+666y7t2rVLo0aN0hNPPKEffvihUl8vAAAAHINDX0xkxYoVVvfnzZunwMBA7dixQ1FRUcrMzNS//vUvLViwQJ07d5YkffbZZ4qIiNBPP/2k9u3ba+XKldq/f79WrVqloKAgtWrVSq+//rpefPFFyzXD58yZo4YNG2r69OmSpIiICG3cuFEzZsxQTExMpb9uAAAA2JdDH0m2lZmZKUmqW7euJGnHjh3Kz89X165dLWOaNm2q+vXra/PmzZKkzZs3q0WLFgoKCrKMiYmJUVZWlvbt22cZc/k+CsYU7KMoubm5ysrKsroBAACganCakGw2mzVq1Ch16NBBzZs3lyQlJyfL3d1dfn5+VmODgoKUnJxsGXN5QC6oF9SuNCYrK0vnzp0rsp+pU6fK19fXcgsNDS3zawQAAIBjcJqQPGLECO3du1dfffWVvVuRJI0bN06ZmZmW2/Hjx+3dEgAAAMqJQ89JLjBy5EgtW7ZM69ev1w033GDZHhwcrLy8PGVkZFgdTU5JSVFwcLBlzNatW632V7D6xeVjbFfESElJkY+Pj2rWrFlkTx4eHvLw8CjzawMAAIDjcegjyYZhaOTIkVq8eLHWrFmjhg0bWtXbtGkjNzc3rV692rItMTFRx44dU2RkpCQpMjJSv/zyi1JTUy1j4uPj5ePjo2bNmlnGXL6PgjEF+wAAAED14tBHkkeMGKEFCxZo6dKl8vb2tswh9vX1Vc2aNeXr66uhQ4dqzJgxqlu3rnx8fPT0008rMjJS7du3lyR169ZNzZo108MPP6xp06YpOTlZr776qkaMGGE5Evzkk0/qww8/1AsvvKDHH39ca9as0ddff63ly5fb7bUDAADAfhz6SPLs2bOVmZmpO++8U9ddd53ltnDhQsuYGTNm6O6779b999+vqKgoBQcH67///a+lXqNGDS1btkw1atRQZGSkHnroIT3yyCN67bXXLGMaNmyo5cuXKz4+Xi1bttT06dP1ySefsPwbAABANeXQR5INw7jqGE9PT82aNUuzZs0qdkxYWJi+++67K+7nzjvv1M6dO0vdIwAAAKoehz6SDAAAANgDIRkAAACwQUgGAAAAbDj0nGRcnWEYys/Pt3cbqCR5eXlFfo2qz83NTSaTyd5tAEC1QUh2cvn5+YqNjbV3G7CDKVOm2LsFVKLY2Fi5u7vbuw0AqDaYbgEAAADY4EhyFXJ7z2dVo4abvdtABTIMQ+aLl6bXuNTg4/eq7uLFfG39bqa926h0ly//mX/RbMdOAJS3y3+mS7LUrz0RkquQGjXcVMOVj2OrPDcPe3cAVKjLz7OYvWG/HTsBUJHy8/MtVz92REy3AAAAAGxwJBkA4FDc3P43bewfnZrJrQbHc4CqIv+i2fIJ0eU/646IkAwAcCiXz7V3q+FCSAaqKEc/r4bfPAAAAIANQjIAAABgg5AMAAAA2CAkAwAAADYIyQAAAIANQjIAAABgg5AMAAAA2CAkAwAAADYIyQAAAIANQjIAAABgg8tSOznDMCxfX7yQZ8dOAJS3y3+mL/9Zr07yL5rt3QIqmGEYumC+9O/b1cXk8JcqRtk40880IdnJ5efnW77e+v37duwEQEXKz8+Xh4eHvduodLM37Ld3CwCqKaZbAAAAADY4kuzk3NzcLF/f3uMZ1XB1t2M3AMrTxQt5lk+ILv9Zr+rc3NwUGxtr7zZQSfLy8jRlyhRJ0ssvvyx3d/6OVReO/nuNkOzkLp+7VcPVnZAMVFHVaZ6myWQiKFVT7u7ufO/hMJhuAQAAANggJAMAAAA2mG5RhVy8mH/1QXBqhmHI/P/fZ5cabtXqI/jqiJ9pALAfQnIVsvW7mfZuAQAAoEpgugUAAABggyPJTo6lkqoXlkqqvhx9qSQAqGoIyU6OpZKqL5ZKAgCg4jDdAgAAALBBSAYAAABsEJIBAAAAG4RkAAAAwAYhGQAAALBBSAYAAABsEJIBAAAAG4RkAAAAwAYhGQAAALBBSAYAAABsEJIBAAAAG4RkAAAAwAYh2casWbPUoEEDeXp6ql27dtq6dau9WwIAAEAlc7V3A45k4cKFGjNmjObMmaN27drpvffeU0xMjBITExUYGGjv9gAAVZhhGMrPz7d3G5UuLy+vyK+rEzc3N5lMJnu3ARuE5Mu8++67GjZsmB577DFJ0pw5c7R8+XJ9+umneumll+zcHS7HHxP+mABVTX5+vmJjY+3dhl1NmTLF3i3YRWxsrNzd3e3dBmwQkv9fXl6eduzYoXHjxlm2ubi4qGvXrtq8eXOh8bm5ucrNzbXcz8rKqpQ+cQl/TPhjAgBARSIk/7+TJ0/q4sWLCgoKstoeFBSkgwcPFho/depUTZo0qbLaAwBUcW5ubtXyP/+XfzJYXT8pcnNzs3cLKAIh+RqNGzdOY8aMsdzPyspSaGioHTuqXvhjwh8ToKoxmUzV9lMSDw8Pe7cAFEJI/n/16tVTjRo1lJKSYrU9JSVFwcHBhcZ7eHjwQ21H/DEBAAAViSXg/p+7u7vatGmj1atXW7aZzWatXr1akZGRduwMAAAAlY0jyZcZM2aMHn30UbVt21a333673nvvPZ05c8ay2gUAAACqB0LyZfr376+0tDRNmDBBycnJatWqlVasWFHoZD4AAABUbSbDMAx7N1EVZGVlydfXV5mZmfLx8bF3OwAAALBRmrzGnGQAAADABiEZAAAAsEFIBgAAAGwQkgEAAAAbhGQAAADABiEZAAAAsEFIBgAAAGwQkgEAAAAbhGQAAADABiEZAAAAsEFIBgAAAGwQkgEAAAAbhGQAAADAhqu9G6gqDMOQJGVlZdm5EwAAABSlIKcV5LYrISSXk+zsbElSaGionTsBAADAlWRnZ8vX1/eKY0xGSaI0rspsNuvEiRPy9vaWyWSydzuowrKyshQaGqrjx4/Lx8fH3u0AQJnxew2VxTAMZWdnKyQkRC4uV551zJHkcuLi4qIbbrjB3m2gGvHx8eGPCYAqhd9rqAxXO4JcgBP3AAAAABuEZAAAAMAGIRlwMh4eHpo4caI8PDzs3QoAlAt+r8ERceIeAAAAYIMjyQAAAIANQjIAAABgg5AMAAAA2CAkA05k3rx58vPzs3cbAABUeYRkwA6GDBkik8lU6Hbo0CF7twYA16yo32uX32JjY+3dIlBiXHEPsJPu3bvrs88+s9oWEBBgp24AoOz++usvy9cLFy7UhAkTlJiYaNlWu3Zty9eGYejixYtydSWKwDFxJBmwEw8PDwUHB1vdZs6cqRYtWsjLy0uhoaF66qmnlJOTU+w+du/erbvuukve3t7y8fFRmzZttH37dkt948aN6tSpk2rWrKnQ0FA988wzOnPmTGW8PADV0OW/z3x9fWUymSz3Dx48KG9vb33//fdq06aNPDw8tHHjRg0ZMkR9+/a12s+oUaN05513Wu6bzWZNnTpVDRs2VM2aNdWyZUstWrSocl8cqh1CMuBAXFxc9P7772vfvn36/PPPtWbNGr3wwgvFjh88eLBuuOEGbdu2TTt27NBLL70kNzc3SdJvv/2m7t276/7779eePXu0cOFCbdy4USNHjqyslwMAhbz00kt68803deDAAd1yyy0leszUqVP1xRdfaM6cOdq3b59Gjx6thx56SAkJCRXcLaozPuMA7GTZsmVWHz326NFD33zzjeV+gwYNNHnyZD355JP65z//WeQ+jh07prFjx6pp06aSpPDwcEtt6tSpGjx4sEaNGmWpvf/++4qOjtbs2bPl6elZAa8KAK7stdde09/+9rcSj8/NzdWUKVO0atUqRUZGSpJuvPFGbdy4UR999JGio6MrqlVUc4RkwE7uuusuzZ4923Lfy8tLq1at0tSpU3Xw4EFlZWXpwoULOn/+vM6ePatatWoV2seYMWP0xBNP6Msvv1TXrl31wAMPqFGjRpIuTcXYs2eP5s+fbxlvGIbMZrMOHz6siIiIin+RAGCjbdu2pRp/6NAhnT17tlCwzsvLU+vWrcuzNcAKIRmwEy8vL910002W+0eOHNHdd9+tf/zjH3rjjTdUt25dbdy4UUOHDlVeXl6RITk2NlaDBg3S8uXL9f3332vixIn66quvdO+99yonJ0d///vf9cwzzxR6XP369Sv0tQFAcby8vKzuu7i4yDAMq235+fmWrwvOy1i+fLmuv/56q3EeHh4V1CVASAYcxo4dO2Q2mzV9+nS5uFw6XeDrr7++6uMaN26sxo0ba/To0Ro4cKA+++wz3Xvvvbr11lu1f/9+qyAOAI4mICBAe/futdq2a9cuy/kVzZo1k4eHh44dO8bUClQqTtwDHMRNN92k/Px8ffDBB/r999/15Zdfas6cOcWOP3funEaOHKl169bp6NGj+vHHH7Vt2zbLNIoXX3xRmzZt0siRI7Vr1y4lJSVp6dKlnLgHwKF07txZ27dv1xdffKGkpCRNnDjRKjR7e3vr+eef1+jRo/X555/rt99+088//6wPPvhAn3/+uR07R1VHSAYcRMuWLfXuu+/qrbfeUvPmzTV//nxNnTq12PE1atRQenq6HnnkETVu3FgPPvigevTooUmTJkmSbrnlFiUkJOjXX39Vp06d1Lp1a02YMEEhISGV9ZIA4KpiYmI0fvx4vfDCC7rtttuUnZ2tRx55xGrM66+/rvHjx2vq1KmKiIhQ9+7dtXz5cjVs2NBOXaM6MBm2E4EAAACAao4jyQAAAIANQjIAAABgg5AMAAAA2CAkAwAAADYIyQAAAIANQjIAAABgg5AMAAAA2CAkAwAAADYIyQCAMjty5IhMJpN27dolSVq3bp1MJpMyMjLs2hcAXCtCMgA4uCFDhqhv377X/PjFixerffv28vX1lbe3t26++WaNGjWq3PqTpNDQUP31119q3rx5ue4XAOzF1d4NAAAqzurVq9W/f3+98cYb6t27t0wmk/bv36/4+PhyfZ4aNWooODi4XPeZl5cnd3f3ct0nAJQUR5IBwMksWrRILVq0UM2aNeXv76+uXbvqzJkzRY799ttv1aFDB40dO1ZNmjRR48aN1bdvX82aNcsyJjY2Vq1atdJHH32k0NBQ1apVSw8++KAyMzMtY8xms1577TXdcMMN8vDwUKtWrbRixQpL3Xa6RVE2btyoTp06qWbNmgoNDdUzzzxj1XeDBg30+uuv65FHHpGPj4+GDx9ehncJAMqGkAwATuSvv/7SwIED9fjjj+vAgQNat26d7rvvPhmGUeT44OBg7du3T3v37r3ifg8dOqSvv/5a3377rVasWKGdO3fqqaeestRnzpyp6dOn65133tGePXsUExOj3r17KykpqUR9//bbb+revbvuv/9+7dmzRwsXLtTGjRs1cuRIq3HvvPOOWrZsqZ07d2r8+PEl2jcAVASTUdxvVgCAQxgyZIgyMjK0ZMkS/fzzz2rTpo2OHDmisLCwqz72zJkzevDBB/Xdd98pLCxM7du3V7du3TR48GB5eHhIunQkefLkyTp69Kiuv/56SdKKFSvUq1cv/fnnnwoODtb111+vESNG6OWXX7bs+/bbb9dtt92mWbNm6ciRI2rYsKF27typVq1aad26dbrrrrt0+vRp+fn56YknnlCNGjX00UcfWR6/ceNGRUdH68yZM/L09FSDBg3UunVrLV68uJzfQQAoPY4kA4ATadmypbp06aIWLVrogQce0Mcff6zTp08XO97Ly0vLly/XoUOH9Oqrr6p27dp67rnndPvtt+vs2bOWcfXr17cEZEmKjIyU2WxWYmKisrKydOLECXXo0MFq3x06dNCBAwdK1Pfu3bs1b9481a5d23KLiYmR2WzW4cOHLePatm1b0rcCACoUIRkAnEiNGjUUHx+v77//Xs2aNdMHH3ygJk2aWAXNojRq1EhPPPGEPvnkE/3888/av3+/Fi5cWEldSzk5Ofr73/+uXbt2WW67d+9WUlKSGjVqZBnn5eVVaT0BwJUQkgHAyZhMJnXo0EGTJk3Szp075e7uXqopCg0aNFCtWrWsTpo7duyYTpw4Ybn/008/ycXFRU2aNJGPj49CQkL0448/Wu3nxx9/VLNmzUr0nLfeeqv279+vm266qdCNFSwAOCKWgAMAJ7JlyxatXr1a3bp1U2BgoLZs2aK0tDRFREQUOT42NlZnz55Vz549FRYWpoyMDL3//vvKz8/X3/72N8s4T09PPfroo3rnnXeUlZWlZ555Rg8++KBlWbexY8dq4sSJatSokVq1aqXPPvtMu3bt0vz580vU94svvqj27dtr5MiReuKJJ+Tl5WVZiu7DDz8s+xsDAOWMkAwATsTHx0fr16/Xe++9p6ysLIWFhWn69Onq0aNHkeOjo6M1a9YsPfLII0pJSVGdOnXUunVrrVy5Uk2aNLGMu+mmm3TfffepZ8+eOnXqlO6++27985//tNSfeeYZZWZm6rnnnlNqaqqaNWumuLg4hYeHl6jvW265RQkJCXrllVfUqVMnGYahRo0aqX///mV7QwCggrC6BQBUc7GxsVqyZMkV1zgGgOqGOckAAACADUIyAAAAYIPpFgAAAIANjiQDAAAANgjJAAAAgA1CMgAAAGCDkAwAAADYICQDAAAANgjJAAAAgA1CMgAAAGCDkAwAAADY+D8MJlIoeJIOKgAAAABJRU5ErkJggg==",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "import matplotlib.pyplot as plt\n",
+ "import seaborn as sns\n",
+ "\n",
+ "# Plot distribution of spoilers vs. non-spoilers\n",
+ "plt.figure(figsize=(8, 6))\n",
+ "sns.countplot(x='is_spoiler', data=df, palette='coolwarm')\n",
+ "plt.title('Distribution of Spoiler vs. Non-Spoiler Reviews')\n",
+ "plt.xlabel('Is Spoiler')\n",
+ "plt.ylabel('Count')\n",
+ "plt.show()\n",
+ "\n",
+ "# Plot the distribution of review lengths\n",
+ "plt.figure(figsize=(10, 6))\n",
+ "sns.histplot(df['review_length'], kde=True, bins=30, color='purple')\n",
+ "plt.title('Distribution of Review Lengths')\n",
+ "plt.xlabel('Review Length')\n",
+ "plt.ylabel('Frequency')\n",
+ "plt.show()\n",
+ "\n",
+ "# Correlation between review length and is_spoiler\n",
+ "plt.figure(figsize=(8, 6))\n",
+ "sns.boxplot(x='is_spoiler', y='review_length', data=df, palette='coolwarm')\n",
+ "plt.title('Review Length vs. Spoiler')\n",
+ "plt.xlabel('Is Spoiler')\n",
+ "plt.ylabel('Review Length')\n",
+ "plt.show()\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "f8eaead3",
+ "metadata": {
+ "papermill": {
+ "duration": 0.011514,
+ "end_time": "2024-08-16T07:46:27.662423",
+ "exception": false,
+ "start_time": "2024-08-16T07:46:27.650909",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "source": [
+ "### **2.B. Down sample to make two calsses uniform**"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "id": "a8f85143",
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2024-08-16T07:46:27.687575Z",
+ "iopub.status.busy": "2024-08-16T07:46:27.686947Z",
+ "iopub.status.idle": "2024-08-16T07:46:28.583084Z",
+ "shell.execute_reply": "2024-08-16T07:46:28.582026Z"
+ },
+ "papermill": {
+ "duration": 0.911341,
+ "end_time": "2024-08-16T07:46:28.585412",
+ "exception": false,
+ "start_time": "2024-08-16T07:46:27.674071",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [],
+ "source": [
+ "class_counts = df['is_spoiler'].value_counts()\n",
+ "min_class_count = class_counts.min()\n",
+ "\n",
+ "# Downsample each class to have the same number of instances as the smallest class\n",
+ "df_balanced = pd.DataFrame() # Create an empty DataFrame to store the balanced data\n",
+ "\n",
+ "for label in class_counts.index:\n",
+ " df_balanced = pd.concat([\n",
+ " df_balanced,\n",
+ " df[df['is_spoiler'] == label].sample(n=min_class_count, random_state=42)\n",
+ " ])\n",
+ "\n",
+ "# Shuffle the DataFrame to mix the classes well\n",
+ "df_balanced = df_balanced.sample(frac=1, random_state=42).reset_index(drop=True)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "id": "a8e1be5b",
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2024-08-16T07:46:28.611453Z",
+ "iopub.status.busy": "2024-08-16T07:46:28.610822Z",
+ "iopub.status.idle": "2024-08-16T07:46:28.669642Z",
+ "shell.execute_reply": "2024-08-16T07:46:28.668682Z"
+ },
+ "papermill": {
+ "duration": 0.07388,
+ "end_time": "2024-08-16T07:46:28.671577",
+ "exception": false,
+ "start_time": "2024-08-16T07:46:28.597697",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [],
+ "source": [
+ "df=df_balanced"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "id": "3fcf1a76",
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2024-08-16T07:46:28.697594Z",
+ "iopub.status.busy": "2024-08-16T07:46:28.696732Z",
+ "iopub.status.idle": "2024-08-16T07:46:30.755784Z",
+ "shell.execute_reply": "2024-08-16T07:46:30.754915Z"
+ },
+ "papermill": {
+ "duration": 2.074522,
+ "end_time": "2024-08-16T07:46:30.758245",
+ "exception": false,
+ "start_time": "2024-08-16T07:46:28.683723",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtEAAAIjCAYAAADFk0cVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABUXUlEQVR4nO3df3yPdf////trZj+MbX5ks5pZCENWiMX8yDI/qnNRjJ35NZxnWfIjRTIjpXQSSpazs6bijHp/qNAykyRLjJEfc1J+lbYJ28smM3Z8/+iy4+tlww7GRrfr5fK65Diej9dxPI5jr9e679jxes5mGIYhAAAAAKXmVN4NAAAAADcbQjQAAABgESEaAAAAsIgQDQAAAFhEiAYAAAAsIkQDAAAAFhGiAQAAAIsI0QAAAIBFhGgAAADAIkI0UE7i4uJks9luyL46deqkTp06mcvr1q2TzWbTp59+ekP2P2jQINWrV++G7Otq5ebmaujQofL19ZXNZtOoUaPKu6USXfy1PHjwoGw2mxISEsqtJ5SPevXqadCgQeZy0ft63bp15dbTjfBXOU5UfIRooAwkJCTIZrOZDzc3N/n5+Sk8PFxz587VqVOnymQ/R48eVVxcnNLS0spke2WpIvdWGq+88ooSEhL05JNP6sMPP9QTTzxxydqzZ89qzpw5uueee+Tp6Slvb281bdpUw4cPV3p6+g3s+q+h6H01c+bMYmNF770tW7aUQ2d//vA1efJkNWvWTB4eHqpZs6aCg4P1zDPP6OjRo+XS041QFGSLHpUqVVLt2rX12GOPac+ePeXdHnBDOJd3A8CtZOrUqQoMDFRBQYEyMjK0bt06jRo1SrNmzdLnn3+uu+++26x98cUXNX78eEvbP3r0qKZMmaJ69eopODi41M9bvXq1pf1cjcv19u9//1uFhYXXvYdrsXbtWrVt21aTJ0++Ym3v3r315Zdfql+/fho2bJgKCgqUnp6uFStW6P7771fjxo2vW5834mtZUb3++ut68sknVaVKlfJuRZJUUFCgDh06KD09XQMHDtTTTz+t3Nxc7dq1S4sXL9ajjz4qPz+/67b/vXv3ysmpfK+FjRw5Uq1bt1ZBQYF27Nih+Ph4rVu3Tjt37pSvr+912WeHDh30xx9/yMXF5bpsHygtQjRQhrp3765WrVqZyxMmTNDatWv10EMP6ZFHHtGePXvk7u4uSXJ2dpaz8/V9C54+fVpVqlQp9//ZVK5cuVz3XxpZWVkKCgq6Yt3mzZu1YsUKvfzyy3rhhRccxt566y1lZ2dfpw7/dL2/lnl5efLw8Liu+7gawcHBSktLU3x8vMaMGVPe7UiSli9frm3btmnRokXq37+/w9iZM2d09uzZ67p/V1fX67r90rwWQkND9dhjj5nLjRo10pNPPqkPPvhAzz333HXpy8nJSW5ubtdl24AV3M4BXGcPPPCAJk2apEOHDumjjz4y15d0T3RSUpLat28vb29vVa1aVY0aNTKD2rp169S6dWtJ0uDBg81foxbdC9upUyc1a9ZMqamp6tChg6pUqWI+9+L7aIucP39eL7zwgnx9feXh4aFHHnlER44ccai5+L7LIhdu80q9lXRPdF5ensaOHSt/f3+5urqqUaNG+te//iXDMBzqbDabYmJitHz5cjVr1kyurq5q2rSpEhMTSz7hF8nKylJ0dLR8fHzk5uamFi1aaOHCheZ40a+lDxw4oJUrV5q9Hzx4sMTt/fTTT5Kkdu3aFRurVKmSatasaS4XfY3T09PVp08feXp6qmbNmnrmmWd05swZh+eeO3dOL730kurXry9XV1fVq1dPL7zwgvLz8x3qLvW1vFh6eroee+wx1ahRQ25ubmrVqpU+//xzh5qiWyG++eYbPfXUU6pdu7buuOOOEreXmZkpZ2dnTZkypdjY3r17ZbPZ9NZbb0n68wrtlClT1LBhQ7m5ualmzZpq3769kpKSrtj3pbRr104PPPCAZsyYoT/++OOK9WvXrlVoaKg8PDzk7e2tv/3tb8VuMyj6+uzfv1+DBg2St7e3vLy8NHjwYJ0+ffqK+7jca8HNzU2enp7m8qBBg1S1alX9/PPPCg8Pl4eHh/z8/DR16tRir/nSvjcu9d682KZNm9StWzd5eXmpSpUq6tixo7777rsSz8Xu3bvVv39/Va9eXe3bt7/iti8WGhoq6f8/N0V+/fVXDRkyRD4+PuZ7+L333jPHrby+LnVP9JWOc8eOHbLZbA7vg9TUVNlsNt17770O2+revbvatGljLm/ZskXh4eGqVauW3N3dFRgYqCFDhlg8O7jVEKKBG6Do/trL/Sp+165deuihh5Sfn6+pU6dq5syZeuSRR8z/CTRp0kRTp06VJA0fPlwffvihPvzwQ3Xo0MHcxvHjx9W9e3cFBwdr9uzZ6ty582X7evnll7Vy5Uo9//zzGjlypJKSkhQWFlaqkHKh0vR2IcMw9Mgjj+iNN95Qt27dNGvWLDVq1Ejjxo0r8Srjhg0b9NRTTykyMlIzZszQmTNn1Lt3bx0/fvyyff3xxx/q1KmTPvzwQ0VFRen111+Xl5eXBg0apDlz5pi9f/jhh6pVq5aCg4PN3m+77bYStxkQECBJWrRokc6dO1eq89OnTx+dOXNG06dPV48ePTR37lwNHz7coWbo0KGKjY3VvffeqzfeeEMdO3bU9OnTFRkZWap9XGjXrl1q27at9uzZo/Hjx2vmzJny8PBQRESEli1bVqz+qaee0u7duxUbG3vJW4x8fHzUsWNHLV26tNjYkiVLVKlSJT3++OOS/gxkU6ZMUefOnfXWW29p4sSJqlu3rrZu3Wr5WC4UFxenzMxMzZ8//7J1a9asUXh4uLKyshQXF6cxY8Zo48aNateuXYk/HPXp00enTp3S9OnT1adPHyUkJJQY5i5W9Fr44IMPigXckpw/f17dunWTj4+PZsyYoZYtW2ry5MkOtxBZfW9cydq1a9WhQwfZ7XZNnjxZr7zyirKzs/XAAw/ohx9+KFb/+OOP6/Tp03rllVc0bNgwy/srOr/Vq1c312VmZqpt27Zas2aNYmJiNGfOHDVo0EDR0dGaPXu2JGuvr6s9zmbNmsnb21vr1683n/ftt9/KyclJ27dvl91ulyQVFhZq48aN5vevrKwsde3aVQcPHtT48eP15ptvKioqSt9//73l84NbjAHgmr3//vuGJGPz5s2XrPHy8jLuuecec3ny5MnGhW/BN954w5BkHDt27JLb2Lx5syHJeP/994uNdezY0ZBkxMfHlzjWsWNHc/nrr782JBm33367YbfbzfVLly41JBlz5swx1wUEBBgDBw684jYv19vAgQONgIAAc3n58uWGJGPatGkOdY899phhs9mM/fv3m+skGS4uLg7rtm/fbkgy3nzzzWL7utDs2bMNScZHH31krjt79qwREhJiVK1a1eHYAwICjJ49e152e4ZhGIWFhea59vHxMfr162fMmzfPOHToULHaoq/xI4884rD+qaeeMiQZ27dvNwzDMNLS0gxJxtChQx3qnn32WUOSsXbtWnPdxef9wIEDxc57ly5djObNmxtnzpxx6Pv+++83GjZsaK4ret22b9/eOHfu3BWP/Z133jEkGT/++KPD+qCgIOOBBx4wl1u0aFGqc1lakowRI0YYhmEYnTt3Nnx9fY3Tp087HMOF773g4GCjdu3axvHjx81127dvN5ycnIwBAwaY64q+PkOGDHHY36OPPmrUrFnzin2dPn3aaNSokSHJCAgIMAYNGmT85z//MTIzM4vVDhw40JBkPP300+a6wsJCo2fPnoaLi4v5vrfy3rj4vVn0vv7666/N7Tds2NAIDw83CgsLHfoODAw0HnzwwWLnol+/flc87gv39d577xnHjh0zjh49aiQmJhoNGjQwbDab8cMPP5i10dHRRp06dYzff//dYRuRkZGGl5eX+bUs7evrWo6zZ8+exn333Wcu9+rVy+jVq5dRqVIl48svvzQMwzC2bt1qSDI+++wzwzAMY9myZVf8/o6/Jq5EAzdI1apVLztLh7e3tyTps88+u+oP4bm6umrw4MGlrh8wYICqVatmLj/22GOqU6eOVq1adVX7L61Vq1apUqVKGjlypMP6sWPHyjAMffnllw7rw8LCVL9+fXP57rvvlqenp37++ecr7sfX11f9+vUz11WuXFkjR45Ubm6uvvnmG8u922w2ffXVV5o2bZqqV6+u//73vxoxYoQCAgLUt2/fEu+JHjFihMPy008/bfZ34X8vvtI4duxYSdLKlStL3d+JEye0du1a8+rq77//rt9//13Hjx9XeHi49u3bp19//dXhOcOGDVOlSpWuuO1evXrJ2dlZS5YsMdft3LlTu3fvVt++fc113t7e2rVrl/bt21fqvksrLi5OGRkZio+PL3H8t99+U1pamgYNGqQaNWqY6++++249+OCDJb62//nPfzosh4aG6vjx4+aVyUtxd3fXpk2bNG7cOEl/3h4THR2tOnXq6Omnny52K44kxcTEmP8uulXp7NmzWrNmjSTr743LSUtL0759+9S/f38dP37cfC3k5eWpS5cuWr9+fbHvNRefiysZMmSIbrvtNvn5+albt27KycnRhx9+aN7eZRiG/u///k8PP/ywDMMwe/j9998VHh6unJwc8zcUpX19XctxhoaGauvWrcrLy5P052+5evTooeDgYH377beS/rw6bbPZzNtZir43r1ixQgUFBZbOD25thGjgBsnNzXUIrBfr27ev2rVrp6FDh8rHx0eRkZFaunSppUB9++23W/rgWcOGDR2WbTabGjRocMn7gcvKoUOH5OfnV+x8NGnSxBy/UN26dYtto3r16jp58uQV99OwYcNiMxhcaj+l5erqqokTJ2rPnj06evSo/vvf/6pt27ZaunSpQ0gqcvF5rl+/vpycnMzzfOjQITk5OalBgwYOdb6+vvL29rbU5/79+2UYhiZNmqTbbrvN4VF020BWVpbDcwIDA0u17Vq1aqlLly4Ov3JfsmSJnJ2d1atXL3Pd1KlTlZ2drbvuukvNmzfXuHHjtGPHjlIfw+V06NBBnTt3vuS90UXnqlGjRsXGmjRpYoarC138+iq6FaHo9XXixAllZGSYj5ycHLPWy8tLM2bM0MGDB3Xw4EH95z//UaNGjfTWW2/ppZdectiuk5OT7rzzTod1d911lyQ5vBasvDcup+iHmIEDBxZ7Lbz77rvKz893OBap9K+FIrGxsUpKStKyZcs0YMAA5eTkOLzfjh07puzsbC1YsKBYD0U/8Be9Hkv7+rqW4wwNDdW5c+eUkpKivXv3KisrS6GhoerQoYNDiA4KCjJ/COvYsaN69+6tKVOmqFatWvrb3/6m999/v8QfkvDXwuwcwA3wyy+/KCcnp1hIupC7u7vWr1+vr7/+WitXrlRiYqKWLFmiBx54QKtXry7VlcKimT/K0qX+IMz58+dL1VNZuNR+jFLch3q91alTR5GRkerdu7eaNm2qpUuXKiEh4bIzr1zqnJbFH98p+qHr2WefVXh4eIk1F78OrbxuIiMjNXjwYKWlpSk4OFhLly5Vly5dVKtWLbOmQ4cO+umnn/TZZ59p9erVevfdd/XGG28oPj5eQ4cOvYqjcjR58mR16tRJ77zzjnmV8Fpc6fXVq1cvh99aDBw4sMQ/bhMQEKAhQ4bo0Ucf1Z133qlFixZp2rRp19zf1Sp6Lbz++uuXnBKzatWqDstWv4c0b95cYWFhkqSIiAidPn1aw4YNU/v27eXv72/28Pe//10DBw4scRsXTv1ZmtfXxawcZ6tWreTm5qb169erbt26ql27tu666y6Fhobq7bffVn5+vr799ls9+uij5nOL/jDV999/ry+++EJfffWVhgwZopkzZ+r7778vdg7x10GIBm6ADz/8UJIuGWqKODk5qUuXLurSpYtmzZqlV155RRMnTtTXX3+tsLCwMv8Lhxf/ut0wDO3fv9/hf2rVq1cv8RaFQ4cOOVxVs9JbQECA1qxZo1OnTjlccSv6QyVFH9i6VgEBAdqxY4cKCwsdro6V9X6kP28Tufvuu7Vv3z79/vvvDnPk7tu3z+EK3/79+1VYWGjOWBIQEKDCwkLt27fPvOIo/fmBrOzsbEt9Fn1NKleubIabshQREaF//OMf5q/c//e//2nChAnF6mrUqKHBgwdr8ODBys3NVYcOHRQXF1cmIbpjx47q1KmTXnvtNcXGxjqMFZ2rvXv3Fnteenq6atWqZXkKv5kzZzr81uNKcz9Xr15d9evX186dOx3WFxYW6ueffzavPkt/nj9JDq+FsnpvFN0C5enpeV1eCyV59dVXtWzZMr388suKj4/XbbfdpmrVqun8+fOl6qG0r68LWTlOFxcX3Xffffr2229Vt25dczaR0NBQ5efna9GiRcrMzCzxQ9Ft27ZV27Zt9fLLL2vx4sWKiorSxx9/XCavadycuJ0DuM7Wrl2rl156SYGBgYqKirpk3YkTJ4qtK7qqUvRrw6L/+ZfVXMQffPCBw33an376qX777Td1797dXFe/fn19//33DnPerlixothUeFZ669Gjh86fP29OWVXkjTfekM1mc9j/tejRo4cyMjIc7rE8d+6c3nzzTVWtWlUdO3a0vM19+/bp8OHDxdZnZ2crJSVF1atXLzazx7x58xyW33zzTUkyj7NHjx6SZM5UUGTWrFmSpJ49e5a6v9q1a5tXaX/77bdi48eOHSv1tkri7e2t8PBwLV26VB9//LFcXFwUERHhUHPxrClVq1ZVgwYNHH79nZOTo/T09GK3E5RW0b3RCxYscFhfp04dBQcHa+HChQ6vxZ07d2r16tXmubaiZcuWCgsLMx9F84lv375dv//+e7H6Q4cOaffu3SXeUnLha94wDL311luqXLmyunTpIqls3xstW7ZU/fr19a9//Uu5ubnFxq/1tVCS+vXrq3fv3kpISFBGRoYqVaqk3r176//+7/+K/VBRUg+leX1dzOpxhoaGatOmTfr666/NEF2rVi01adJEr732mllT5OTJk8V+63Xx92b8NXElGihDX375pdLT03Xu3DllZmZq7dq1SkpKUkBAgD7//PPL/oGAqVOnav369erZs6cCAgKUlZWlt99+W3fccYf5AZf69evL29tb8fHxqlatmjw8PNSmTRvL9zEWqVGjhtq3b6/BgwcrMzNTs2fPVoMGDRymtho6dKg+/fRTdevWTX369NFPP/2kjz76yOGDflZ7e/jhh9W5c2dNnDhRBw8eVIsWLbR69Wp99tlnGjVqVLFtX63hw4frnXfe0aBBg5Samqp69erp008/1XfffafZs2df9h71S9m+fbv69++v7t27KzQ0VDVq1NCvv/6qhQsX6ujRo5o9e3ax2wMOHDigRx55RN26dVNKSoo++ugj9e/fXy1atJAktWjRQgMHDtSCBQuUnZ2tjh076ocfftDChQsVERFxxakKLzZv3jy1b99ezZs317Bhw3TnnXcqMzNTKSkp+uWXX7R9+3bLx32hvn376u9//7vefvtthYeHF7ulIigoSJ06dVLLli1Vo0YNbdmyRZ9++qnD/eLLli3T4MGD9f7775dqruOLdezYUR07dizxw6Gvv/66unfvrpCQEEVHR+uPP/7Qm2++KS8vL8XFxVne16UkJSVp8uTJeuSRR9S2bVtzHuj33ntP+fn5xfbl5uamxMREDRw4UG3atNGXX36plStX6oUXXjB/8CrL94aTk5Peffddde/eXU2bNtXgwYN1++2369dff9XXX38tT09PffHFF2V2PoqMGzdOS5cu1ezZs/Xqq6/q1Vdf1ddff602bdpo2LBhCgoK0okTJ7R161atWbOm2AWEK72+rvU4Q0ND9fLLL+vIkSMOYblDhw565513VK9ePYf50hcuXKi3335bjz76qOrXr69Tp07p3//+tzw9Pa/qhzLcQsprWhDgVlI0zVbRw8XFxfD19TUefPBBY86cOQ5TqRW5eIq75ORk429/+5vh5+dnuLi4GH5+fka/fv2M//3vfw7P++yzz4ygoCDD2dnZYWqzjh07Gk2bNi2xv0tNcfff//7XmDBhglG7dm3D3d3d6NmzZ4lTtc2cOdO4/fbbDVdXV6Ndu3bGli1bim3zcr1dPMWdYRjGqVOnjNGjRxt+fn5G5cqVjYYNGxqvv/66wxRVhuE4vdmFLjX13sUyMzONwYMHG7Vq1TJcXFyM5s2blzgNX2mnuMvMzDReffVVo2PHjkadOnUMZ2dno3r16sYDDzxgfPrppw61RV/j3bt3G4899phRrVo1o3r16kZMTIzxxx9/ONQWFBQYU6ZMMQIDA43KlSsb/v7+xoQJExymqTOM0k1xZxiG8dNPPxkDBgwwfH19jcqVKxu333678dBDDzn0WJqpGUtit9sNd3f3YtMHFpk2bZpx3333Gd7e3oa7u7vRuHFj4+WXXzbOnj1bbN8lfS0udqnXQNHruKRjWLNmjdGuXTvD3d3d8PT0NB5++GFj9+7dDjVFX5+Lp5Us6u3AgQOX7evnn382YmNjjbZt2xq1a9c2nJ2djdtuu83o2bOnw7SEhvHne8DDw8P46aefjK5duxpVqlQxfHx8jMmTJxvnz593qC3te+NKU9wV2bZtm9GrVy+jZs2ahqurqxEQEGD06dPHSE5OvuK5uJSifX3yyScljnfq1Mnw9PQ0srOzDcP4830zYsQIw9/f36hcubLh6+trdOnSxViwYEGx517p9XUtx1m0/UqVKhnVqlVzmNrxo48+MiQZTzzxhEP91q1bjX79+hl169Y1XF1djdq1axsPPfSQsWXLllKdK9y6bIZRAT6ZAwC3oKI/OnLs2LHLfjAKt75Bgwbp008/LfF2AwA3J+6JBgAAACwiRAMAAAAWEaIBAAAAi7gnGgAAALCIK9EAAACARYRoAAAAwCL+2MoNVFhYqKNHj6patWpl/uebAQAAcO0Mw9CpU6fk5+cnJ6dLX28mRN9AR48elb+/f3m3AQAAgCs4cuSIw1+vvBgh+gYq+hPDR44ckaenZzl3AwAAgIvZ7Xb5+/ubue1SCNE3UNEtHJ6enoRoAACACuxKt97ywUIAAADAIkI0AAAAYBEhGgAAALCIEA0AAABYRIgGAAAALCJEAwAAABYRogEAAACLCNEAAACARYRoAAAAwCJCNAAAAGARIRoAAACwiBANAAAAWESIBgAAACwiRAMAAAAWEaIBAAAAiwjRAAAAgEWEaAAAAMAiQjQAAABgESEaAAAAsMi5vBvAjbNqc255twDgOunRump5t1Aujid/XN4tALhOanaJLO8WLosr0QAAAIBFhGgAAADAIkI0AAAAYBEhGgAAALCIEA0AAABYRIgGAAAALCJEAwAAABYRogEAAACLCNEAAACARYRoAAAAwCJCNAAAAGARIRoAAACwiBANAAAAWESIBgAAACwiRAMAAAAWEaIBAAAAiwjRAAAAgEWEaAAAAMAiQjQAAABgESEaAAAAsIgQDQAAAFhEiAYAAAAsIkQDAAAAFhGiAQAAAIsI0QAAAIBFhGgAAADAIkI0AAAAYFG5huj169fr4Ycflp+fn2w2m5YvX37J2n/+85+y2WyaPXu2w/oTJ04oKipKnp6e8vb2VnR0tHJzcx1qduzYodDQULm5ucnf318zZswotv1PPvlEjRs3lpubm5o3b65Vq1Y5jBuGodjYWNWpU0fu7u4KCwvTvn37rvrYAQAAcPMq1xCdl5enFi1aaN68eZetW7Zsmb7//nv5+fkVG4uKitKuXbuUlJSkFStWaP369Ro+fLg5brfb1bVrVwUEBCg1NVWvv/664uLitGDBArNm48aN6tevn6Kjo7Vt2zZFREQoIiJCO3fuNGtmzJihuXPnKj4+Xps2bZKHh4fCw8N15syZMjgTAAAAuJnYDMMwyrsJSbLZbFq2bJkiIiIc1v/6669q06aNvvrqK/Xs2VOjRo3SqFGjJEl79uxRUFCQNm/erFatWkmSEhMT1aNHD/3yyy/y8/PT/PnzNXHiRGVkZMjFxUWSNH78eC1fvlzp6emSpL59+yovL08rVqww99u2bVsFBwcrPj5ehmHIz89PY8eO1bPPPitJysnJkY+PjxISEhQZGVmqY7Tb7fLy8lJOTo48PT2v5XRdlVWbc69cBOCm1KN11fJuoVwcT/64vFsAcJ3U7FK6fFXWSpvXKvQ90YWFhXriiSc0btw4NW3atNh4SkqKvL29zQAtSWFhYXJyctKmTZvMmg4dOpgBWpLCw8O1d+9enTx50qwJCwtz2HZ4eLhSUlIkSQcOHFBGRoZDjZeXl9q0aWPWlCQ/P192u93hAQAAgJtfhQ7Rr732mpydnTVy5MgSxzMyMlS7dm2Hdc7OzqpRo4YyMjLMGh8fH4eaouUr1Vw4fuHzSqopyfTp0+Xl5WU+/P39L3u8AAAAuDlU2BCdmpqqOXPmKCEhQTabrbzbuSoTJkxQTk6O+Thy5Eh5twQAAIAyUGFD9LfffqusrCzVrVtXzs7OcnZ21qFDhzR27FjVq1dPkuTr66usrCyH5507d04nTpyQr6+vWZOZmelQU7R8pZoLxy98Xkk1JXF1dZWnp6fDAwAAADe/Chuin3jiCe3YsUNpaWnmw8/PT+PGjdNXX30lSQoJCVF2drZSU1PN561du1aFhYVq06aNWbN+/XoVFBSYNUlJSWrUqJGqV69u1iQnJzvsPykpSSEhIZKkwMBA+fr6OtTY7XZt2rTJrAEAAMBfh3N57jw3N1f79+83lw8cOKC0tDTVqFFDdevWVc2aNR3qK1euLF9fXzVq1EiS1KRJE3Xr1k3Dhg1TfHy8CgoKFBMTo8jISHM6vP79+2vKlCmKjo7W888/r507d2rOnDl64403zO0+88wz6tixo2bOnKmePXvq448/1pYtW8xp8Gw2m0aNGqVp06apYcOGCgwM1KRJk+Tn51dsNhEAAADc+so1RG/ZskWdO3c2l8eMGSNJGjhwoBISEkq1jUWLFikmJkZdunSRk5OTevfurblz55rjXl5eWr16tUaMGKGWLVuqVq1aio2NdZhL+v7779fixYv14osv6oUXXlDDhg21fPlyNWvWzKx57rnnlJeXp+HDhys7O1vt27dXYmKi3NzcrvEsAAAA4GZTYeaJ/itgnmgA1wvzRAO41TBPNAAAAHCLIUQDAAAAFhGiAQAAAIsI0QAAAIBFhGgAAADAIkI0AAAAYBEhGgAAALCIEA0AAABYRIgGAAAALCJEAwAAABYRogEAAACLCNEAAACARYRoAAAAwCJCNAAAAGARIRoAAACwiBANAAAAWESIBgAAACwiRAMAAAAWEaIBAAAAiwjRAAAAgEWEaAAAAMAiQjQAAABgESEaAAAAsIgQDQAAAFhEiAYAAAAsIkQDAAAAFhGiAQAAAIsI0QAAAIBFhGgAAADAIkI0AAAAYBEhGgAAALCIEA0AAABYRIgGAAAALCJEAwAAABYRogEAAACLCNEAAACARYRoAAAAwCJCNAAAAGARIRoAAACwiBANAAAAWESIBgAAACwiRAMAAAAWEaIBAAAAiwjRAAAAgEWEaAAAAMAiQjQAAABgESEaAAAAsKhcQ/T69ev18MMPy8/PTzabTcuXLzfHCgoK9Pzzz6t58+by8PCQn5+fBgwYoKNHjzps48SJE4qKipKnp6e8vb0VHR2t3Nxch5odO3YoNDRUbm5u8vf314wZM4r18sknn6hx48Zyc3NT8+bNtWrVKodxwzAUGxurOnXqyN3dXWFhYdq3b1/ZnQwAAADcNMo1ROfl5alFixaaN29esbHTp09r69atmjRpkrZu3ar/9//+n/bu3atHHnnEoS4qKkq7du1SUlKSVqxYofXr12v48OHmuN1uV9euXRUQEKDU1FS9/vrriouL04IFC8yajRs3ql+/foqOjta2bdsUERGhiIgI7dy506yZMWOG5s6dq/j4eG3atEkeHh4KDw/XmTNnrsOZAQAAQEVmMwzDKO8mJMlms2nZsmWKiIi4ZM3mzZt133336dChQ6pbt6727NmjoKAgbd68Wa1atZIkJSYmqkePHvrll1/k5+en+fPna+LEicrIyJCLi4skafz48Vq+fLnS09MlSX379lVeXp5WrFhh7qtt27YKDg5WfHy8DMOQn5+fxo4dq2effVaSlJOTIx8fHyUkJCgyMrJUx2i32+Xl5aWcnBx5enpezWm6Jqs25165CMBNqUfrquXdQrk4nvxxebcA4Dqp2aV0+aqslTav3VT3ROfk5Mhms8nb21uSlJKSIm9vbzNAS1JYWJicnJy0adMms6ZDhw5mgJak8PBw7d27VydPnjRrwsLCHPYVHh6ulJQUSdKBAweUkZHhUOPl5aU2bdqYNSXJz8+X3W53eAAAAODmd9OE6DNnzuj5559Xv379zJ8KMjIyVLt2bYc6Z2dn1ahRQxkZGWaNj4+PQ03R8pVqLhy/8Hkl1ZRk+vTp8vLyMh/+/v6WjhkAAAAV000RogsKCtSnTx8ZhqH58+eXdzulNmHCBOXk5JiPI0eOlHdLAAAAKAPO5d3AlRQF6EOHDmnt2rUO96b4+voqKyvLof7cuXM6ceKEfH19zZrMzEyHmqLlK9VcOF60rk6dOg41wcHBl+zd1dVVrq6uVg4XAAAAN4EKfSW6KEDv27dPa9asUc2aNR3GQ0JClJ2drdTUVHPd2rVrVVhYqDZt2pg169evV0FBgVmTlJSkRo0aqXr16mZNcnKyw7aTkpIUEhIiSQoMDJSvr69Djd1u16ZNm8waAAAA/HWUa4jOzc1VWlqa0tLSJP35Ab60tDQdPnxYBQUFeuyxx7RlyxYtWrRI58+fV0ZGhjIyMnT27FlJUpMmTdStWzcNGzZMP/zwg7777jvFxMQoMjJSfn5+kqT+/fvLxcVF0dHR2rVrl5YsWaI5c+ZozJgxZh/PPPOMEhMTNXPmTKWnpysuLk5btmxRTEyMpD9nDhk1apSmTZumzz//XD/++KMGDBggPz+/y84mAgAAgFtTud7OsWXLFnXu3NlcLgq2AwcOVFxcnD7//HNJKnbLxNdff61OnTpJkhYtWqSYmBh16dJFTk5O6t27t+bOnWvWenl5afXq1RoxYoRatmypWrVqKTY21mEu6fvvv1+LFy/Wiy++qBdeeEENGzbU8uXL1axZM7PmueeeU15enoYPH67s7Gy1b99eiYmJcnNzK+vTAgAAgAquwswT/VfAPNEArhfmiQZwq2GeaAAAAOAWQ4gGAAAALCJEAwAAABYRogEAAACLCNEAAACARYRoAAAAwCJCNAAAAGARIRoAAACwiBANAAAAWESIBgAAACwiRAMAAAAWEaIBAAAAiwjRAAAAgEWEaAAAAMAiQjQAAABgESEaAAAAsIgQDQAAAFhEiAYAAAAsIkQDAAAAFhGiAQAAAIsI0QAAAIBFhGgAAADAIkI0AAAAYBEhGgAAALCIEA0AAABYRIgGAAAALCJEAwAAABYRogEAAACLCNEAAACARYRoAAAAwCJCNAAAAGARIRoAAACwiBANAAAAWESIBgAAACwiRAMAAAAWEaIBAAAAiwjRAAAAgEWEaAAAAMAiQjQAAABgESEaAAAAsIgQDQAAAFhEiAYAAAAsIkQDAAAAFhGiAQAAAIsI0QAAAIBFhGgAAADAIkI0AAAAYFG5huj169fr4Ycflp+fn2w2m5YvX+4wbhiGYmNjVadOHbm7uyssLEz79u1zqDlx4oSioqLk6ekpb29vRUdHKzc316Fmx44dCg0NlZubm/z9/TVjxoxivXzyySdq3Lix3Nzc1Lx5c61atcpyLwAAAPhrKNcQnZeXpxYtWmjevHkljs+YMUNz585VfHy8Nm3aJA8PD4WHh+vMmTNmTVRUlHbt2qWkpCStWLFC69ev1/Dhw81xu92url27KiAgQKmpqXr99dcVFxenBQsWmDUbN25Uv379FB0drW3btikiIkIRERHauXOnpV4AAADw12AzDMMo7yYkyWazadmyZYqIiJD055VfPz8/jR07Vs8++6wkKScnRz4+PkpISFBkZKT27NmjoKAgbd68Wa1atZIkJSYmqkePHvrll1/k5+en+fPna+LEicrIyJCLi4skafz48Vq+fLnS09MlSX379lVeXp5WrFhh9tO2bVsFBwcrPj6+VL2Uht1ul5eXl3JycuTp6Vkm582KVZtzr1wE4KbUo3XV8m6hXBxP/ri8WwBwndTsUrp8VdZKm9cq7D3RBw4cUEZGhsLCwsx1Xl5eatOmjVJSUiRJKSkp8vb2NgO0JIWFhcnJyUmbNm0yazp06GAGaEkKDw/X3r17dfLkSbPmwv0U1RTtpzS9lCQ/P192u93hAQAAgJtfhQ3RGRkZkiQfHx+H9T4+PuZYRkaGateu7TDu7OysGjVqONSUtI0L93GpmgvHr9RLSaZPny4vLy/z4e/vf4WjBgAAwM2gwoboW8GECROUk5NjPo4cOVLeLQEAAKAMVNgQ7evrK0nKzMx0WJ+ZmWmO+fr6Kisry2H83LlzOnHihENNSdu4cB+Xqrlw/Eq9lMTV1VWenp4ODwAAANz8KmyIDgwMlK+vr5KTk811drtdmzZtUkhIiCQpJCRE2dnZSk1NNWvWrl2rwsJCtWnTxqxZv369CgoKzJqkpCQ1atRI1atXN2su3E9RTdF+StMLAAAA/jrKNUTn5uYqLS1NaWlpkv78AF9aWpoOHz4sm82mUaNGadq0afr888/1448/asCAAfLz8zNn8GjSpIm6deumYcOG6YcfftB3332nmJgYRUZGys/PT5LUv39/ubi4KDo6Wrt27dKSJUs0Z84cjRkzxuzjmWeeUWJiombOnKn09HTFxcVpy5YtiomJkaRS9QIAAIC/Dufy3PmWLVvUuXNnc7ko2A4cOFAJCQl67rnnlJeXp+HDhys7O1vt27dXYmKi3NzczOcsWrRIMTEx6tKli5ycnNS7d2/NnTvXHPfy8tLq1as1YsQItWzZUrVq1VJsbKzDXNL333+/Fi9erBdffFEvvPCCGjZsqOXLl6tZs2ZmTWl6AQAAwF9DhZkn+q+AeaIBXC/MEw3gVsM80QAAAMAthhANAAAAWESIBgAAACwiRAMAAAAWEaIBAAAAiwjRAAAAgEWEaAAAAMAiQjQAAABgESEaAAAAsIgQDQAAAFhEiAYAAAAsIkQDAAAAFhGiAQAAAIsI0QAAAIBFhGgAAADAIkI0AAAAYBEhGgAAALCIEA0AAABYRIgGAAAALCJEAwAAABYRogEAAACLCNEAAACARYRoAAAAwCJCNAAAAGARIRoAAACwiBANAAAAWESIBgAAACwiRAMAAAAWEaIBAAAAiwjRAAAAgEWEaAAAAMAiQjQAAABgESEaAAAAsIgQDQAAAFhEiAYAAAAsIkQDAAAAFl1ViL7zzjt1/PjxYuuzs7N15513XnNTAAAAQEV2VSH64MGDOn/+fLH1+fn5+vXXX6+5KQAAAKAic7ZS/Pnnn5v//uqrr+Tl5WUunz9/XsnJyapXr16ZNQcAAABURJZCdEREhCTJZrNp4MCBDmOVK1dWvXr1NHPmzDJrDgAAAKiILIXowsJCSVJgYKA2b96sWrVqXZemAAAAgIrMUogucuDAgbLuAwAAALhpXFWIlqTk5GQlJycrKyvLvEJd5L333rvmxgAAAICK6qpC9JQpUzR16lS1atVKderUkc1mK+u+AAAAgArrqkJ0fHy8EhIS9MQTT5R1PwAAAECFd1XzRJ89e1b3339/WfcCAAAA3BSuKkQPHTpUixcvLuteAAAAgJvCVd3OcebMGS1YsEBr1qzR3XffrcqVKzuMz5o1q0yaAwAAACqiq7oSvWPHDgUHB8vJyUk7d+7Utm3bzEdaWlqZNXf+/HlNmjRJgYGBcnd3V/369fXSSy/JMAyzxjAMxcbGqk6dOnJ3d1dYWJj27dvnsJ0TJ04oKipKnp6e8vb2VnR0tHJzc4sdU2hoqNzc3OTv768ZM2YU6+eTTz5R48aN5ebmpubNm2vVqlVldqwAAAC4eVzVleivv/66rPso0Wuvvab58+dr4cKFatq0qbZs2aLBgwfLy8tLI0eOlCTNmDFDc+fO1cKFCxUYGKhJkyYpPDxcu3fvlpubmyQpKipKv/32m5KSklRQUKDBgwdr+PDh5i0pdrtdXbt2VVhYmOLj4/Xjjz9qyJAh8vb21vDhwyVJGzduVL9+/TR9+nQ99NBDWrx4sSIiIrR161Y1a9bshpwPAAAAVAw248LLuhXMQw89JB8fH/3nP/8x1/Xu3Vvu7u766KOPZBiG/Pz8NHbsWD377LOSpJycHPn4+CghIUGRkZHas2ePgoKCtHnzZrVq1UqSlJiYqB49euiXX36Rn5+f5s+fr4kTJyojI0MuLi6SpPHjx2v58uVKT0+XJPXt21d5eXlasWKF2Uvbtm0VHBys+Pj4EvvPz89Xfn6+uWy32+Xv76+cnBx5enqW7ckqhVWbc69cBOCm1KN11fJuoVwcT/64vFsAcJ3U7BJZLvu12+3y8vK6Yl67qts5OnfurAceeOCSj7Jy//33Kzk5Wf/73/8kSdu3b9eGDRvUvXt3SX/+5cSMjAyFhYWZz/Hy8lKbNm2UkpIiSUpJSZG3t7cZoCUpLCxMTk5O2rRpk1nToUMHM0BLUnh4uPbu3auTJ0+aNRfup6imaD8lmT59ury8vMyHv7//tZwOAAAAVBBXdTtHcHCww3JBQYHS0tK0c+dODRw4sCz6kvTn1WC73a7GjRurUqVKOn/+vF5++WVFRUVJkjIyMiRJPj4+Ds/z8fExxzIyMlS7dm2HcWdnZ9WoUcOhJjAwsNg2isaqV6+ujIyMy+6nJBMmTNCYMWPM5aIr0QAAALi5XVWIfuONN0pcHxcXV+wDe9di6dKlWrRokRYvXqymTZsqLS1No0aNkp+fX5mG9evF1dVVrq6u5d0GAAAAythV3c5xKX//+9/13nvvldn2xo0bp/HjxysyMlLNmzfXE088odGjR2v69OmSJF9fX0lSZmamw/MyMzPNMV9fX2VlZTmMnzt3TidOnHCoKWkbF+7jUjVF4wAAAPjrKNMQnZKSYs6IURZOnz4tJyfHFitVqqTCwkJJUmBgoHx9fZWcnGyO2+12bdq0SSEhIZKkkJAQZWdnKzU11axZu3atCgsL1aZNG7Nm/fr1KigoMGuSkpLUqFEjVa9e3ay5cD9FNUX7AQAAwF/HVd3O0atXL4dlwzD022+/acuWLZo0aVKZNCZJDz/8sF5++WXVrVtXTZs21bZt2zRr1iwNGTJEkmSz2TRq1ChNmzZNDRs2NKe48/PzU0REhCSpSZMm6tatm4YNG6b4+HgVFBQoJiZGkZGR8vPzkyT1799fU6ZMUXR0tJ5//nnt3LlTc+bMcbht5ZlnnlHHjh01c+ZM9ezZUx9//LG2bNmiBQsWlNnxAgAA4OZwVSHay8vLYdnJyUmNGjXS1KlT1bVr1zJpTJLefPNNTZo0SU899ZSysrLk5+enf/zjH4qNjTVrnnvuOeXl5Wn48OHKzs5W+/btlZiY6HBFfNGiRYqJiVGXLl3k5OSk3r17a+7cuQ7Hs3r1ao0YMUItW7ZUrVq1FBsba84RLf05U8jixYv14osv6oUXXlDDhg21fPly5ogGAAD4C6rQ80Tfako77+D1wjzRwK2LeaIB3Goq+jzRV3Ulukhqaqr27NkjSWratKnuueeea9kcAAAAcFO4qhCdlZWlyMhIrVu3Tt7e3pKk7Oxsde7cWR9//LFuu+22suwRAAAAqFCuanaOp59+WqdOndKuXbt04sQJnThxQjt37pTdbtfIkSPLukcAAACgQrmqK9GJiYlas2aNmjRpYq4LCgrSvHnzyvSDhQAAAEBFdFVXogsLC1W5cuVi6ytXrmzO4QwAAADcqq4qRD/wwAN65plndPToUXPdr7/+qtGjR6tLly5l1hwAAABQEV1ViH7rrbdkt9tVr1491a9fX/Xr11dgYKDsdrvefPPNsu4RAAAAqFCu6p5of39/bd26VWvWrFF6erqkP/8yYFhYWJk2BwAAAFRElq5Er127VkFBQbLb7bLZbHrwwQf19NNP6+mnn1br1q3VtGlTffvtt9erVwAAAKBCsBSiZ8+erWHDhpX411u8vLz0j3/8Q7NmzSqz5gAAAICKyFKI3r59u7p163bJ8a5duyo1NfWamwIAAAAqMkshOjMzs8Sp7Yo4Ozvr2LFj19wUAAAAUJFZCtG33367du7cecnxHTt2qE6dOtfcFAAAAFCRWQrRPXr00KRJk3TmzJliY3/88YcmT56shx56qMyaAwAAACoiS1Pcvfjii/p//+//6a677lJMTIwaNWokSUpPT9e8efN0/vx5TZw48bo0CgAAAFQUlkK0j4+PNm7cqCeffFITJkyQYRiSJJvNpvDwcM2bN08+Pj7XpVEAAACgorD8x1YCAgK0atUqnTx5Uvv375dhGGrYsKGqV69+PfoDAAAAKpyr+ouFklS9enW1bt26LHsBAAAAbgqWPlgIAAAAgBANAAAAWEaIBgAAACwiRAMAAAAWEaIBAAAAiwjRAAAAgEWEaAAAAMAiQjQAAABgESEaAAAAsIgQDQAAAFhEiAYAAAAsIkQDAAAAFhGiAQAAAIsI0QAAAIBFhGgAAADAIkI0AAAAYBEhGgAAALCIEA0AAABYRIgGAAAALCJEAwAAABYRogEAAACLCNEAAACARYRoAAAAwCJCNAAAAGARIRoAAACwiBANAAAAWESIBgAAACwiRAMAAAAWEaIBAAAAiyp8iP7111/197//XTVr1pS7u7uaN2+uLVu2mOOGYSg2NlZ16tSRu7u7wsLCtG/fPodtnDhxQlFRUfL09JS3t7eio6OVm5vrULNjxw6FhobKzc1N/v7+mjFjRrFePvnkEzVu3Fhubm5q3ry5Vq1adX0OGgAAABVahQ7RJ0+eVLt27VS5cmV9+eWX2r17t2bOnKnq1aubNTNmzNDcuXMVHx+vTZs2ycPDQ+Hh4Tpz5oxZExUVpV27dikpKUkrVqzQ+vXrNXz4cHPcbrera9euCggIUGpqql5//XXFxcVpwYIFZs3GjRvVr18/RUdHa9u2bYqIiFBERIR27tx5Y04GAAAAKgybYRhGeTdxKePHj9d3332nb7/9tsRxwzDk5+ensWPH6tlnn5Uk5eTkyMfHRwkJCYqMjNSePXsUFBSkzZs3q1WrVpKkxMRE9ejRQ7/88ov8/Pw0f/58TZw4URkZGXJxcTH3vXz5cqWnp0uS+vbtq7y8PK1YscLcf9u2bRUcHKz4+PhSHY/dbpeXl5dycnLk6el51eflaq3anHvlIgA3pR6tq5Z3C+XiePLH5d0CgOukZpfIctlvafNahb4S/fnnn6tVq1Z6/PHHVbt2bd1zzz3697//bY4fOHBAGRkZCgsLM9d5eXmpTZs2SklJkSSlpKTI29vbDNCSFBYWJicnJ23atMms6dChgxmgJSk8PFx79+7VyZMnzZoL91NUU7SfkuTn58tutzs8AAAAcPOr0CH6559/1vz589WwYUN99dVXevLJJzVy5EgtXLhQkpSRkSFJ8vHxcXiej4+POZaRkaHatWs7jDs7O6tGjRoONSVt48J9XKqmaLwk06dPl5eXl/nw9/e3dPwAAAComCp0iC4sLNS9996rV155Rffcc4+GDx+uYcOGlfr2ifI2YcIE5eTkmI8jR46Ud0sAAAAoAxU6RNepU0dBQUEO65o0aaLDhw9Lknx9fSVJmZmZDjWZmZnmmK+vr7KyshzGz507pxMnTjjUlLSNC/dxqZqi8ZK4urrK09PT4QEAAICbX4UO0e3atdPevXsd1v3vf/9TQECAJCkwMFC+vr5KTk42x+12uzZt2qSQkBBJUkhIiLKzs5WammrWrF27VoWFhWrTpo1Zs379ehUUFJg1SUlJatSokTkTSEhIiMN+imqK9gMAAIC/jgodokePHq3vv/9er7zyivbv36/FixdrwYIFGjFihCTJZrNp1KhRmjZtmj7//HP9+OOPGjBggPz8/BQRESHpzyvX3bp107Bhw/TDDz/ou+++U0xMjCIjI+Xn5ydJ6t+/v1xcXBQdHa1du3ZpyZIlmjNnjsaMGWP28swzzygxMVEzZ85Uenq64uLitGXLFsXExNzw8wIAAIDy5VzeDVxO69attWzZMk2YMEFTp05VYGCgZs+eraioKLPmueeeU15enoYPH67s7Gy1b99eiYmJcnNzM2sWLVqkmJgYdenSRU5OTurdu7fmzp1rjnt5eWn16tUaMWKEWrZsqVq1aik2NtZhLun7779fixcv1osvvqgXXnhBDRs21PLly9WsWbMbczIAAABQYVToeaJvNcwTDeB6YZ5oALca5okGAAAAbjGEaAAAAMAiQjQAAABgESEaAAAAsIgQDQAAAFhEiAYAAAAsIkQDAAAAFhGiAQAAAIsI0QAAAIBFhGgAAADAIkI0AAAAYBEhGgAAALCIEA0AAABYRIgGAAAALCJEAwAAABYRogEAAACLCNEAAACARYRoAAAAwCJCNAAAAGARIRoAAACwiBANAAAAWESIBgAAACwiRAMAAAAWEaIBAAAAiwjRAAAAgEWEaAAAAMAiQjQAAABgESEaAAAAsIgQDQAAAFhEiAYAAAAsIkQDAAAAFhGiAQAAAIsI0QAAAIBFhGgAAADAIkI0AAAAYBEhGgAAALCIEA0AAABYRIgGAAAALCJEAwAAABYRogEAAACLCNEAAACARYRoAAAAwCJCNAAAAGARIRoAAACwiBANAAAAWESIBgAAACwiRAMAAAAW3VQh+tVXX5XNZtOoUaPMdWfOnNGIESNUs2ZNVa1aVb1791ZmZqbD8w4fPqyePXuqSpUqql27tsaNG6dz58451Kxbt0733nuvXF1d1aBBAyUkJBTb/7x581SvXj25ubmpTZs2+uGHH67HYQIAAKCCu2lC9ObNm/XOO+/o7rvvdlg/evRoffHFF/rkk0/0zTff6OjRo+rVq5c5fv78efXs2VNnz57Vxo0btXDhQiUkJCg2NtasOXDggHr27KnOnTsrLS1No0aN0tChQ/XVV1+ZNUuWLNGYMWM0efJkbd26VS1atFB4eLiysrKu/8EDAACgQrkpQnRubq6ioqL073//W9WrVzfX5+Tk6D//+Y9mzZqlBx54QC1bttT777+vjRs36vvvv5ckrV69Wrt379ZHH32k4OBgde/eXS+99JLmzZuns2fPSpLi4+MVGBiomTNnqkmTJoqJidFjjz2mN954w9zXrFmzNGzYMA0ePFhBQUGKj49XlSpV9N57793YkwEAAIByd1OE6BEjRqhnz54KCwtzWJ+amqqCggKH9Y0bN1bdunWVkpIiSUpJSVHz5s3l4+Nj1oSHh8tut2vXrl1mzcXbDg8PN7dx9uxZpaamOtQ4OTkpLCzMrClJfn6+7Ha7wwMAAAA3P+fybuBKPv74Y23dulWbN28uNpaRkSEXFxd5e3s7rPfx8VFGRoZZc2GALhovGrtcjd1u1x9//KGTJ0/q/PnzJdakp6dfsvfp06drypQppTtQAAAA3DQq9JXoI0eO6JlnntGiRYvk5uZW3u1YNmHCBOXk5JiPI0eOlHdLAAAAKAMVOkSnpqYqKytL9957r5ydneXs7KxvvvlGc+fOlbOzs3x8fHT27FllZ2c7PC8zM1O+vr6SJF9f32KzdRQtX6nG09NT7u7uqlWrlipVqlRiTdE2SuLq6ipPT0+HBwAAAG5+FTpEd+nSRT/++KPS0tLMR6tWrRQVFWX+u3LlykpOTjafs3fvXh0+fFghISGSpJCQEP34448Os2gkJSXJ09NTQUFBZs2F2yiqKdqGi4uLWrZs6VBTWFio5ORkswYAAAB/HRX6nuhq1aqpWbNmDus8PDxUs2ZNc310dLTGjBmjGjVqyNPTU08//bRCQkLUtm1bSVLXrl0VFBSkJ554QjNmzFBGRoZefPFFjRgxQq6urpKkf/7zn3rrrbf03HPPaciQIVq7dq2WLl2qlStXmvsdM2aMBg4cqFatWum+++7T7NmzlZeXp8GDB9+gswEAAICKokKH6NJ444035OTkpN69eys/P1/h4eF6++23zfFKlSppxYoVevLJJxUSEiIPDw8NHDhQU6dONWsCAwO1cuVKjR49WnPmzNEdd9yhd999V+Hh4WZN3759dezYMcXGxiojI0PBwcFKTEws9mFDAAAA3PpshmEY5d3EX4XdbpeXl5dycnLK5f7oVZtzb/g+AdwYPVpXLe8WysXx5I/LuwUA10nNLpHlst/S5rUKfU80AAAAUBERogEAAACLCNEAAACARYRoAAAAwCJCNAAAAGARIRoAAACwiBANAAAAWESIBgAAACwiRAMAAAAWEaIBAAAAiwjRAAAAgEWEaAAAAMAiQjQAAABgESEaAAAAsIgQDQAAAFhEiAYAAAAsIkQDAAAAFhGiAQAAAIsI0QAAAIBFhGgAAADAIkI0AAAAYBEhGgAAALCIEA0AAABYRIgGAAAALCJEAwAAABYRogEAAACLCNEAAACARYRoAAAAwCJCNAAAAGARIRoAAACwiBANAAAAWESIBgAAACwiRAMAAAAWEaIBAAAAiwjRAAAAgEWEaAAAAMAiQjQAAABgESEaAAAAsIgQDQAAAFhEiAYAAAAsIkQDAAAAFhGiAQAAAIsI0QAAAIBFhGgAAADAIkI0AAAAYBEhGgAAALCIEA0AAABYRIgGAAAALKrQIXr69Olq3bq1qlWrptq1aysiIkJ79+51qDlz5oxGjBihmjVrqmrVqurdu7cyMzMdag4fPqyePXuqSpUqql27tsaNG6dz58451Kxbt0733nuvXF1d1aBBAyUkJBTrZ968eapXr57c3NzUpk0b/fDDD2V+zAAAAKj4KnSI/uabbzRixAh9//33SkpKUkFBgbp27aq8vDyzZvTo0friiy/0ySef6JtvvtHRo0fVq1cvc/z8+fPq2bOnzp49q40bN2rhwoVKSEhQbGysWXPgwAH17NlTnTt3VlpamkaNGqWhQ4fqq6++MmuWLFmiMWPGaPLkydq6datatGih8PBwZWVl3ZiTAQAAgArDZhiGUd5NlNaxY8dUu3ZtffPNN+rQoYNycnJ02223afHixXrsscckSenp6WrSpIlSUlLUtm1bffnll3rooYd09OhR+fj4SJLi4+P1/PPP69ixY3JxcdHzzz+vlStXaufOnea+IiMjlZ2drcTERElSmzZt1Lp1a7311luSpMLCQvn7++vpp5/W+PHjS+w3Pz9f+fn55rLdbpe/v79ycnLk6el5Xc7R5azanHvD9wngxujRump5t1Aujid/XN4tALhOanaJLJf92u12eXl5XTGvVegr0RfLycmRJNWoUUOSlJqaqoKCAoWFhZk1jRs3Vt26dZWSkiJJSklJUfPmzc0ALUnh4eGy2+3atWuXWXPhNopqirZx9uxZpaamOtQ4OTkpLCzMrCnJ9OnT5eXlZT78/f2v5fABAABQQdw0IbqwsFCjRo1Su3bt1KxZM0lSRkaGXFxc5O3t7VDr4+OjjIwMs+bCAF00XjR2uRq73a4//vhDv//+u86fP19iTdE2SjJhwgTl5OSYjyNHjlg/cAAAAFQ4zuXdQGmNGDFCO3fu1IYNG8q7lVJzdXWVq6trebcBAACAMnZTXImOiYnRihUr9PXXX+uOO+4w1/v6+urs2bPKzs52qM/MzJSvr69Zc/FsHUXLV6rx9PSUu7u7atWqpUqVKpVYU7QNAAAA/HVU6BBtGIZiYmK0bNkyrV27VoGBgQ7jLVu2VOXKlZWcnGyu27t3rw4fPqyQkBBJUkhIiH788UeHWTSSkpLk6empoKAgs+bCbRTVFG3DxcVFLVu2dKgpLCxUcnKyWQMAAIC/jgp9O8eIESO0ePFiffbZZ6pWrZp5/7GXl5fc3d3l5eWl6OhojRkzRjVq1JCnp6eefvpphYSEqG3btpKkrl27KigoSE888YRmzJihjIwMvfjiixoxYoR5q8U///lPvfXWW3ruuec0ZMgQrV27VkuXLtXKlSvNXsaMGaOBAweqVatWuu+++zR79mzl5eVp8ODBN/7EAAAAoFxV6BA9f/58SVKnTp0c1r///vsaNGiQJOmNN96Qk5OTevfurfz8fIWHh+vtt982aytVqqQVK1boySefVEhIiDw8PDRw4EBNnTrVrAkMDNTKlSs1evRozZkzR3fccYfeffddhYeHmzV9+/bVsWPHFBsbq4yMDAUHBysxMbHYhw0BAABw67up5om+2ZV23sHrhXmigVsX80QDuNUwTzQAAABwiyFEAwAAABYRogEAAACLCNEAAACARYRoAAAAwCJCNAAAAGARIRoAAACwiBANAAAAWESIBgAAACwiRAMAAAAWEaIBAAAAiwjRAAAAgEWEaAAAAMAiQjQAAABgESEaAAAAsIgQDQAAAFhEiAYAAAAsIkQDAAAAFhGiAQAAAIsI0QAAAIBFhGgAAADAIkI0AAAAYBEhGgAAALCIEA0AAABYRIgGAAAALCJEAwAAABYRogEAAACLCNEAAACARYRoAAAAwCJCNAAAAGARIRoAAACwiBANAAAAWESIBgAAACwiRAMAAAAWEaIBAAAAiwjRAAAAgEWEaAAAAMAiQjQAAABgESEaAAAAsIgQDQAAAFhEiAYAAAAsIkQDAAAAFhGiAQAAAIsI0QAAAIBFhGgAAADAIkI0AAAAYBEhGgAAALCIEG3RvHnzVK9ePbm5ualNmzb64YcfyrslAAAA3GCEaAuWLFmiMWPGaPLkydq6datatGih8PBwZWVllXdrAAAAuIEI0RbMmjVLw4YN0+DBgxUUFKT4+HhVqVJF7733Xnm3BgAAgBvIubwbuFmcPXtWqampmjBhgrnOyclJYWFhSklJKfE5+fn5ys/PN5dzcnIkSXa7/fo2ewmnc3PLZb8Arj+7vbC8WygXp/JOl3cLAK6TyuWUl4pymmEYl60jRJfS77//rvPnz8vHx8dhvY+Pj9LT00t8zvTp0zVlypRi6/39/a9LjwAAALeO6HLd+6lTp+Tl5XXJcUL0dTRhwgSNGTPGXC4sLNSJEydUs2ZN2Wy2cuwMtzq73S5/f38dOXJEnp6e5d0OAFwzvq/hRjEMQ6dOnZKfn99l6wjRpVSrVi1VqlRJmZmZDuszMzPl6+tb4nNcXV3l6urqsM7b2/t6tQgU4+npyf9sANxS+L6GG+FyV6CL8MHCUnJxcVHLli2VnJxsrissLFRycrJCQkLKsTMAAADcaFyJtmDMmDEaOHCgWrVqpfvuu0+zZ89WXl6eBg8eXN6tAQAA4AYiRFvQt29fHTt2TLGxscrIyFBwcLASExOLfdgQKG+urq6aPHlysduJAOBmxfc1VDQ240rzdwAAAABwwD3RAAAAgEWEaAAAAMAiQjQAAABgESEauMUkJCQwHzkAANcZIRqooAYNGiSbzVbssX///vJuDQCuWknf1y58xMXFlXeLQKkwxR1QgXXr1k3vv/++w7rbbrutnLoBgGv322+/mf9esmSJYmNjtXfvXnNd1apVzX8bhqHz58/L2Zm4goqHK9FABebq6ipfX1+Hx5w5c9S8eXN5eHjI399fTz31lHJzcy+5je3bt6tz586qVq2aPD091bJlS23ZssUc37Bhg0JDQ+Xu7i5/f3+NHDlSeXl5N+LwAPwFXfj9zMvLSzabzVxOT09XtWrV9OWXX6ply5ZydXXVhg0bNGjQIEVERDhsZ9SoUerUqZO5XFhYqOnTpyswMFDu7u5q0aKFPv300xt7cPhLIUQDNxknJyfNnTtXu3bt0sKFC7V27Vo999xzl6yPiorSHXfcoc2bNys1NVXjx49X5cqVJUk//fSTunXrpt69e2vHjh1asmSJNmzYoJiYmBt1OABQzPjx4/Xqq69qz549uvvuu0v1nOnTp+uDDz5QfHy8du3apdGjR+vvf/+7vvnmm+vcLf6q+P0IUIGtWLHC4Veb3bt31yeffGIu16tXT9OmTdM///lPvf322yVu4/Dhwxo3bpwaN24sSWrYsKE5Nn36dEVFRWnUqFHm2Ny5c9WxY0fNnz9fbm5u1+GoAODypk6dqgcffLDU9fn5+XrllVe0Zs0ahYSESJLuvPNObdiwQe+88446dux4vVrFXxghGqjAOnfurPnz55vLHh4eWrNmjaZPn6709HTZ7XadO3dOZ86c0enTp1WlSpVi2xgzZoyGDh2qDz/8UGFhYXr88cdVv359SX/e6rFjxw4tWrTIrDcMQ4WFhTpw4ICaNGly/Q8SAC7SqlUrS/X79+/X6dOniwXvs2fP6p577inL1gATIRqowDw8PNSgQQNz+eDBg3rooYf05JNP6uWXX1aNGjW0YcMGRUdH6+zZsyWG6Li4OPXv318rV67Ul19+qcmTJ+vjjz/Wo48+qtzcXP3jH//QyJEjiz2vbt261/XYAOBSPDw8HJadnJxkGIbDuoKCAvPfRZ8LWblypW6//XaHOldX1+vUJf7qCNHATSQ1NVWFhYWaOXOmnJz+/EjD0qVLr/i8u+66S3fddZdGjx6tfv366f3339ejjz6qe++9V7t373YI6gBQ0dx2223auXOnw7q0tDTz8x1BQUFydXXV4cOHuXUDNwwfLARuIg0aNFBBQYHefPNN/fzzz/rwww8VHx9/yfo//vhDMTExWrdunQ4dOqTvvvtOmzdvNm/TeP7557Vx40bFxMQoLS1N+/bt02effcYHCwFUKA888IC2bNmiDz74QPv27dPkyZMdQnW1atX07LPPavTo0Vq4cKF++uknbd26VW+++aYWLlxYjp3jVkaIBm4iLVq00KxZs/Taa6+pWbNmWrRokaZPn37J+kqVKun48eMaMGCA7rrrLvXp00fdu3fXlClTJEl33323vvnmG/3vf/9TaGio7rnnHsXGxsrPz+9GHRIAXFF4eLgmTZqk5557Tq1bt9apU6c0YMAAh5qXXnpJkyZN0vTp09WkSRN169ZNK1euVGBgYDl1jVudzbj4JiMAAAAAl8WVaAAAAMAiQjQAAABgESEaAAAAsIgQDQAAAFhEiAYAAAAsIkQDAAAAFhGiAQAAAIsI0QAAAIBFhGgAwA1x8OBB2Ww2paWlSZLWrVsnm82m7Ozscu0LAK4GIRoAbgGDBg1SRETEVT9/2bJlatu2rby8vFStWjU1bdpUo0aNKrP+JMnf31+//fabmjVrVqbbBYDy4FzeDQAAyldycrL69u2rl19+WY888ohsNpt2796tpKSkMt1PpUqV5OvrW6bbPHv2rFxcXMp0mwBQGlyJBoBb0KeffqrmzZvL3d1dNWvWVFhYmPLy8kqs/eKLL9SuXTuNGzdOjRo10l133aWIiAjNmzfPrImLi1NwcLDeeecd+fv7q0qVKurTp49ycnLMmsLCQk2dOlV33HGHXF1dFRwcrMTERHP84ts5SrJhwwaFhobK3d1d/v7+GjlypEPf9erV00svvaQBAwbI09NTw4cPv4azBABXjxANALeY3377Tf369dOQIUO0Z88erVu3Tr169ZJhGCXW+/r6ateuXdq5c+dlt7t//34tXbpUX3zxhRITE7Vt2zY99dRT5vicOXM0c+ZM/etf/9KOHTsUHh6uRx55RPv27StV3z/99JO6deum3r17a8eOHVqyZIk2bNigmJgYh7p//etfatGihbZt26ZJkyaVatsAUNZsxqW+qwIAbhqDBg1Sdna2li9frq1bt6ply5Y6ePCgAgICrvjcvLw89enTR6tWrVJAQIDatm2rrl27KioqSq6urpL+vBI9bdo0HTp0SLfffrskKTExUT179tSvv/4qX19f3X777RoxYoReeOEFc9v33XefWrdurXnz5ungwYMKDAzUtm3bFBwcrHXr1qlz5846efKkvL29NXToUFWqVEnvvPOO+fwNGzaoY8eOysvLk5ubm+rVq6d77rlHy5YtK+MzCADWcCUaAG4xLVq0UJcuXdS8eXM9/vjj+ve//62TJ09est7Dw0MrV67U/v379eKLL6pq1aoaO3as7rvvPp0+fdqsq1u3rhmgJSkkJESFhYXau3ev7Ha7jh49qnbt2jlsu127dtqzZ0+p+t6+fbsSEhJUtWpV8xEeHq7CwkIdOHDArGvVqlVpTwUAXDeEaAC4xVSqVElJSUn68ssvFRQUpDfffFONGjVyCKIlqV+/voYOHap3331XW7du1e7du7VkyZIb1LWUm5urf/zjH0pLSzMf27dv1759+1S/fn2zzsPD44b1BACXQogGgFuQzWZTu3btNGXKFG3btk0uLi6WboGoV6+eqlSp4vChvsOHD+vo0aPm8vfffy8nJyc1atRInp6e8vPz03fffeewne+++05BQUGl2ue9996r3bt3q0GDBsUezMABoKJhijsAuMVs2rRJycnJ6tq1q2rXrq1Nmzbp2LFjatKkSYn1cXFxOn36tHr06KGAgABlZ2dr7ty5Kigo0IMPPmjWubm5aeDAgfrXv/4lu92ukSNHqk+fPua0dePGjdPkyZNVv359BQcH6/3331daWpoWLVpUqr6ff/55tW3bVjExMRo6dKg8PDzMqfbeeuutaz8xAFCGCNEAcIvx9PTU+vXrNXv2bNntdgUEBGjmzJnq3r17ifUdO3bUvHnzNGDAAGVmZqp69eq65557tHr1ajVq1Misa9CggXr16qUePXroxIkTeuihh/T222+b4yNHjlROTo7Gjh2rrKwsBQUF6fPPP1fDhg1L1ffdd9+tb775RhMnTlRoaKgMw1D9+vXVt2/fazshAHAdMDsHAOCK4uLitHz58svO8QwAfyXcEw0AAABYRIgGAAAALOJ2DgAAAMAirkQDAAAAFhGiAQAAAIsI0QAAAIBFhGgAAADAIkI0AAAAYBEhGgAAALCIEA0AAABYRIgGAAAALPr/AHLjh3WPpDBJAAAAAElFTkSuQmCC",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "/opt/conda/lib/python3.10/site-packages/seaborn/_oldcore.py:1119: FutureWarning: use_inf_as_na option is deprecated and will be removed in a future version. Convert inf values to NaN before operating instead.\n",
+ " with pd.option_context('mode.use_inf_as_na', True):\n"
+ ]
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA2wAAAIjCAYAAAB/FZhcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACA+UlEQVR4nOzdd3hUZf7+8XsmZVJIg5CEQAhRem+KdF2zAmLBXlARWbHAVxEX7FgXFlQElYVVV0EFRfwp61oQpAuIEDqGphBKCC2k98z5/RHnyEgCSZhkJsn7tVeuZc555pzPnADm5mkWwzAMAQAAAAA8jtXdBQAAAAAASkdgAwAAAAAPRWADAAAAAA9FYAMAAAAAD0VgAwAAAAAPRWADAAAAAA9FYAMAAAAAD0VgAwAAAAAPRWADAAAAAA9FYAOAGuaFF16QxWKplntdfvnluvzyy83XK1askMVi0eeff14t97/33nvVrFmzarlXZWVlZelvf/uboqKiZLFYNGbMGHeXVKpmzZrp3nvvdXcZNZbjz93JkyfdXQqAOobABgBuNHv2bFksFvPLz89P0dHRGjBggN58801lZma65D7Jycl64YUXtGXLFpdcz5U8ubbymDhxombPnq2HHnpIH330ke6+++4y2zZr1szp+x0YGKhLL71UH374YTVW7D4HDhyQxWLRa6+95u5SyjRx4kQtXLjQ3WUAgMnb3QUAAKSXXnpJcXFxKiwsVEpKilasWKExY8Zo6tSp+uqrr9SxY0ez7bPPPqsnn3yyQtdPTk7Wiy++qGbNmqlz587lft/ixYsrdJ/KOFdt7777rux2e5XXcCGWLVumyy67TM8//3y52nfu3FmPP/64JOno0aN67733NGzYMOXn5+v++++vsjp3794tq5V/pz2fiRMn6uabb9aQIUPcXQoASCKwAYBHGDRokLp3726+fuqpp7Rs2TJdc801uu6665SYmCh/f39Jkre3t7y9q/av75ycHAUEBMjX17dK73M+Pj4+br1/eRw/flxt27Ytd/vGjRvrrrvuMl/fe++9uuiii/TGG29UaWCz2WxVdm0AQNXhn9oAwEP95S9/0XPPPaekpCR9/PHH5vHS5rAtWbJEffr0UWhoqOrVq6dWrVrp6aefllQy7+ySSy6RJA0fPtwcjjd79mxJJfPU2rdvr4SEBPXr108BAQHme/88h82huLhYTz/9tKKiohQYGKjrrrtOhw4dcmpT1pypM695vtpKm8OWnZ2txx9/XDExMbLZbGrVqpVee+01GYbh1M5isWj06NFauHCh2rdvL5vNpnbt2mnRokWlP/A/OX78uEaMGKHIyEj5+fmpU6dOmjNnjnneMZ9v//79+uabb8zaDxw4UK7rOzRs2FCtW7fWr7/+6nTcbrdr2rRpateunfz8/BQZGakHHnhAp0+fNttcc801uuiii0q9bs+ePZ3+EaC070daWprGjBljPsvmzZtr8uTJTr2aXbt21Y033uj0vg4dOshisWjbtm3msfnz58tisSgxMbFCn780+fn5ev7559W8eXPZbDbFxMRo/Pjxys/Pd2pXke/xihUr1L17d/n5+eniiy/Wv//977P+LFksFmVnZ2vOnDnm97O0Z3bvvfcqNDRUISEhGj58uHJycpzanOvPIwBUFD1sAODB7r77bj399NNavHhxmb0vO3fu1DXXXKOOHTvqpZdeks1m0759+7RmzRpJUps2bfTSSy9pwoQJGjlypPr27StJ6tWrl3mNU6dOadCgQbr99tt11113KTIy8px1/eMf/5DFYtETTzyh48ePa9q0aYqPj9eWLVvMnsDyKE9tZzIMQ9ddd52WL1+uESNGqHPnzvr+++81btw4HTlyRG+88YZT+x9//FFffPGFHn74YQUFBenNN9/UTTfdpIMHD6pBgwZl1pWbm6vLL79c+/bt0+jRoxUXF6cFCxbo3nvvVVpamh599FG1adNGH330kR577DE1adLEHObYsGHDcn9+SSoqKtLhw4cVFhbmdPyBBx7Q7NmzNXz4cD3yyCPav3+/3n77bW3evFlr1qyRj4+PbrvtNt1zzz3asGGDGXwlKSkpST/99JNeffXVMu+bk5Oj/v3768iRI3rggQfUtGlTrV27Vk899ZSOHj2qadOmSZL69u2rTz75xHxfamqqdu7cKavVqtWrV5vDdVevXq2GDRuqTZs2Ffr8f2a323Xdddfpxx9/1MiRI9WmTRtt375db7zxhvbs2XPW/LLyfI83b96sgQMHqlGjRnrxxRdVXFysl1566azv1UcffaS//e1vuvTSSzVy5EhJ0sUXX+zU5tZbb1VcXJwmTZqkTZs26b333lNERIQmT54s6fx/HgGgwgwAgNt88MEHhiRjw4YNZbYJCQkxunTpYr5+/vnnjTP/+n7jjTcMScaJEyfKvMaGDRsMScYHH3xw1rn+/fsbkoxZs2aVeq5///7m6+XLlxuSjMaNGxsZGRnm8c8++8yQZEyfPt08FhsbawwbNuy81zxXbcOGDTNiY2PN1wsXLjQkGa+88opTu5tvvtmwWCzGvn37zGOSDF9fX6djW7duNSQZb7311ln3OtO0adMMScbHH39sHisoKDB69uxp1KtXz+mzx8bGGoMHDz7n9c5se9VVVxknTpwwTpw4YWzfvt24++67DUnGqFGjzHarV682JBlz5851ev+iRYucjqenpxs2m814/PHHndpNmTLFsFgsRlJSktO9z/x+vPzyy0ZgYKCxZ88ep/c++eSThpeXl3Hw4EHDMAxjwYIFhiTjl19+MQzDML766ivDZrMZ1113nXHbbbeZ7+vYsaNxww03nPPz79+/35BkvPrqq2W2+eijjwyr1WqsXr3a6fisWbMMScaaNWvMY+X9Hl977bVGQECAceTIEfPY3r17DW9vb+PPPwoFBgaW+vvW8efuvvvuczp+ww03GA0aNDBfl+fPIwBUBEMiAcDD1atX75yrRYaGhkqS/vvf/1Z6gQ6bzabhw4eXu/0999yjoKAg8/XNN9+sRo0a6dtvv63U/cvr22+/lZeXlx555BGn448//rgMw9B3333ndDw+Pt6ph6Rjx44KDg7Wb7/9dt77REVF6Y477jCP+fj46JFHHlFWVpZWrlxZ6c+wePFiNWzYUA0bNlSHDh300Ucfafjw4U69YQsWLFBISIj++te/6uTJk+ZXt27dVK9ePS1fvlySFBwcrEGDBumzzz5zGhI6f/58XXbZZWratGmZdSxYsEB9+/ZVWFiY0z3i4+NVXFysVatWSZLZ6+l4vXr1al1yySX661//qtWrV0sqGSa4Y8cOs+2FWLBggdq0aaPWrVs71fWXv/xFkszP7nC+73FxcbF++OEHDRkyRNHR0Wa75s2ba9CgQRWu78EHH3R63bdvX506dUoZGRmSXPPnEQDORGADAA+XlZXlFI7+7LbbblPv3r31t7/9TZGRkbr99tv12WefVeiHxcaNG1dogZEWLVo4vbZYLGrevHmF529VVFJSkqKjo896Ho5heElJSU7HSwssYWFhTvPAyrpPixYtzlpVsaz7VESPHj20ZMkSLVq0SK+99ppCQ0N1+vRpp+e/d+9epaenKyIiwgx3jq+srCwdP37cbHvbbbfp0KFDWrdunSTp119/VUJCgm677bZz1rF3714tWrTorOvHx8dLknmPyMhItWjRwgxnq1evVt++fdWvXz8lJyfrt99+05o1a2S3210S2Pbu3audO3eeVVfLli2d6nI43/f4+PHjys3NVfPmzc9qV9qx8/nz/RxDWR33c8WfRwA4E3PYAMCDHT58WOnp6ef8wdLf31+rVq3S8uXL9c0332jRokWaP3++/vKXv2jx4sXy8vI6730qMu+svMra3Lu4uLhcNblCWfcx/rRASXUKDw83Q9GAAQPUunVrXXPNNZo+fbrGjh0rqWQeV0REhObOnVvqNc6ce3XttdcqICBAn332mXr16qXPPvtMVqtVt9xyyznrsNvt+utf/6rx48eXet4RkCSpT58+Wrp0qXJzc5WQkKAJEyaoffv2Cg0N1erVq5WYmKh69eqpS5cuFXoWZdXVoUMHTZ06tdTzMTExTq+r+3t8vvu54s8jAJyJwAYAHuyjjz6SVPKD/blYrVZdeeWVuvLKKzV16lRNnDhRzzzzjJYvX674+Pgyw1Nl7d271+m1YRjat2+f035xYWFhSktLO+u9SUlJTisbVqS22NhY/fDDD8rMzHTqZdu1a5d53hViY2O1bds22e12p142V99HkgYPHqz+/ftr4sSJeuCBBxQYGKiLL75YP/zwg3r37n3eMB0YGKhrrrlGCxYs0NSpUzV//nz17dvXafhfaS6++GJlZWWZ4fFc+vbtqw8++ECffvqpiouL1atXL1mtVvXp08cMbL169XJJGLn44ou1detWXXnllS75fRsRESE/Pz/t27fvrHOlHXPFPc/35xEAKoIhkQDgoZYtW6aXX35ZcXFxGjp0aJntUlNTzzrm2IDasQx6YGCgJJUaoCrjww8/dJpX9/nnn+vo0aNOc4Iuvvhi/fTTTyooKDCPff3112ct/1+R2q6++moVFxfr7bffdjr+xhtvyGKxVGpOUln3SUlJ0fz5881jRUVFeuutt1SvXj3179/fJfdxeOKJJ3Tq1Cm9++67kkpWIiwuLtbLL798VtuioqKzntVtt92m5ORkvffee9q6det5h0M67rFu3Tp9//33Z51LS0tTUVGR+dox1HHy5Mnq2LGjQkJCzONLly7Vxo0bXTIc0lHXkSNHzGdxptzcXGVnZ1foel5eXoqPj9fChQuVnJxsHt+3b99Zcx6lkt+PF/LnpDx/HgGgIuhhAwAP8N1332nXrl0qKirSsWPHtGzZMi1ZskSxsbH66quv5OfnV+Z7X3rpJa1atUqDBw9WbGysjh8/rn/9619q0qSJ+vTpI6kkPIWGhmrWrFkKCgpSYGCgevToobi4uErVW79+ffXp00fDhw/XsWPHNG3aNDVv3txp64G//e1v+vzzzzVw4EDdeuut+vXXX/Xxxx+ftUx6RWq79tprdcUVV+iZZ57RgQMH1KlTJy1evFj//e9/NWbMmLOuXVkjR47Uv//9b917771KSEhQs2bN9Pnnn2vNmjWaNm3aOecUVsagQYPUvn17TZ06VaNGjVL//v31wAMPaNKkSdqyZYuuuuoq+fj4aO/evVqwYIGmT5+um2++2Xz/1VdfraCgIP3973+Xl5eXbrrppvPec9y4cfrqq690zTXX6N5771W3bt2UnZ2t7du36/PPP9eBAwcUHh4uqWSuV1RUlHbv3q3/+7//M6/Rr18/PfHEE5JUocC2dOlS5eXlnXV8yJAhuvvuu/XZZ5/pwQcf1PLly9W7d28VFxdr165d+uyzz/T999877S9XHi+88IIWL16s3r1766GHHjJDf/v27bVlyxantt26ddMPP/ygqVOnKjo6WnFxcerRo0e571WeP48AUCHuXKISAOo6x7L+ji9fX18jKirK+Otf/2pMnz7dafl4hz8v67906VLj+uuvN6Kjow1fX18jOjrauOOOO85arv2///2v0bZtW3Mpc8cy+v379zfatWtXan1lLev/ySefGE899ZQRERFh+Pv7G4MHD3ZaQt7h9ddfNxo3bmzYbDajd+/exsaNG8+65rlq+/Oy/oZhGJmZmcZjjz1mREdHGz4+PkaLFi2MV1991bDb7U7t9Kel8h3K2m7gz44dO2YMHz7cCA8PN3x9fY0OHTqUuvVARZf1L6vt7Nmzz9re4J133jG6detm+Pv7G0FBQUaHDh2M8ePHG8nJyWe9f+jQoYYkIz4+vsx7//lzZ2ZmGk899ZTRvHlzw9fX1wgPDzd69eplvPbaa0ZBQYFT21tuucWQZMyfP988VlBQYAQEBBi+vr5Gbm7ueT+/Y1n/sr4++ugj87qTJ0822rVrZ9hsNiMsLMzo1q2b8eKLLxrp6enm9SryPV66dKnRpUsXw9fX17j44ouN9957z3j88ccNPz8/p3a7du0y+vXrZ/j7+xuSzOs4/tz9ebl+x5/h/fv3m/cpz59HACgvi2G4ceY1AACAmwwZMkQ7d+48a04mAHgS5rABAIBaLzc31+n13r179e233+ryyy93T0EAUE70sAEAgFqvUaNGuvfee3XRRRcpKSlJM2fOVH5+vjZv3nzWvoIA4ElYdAQAANR6AwcO1CeffKKUlBTZbDb17NlTEydOJKwB8Hj0sAEAAACAh2IOGwAAAAB4KAIbAAAAAHgo5rBVI7vdruTkZAUFBclisbi7HAAAAABuYhiGMjMzFR0dLau17H40Als1Sk5OVkxMjLvLAAAAAOAhDh06pCZNmpR5nsBWjYKCgiSVfFOCg4PdXA0AAAAAd8nIyFBMTIyZEcpCYKtGjmGQwcHBBDYAAAAA550qxaIjAAAAAOChCGwAAAAA4KEIbAAAAADgoQhsAAAAAOChCGwAAAAA4KEIbAAAAADgoQhsAAAAAOChCGwAAAAA4KEIbAAAAADgoQhsAAAAAOChCGwAAAAA4KEIbAAAAADgoQhsAAAAAOChCGwAAAAA4KEIbAAAAADgoQhsAAAAAOChCGwAAAAA4KEIbHA7wzB05OcjKsovcncpAAAAgEchsMHtfvznj3qvx3v6adpP7i4FAAAA8CgENrhVUX6R1k9bL0k6vu24m6sBAAAAPAuBDW6187Odyj6eLUnm/wMAAAAoQWCDW/381s/mr7NPENgAAACAMxHY4DaH1x9W8oZk8zU9bAAAAIAzAhvcxtG71uyKZpKknBM5MgzDjRUBAAAAnoXABrfISsnSzs92SpKueOkKSZK9yK68tDx3lgUAAAB4FAIb3CLhnQTZC+1qclkTNe3TVL5BvpJKetkAAAAAlCCwodoZdkMJ/06QJF36f5dKkgIjAiUxjw0AAAA4E4EN1S4vLU+ZyZmSpDY3tpEkBTb8PbCxUiQAAABgIrCh2hVkF0iSrD5Weft5S6KHDQAAACgNgQ3VrjC7UJLkG+hrHgtoGCCJOWwAAADAmQhsqHaOHjafQB/zGD1sAAAAwNkIbKh29LABAAAA5UNgQ7UrzCkJbPSwAQAAAOdGYEO1M4dEBpwR2FglEgAAADgLgQ3VrrQhkfSwAQAAAGcjsKHalbboiDmH7WSODLvhlroAAAAAT+PWwLZq1Spde+21io6OlsVi0cKFC81zhYWFeuKJJ9ShQwcFBgYqOjpa99xzj5KTk52ukZqaqqFDhyo4OFihoaEaMWKEsrKynNps27ZNffv2lZ+fn2JiYjRlypSzalmwYIFat24tPz8/dejQQd9++63TecMwNGHCBDVq1Ej+/v6Kj4/X3r17Xfcw6pBSe9h+HxJpFBvKPZ3rlroAAAAAT+PWwJadna1OnTppxowZZ53LycnRpk2b9Nxzz2nTpk364osvtHv3bl133XVO7YYOHaqdO3dqyZIl+vrrr7Vq1SqNHDnSPJ+RkaGrrrpKsbGxSkhI0KuvvqoXXnhB77zzjtlm7dq1uuOOOzRixAht3rxZQ4YM0ZAhQ7Rjxw6zzZQpU/Tmm29q1qxZWr9+vQIDAzVgwADl5eVVwZOp3UpbdMTL10u2EJskVooEAAAAHCyGYXjE+DOLxaIvv/xSQ4YMKbPNhg0bdOmllyopKUlNmzZVYmKi2rZtqw0bNqh79+6SpEWLFunqq6/W4cOHFR0drZkzZ+qZZ55RSkqKfH1LenSefPJJLVy4ULt27ZIk3XbbbcrOztbXX39t3uuyyy5T586dNWvWLBmGoejoaD3++OP6+9//LklKT09XZGSkZs+erdtvv73UevPz85Wfn2++zsjIUExMjNLT0xUcHHxBz6smW/LEEq2dslaXPXaZBkwdYB5/q+VbSt2bqntX3qvYfrFurBAAAACoWhkZGQoJCTlvNqhRc9jS09NlsVgUGhoqSVq3bp1CQ0PNsCZJ8fHxslqtWr9+vdmmX79+ZliTpAEDBmj37t06ffq02SY+Pt7pXgMGDNC6deskSfv371dKSopTm5CQEPXo0cNsU5pJkyYpJCTE/IqJibmwB1BLOIZEntnDJrFSJAAAAPBnNSaw5eXl6YknntAdd9xhJtCUlBRFREQ4tfP29lb9+vWVkpJitomMjHRq43h9vjZnnj/zfaW1Kc1TTz2l9PR08+vQoUMV+sy1VWlz2CRWigQAAAD+zNvdBZRHYWGhbr31VhmGoZkzZ7q7nHKz2Wyy2WzuLsPjlLZKpHTGSpHMYQMAAAAk1YAeNkdYS0pK0pIlS5zGd0ZFRen48eNO7YuKipSamqqoqCizzbFjx5zaOF6fr82Z5898X2ltUH6ORUfoYQMAAADOzaMDmyOs7d27Vz/88IMaNGjgdL5nz55KS0tTQkKCeWzZsmWy2+3q0aOH2WbVqlUqLCw02yxZskStWrVSWFiY2Wbp0qVO116yZIl69uwpSYqLi1NUVJRTm4yMDK1fv95sg/Iz57AF0MMGAAAAnItbA1tWVpa2bNmiLVu2SCpZ3GPLli06ePCgCgsLdfPNN2vjxo2aO3euiouLlZKSopSUFBUUlAypa9OmjQYOHKj7779fP//8s9asWaPRo0fr9ttvV3R0tCTpzjvvlK+vr0aMGKGdO3dq/vz5mj59usaOHWvW8eijj2rRokV6/fXXtWvXLr3wwgvauHGjRo8eLalkBcsxY8bolVde0VdffaXt27frnnvuUXR09DlXtUTpyhoSSQ8bAAAA4Mytc9g2btyoK664wnztCFHDhg3TCy+8oK+++kqS1LlzZ6f3LV++XJdffrkkae7cuRo9erSuvPJKWa1W3XTTTXrzzTfNtiEhIVq8eLFGjRqlbt26KTw8XBMmTHDaq61Xr16aN2+enn32WT399NNq0aKFFi5cqPbt25ttxo8fr+zsbI0cOVJpaWnq06ePFi1aJD8/P1c/llqvzEVHWCUSAAAAcOIx+7DVBeXda6G2mx43XWkH0jTipxFq0qOJefzYtmOa1WmWAhoGaNzxcW6sEAAAAKhatXIfNtQOjiGRf+5hc8xhyz2VK3uxvdrrAgAAADwNgQ3VrsxFR8JLApthN5SbmlvtdQEAAACehsCGamXYDXNZ/z8vOuLl4yW/sJI5gawUCQAAABDYUM0Kc//YXuHPQyIlVooEAAAAzkRgQ7Vy9K5JZw+JlFgpEgAAADgTgQ3VyjF/zdvPWxar5azz9LABAAAAfyCwoVqVtWm2g2OlSOawAQAAAAQ2VLOyNs12oIcNAAAA+AOBDdWKHjYAAACg/AhsqFaORUfoYQMAAADOj8CGalXWptkOrBIJAAAA/IHAhmp1viGR9LABAAAAfyCwoVqdb9ERxxy23NRc2Yvs1VYXAAAA4IkIbKhW5110pEGAZJFkSDmnWHgEAAAAdRuBDdXKsehIWYHN6m2VX6ifJCn3VG611QUAAAB4IgIbqtX5Fh2Rfu9lU8mwSAAAAKAuI7ChWjmGRJY1h02S/Ov7SyKwAQAAAAQ2VCuzh62MIZESgQ0AAABwILChWp1v42yJwAYAAAA4ENhQrcrTw+ZX//dFRwhsAAAAqOMIbKhW5rL+5Vh0hGX9AQAAUNcR2FCtzrdxtvTHkMi81LxqqQkAAADwVAQ2VKvzbZwtMYcNAAAAcCCwoVqx6AgAAABQfgQ2VKtyLevfgMAGAAAASAQ2VLPyLDri6GFj0REAAADUdQQ2VBt7sV3F+cWSyjcksiCzQMWFxdVSGwAAAOCJCGyoNo7hkNJ59mEL9TN/nXealSIBAABQdxHYUG0cC47IInn7eZfZzuplNUMb89gAAABQlxHYUG0c89d8A31lsVjO2ZaFRwAAAAACG6qRuULkORYccWDhEQAAAIDAhmpUnk2zHdiLDQAAACCwoRo5etjOtUKkA4ENAAAAILChGjkWHaGHDQAAACifspfqAy7QwYMHdfLkSfP1kR1HJEl5xXnatGnTOd+bXpAuSTq0+1CpbcPDw9W0aVMXVgsAAAB4HothGIa7i6grMjIyFBISovT0dAUHB7u7nCp18OBBtWndRjm5fywa0lVddZ2u027t1if65Jzv76EeGqRB2qEd+lyfn3U+wD9AibsSCW0AAACokcqbDehhQ5U4efKkcnJz9PQNTyu2YawkKXt7tjLWZajTRZ10efzl53x/zp4cpa9IV9fGXfXXwX91Opd0IkkTv5yokydPEtgAAABQqxHYUKViG8aqZaOWkqSkfUnKUIZCg0PNY2U5lXlK6UqXr933vG0BAACA2opFR1Bt7IV2SZKXr9d523r7l/xbQlFuUZXWBAAAAHgyAhuqTXFBsSTJ6nP+33aOzbULcwurtCYAAADAkxHYUG3MHjaf8/ew+fiXBLbi/GIZdtbFAQAAQN1EYEO1KS78vYfN9/y/7bz9/pheSS8bAAAA6ioCG6qNI7CVp4fNYrXIy1bSjnlsAAAAqKsIbKg29oLyLzoiMY8NAAAAILCh2phDIsux6Ij0xzw2etgAAABQVxHYUG0cq0SWZ0ikxNL+AAAAAIEN1aYi+7BJfwQ2hkQCAACgriKwodpUeEikH3PYAAAAULcR2FBtzCGR5e1hC2BIJAAAAOo2AhuqTUU2zpZYdAQAAAAgsKFa2IvtMuyGpPIPiWQOGwAAAOo6AhuqhWM4pFSBfdjoYQMAAEAdR2BDtXAMh7RYLbJ60cMGAAAAlAeBDdWioitESvSwAQAAAAQ2VIuKbpotnbFxdl6ROf8NAAAAqEsIbKgWFd00W/qjh00qCW0AAABAXUNgQ7Vw9LBVZEikxWqRl60k4DGPDQAAAHURgQ3VojI9bBLz2AAAAFC3uTWwrVq1Stdee62io6NlsVi0cOFCp/OGYWjChAlq1KiR/P39FR8fr7179zq1SU1N1dChQxUcHKzQ0FCNGDFCWVlZTm22bdumvn37ys/PTzExMZoyZcpZtSxYsECtW7eWn5+fOnTooG+//bbCtaBslVl0RGKlSAAAANRtbg1s2dnZ6tSpk2bMmFHq+SlTpujNN9/UrFmztH79egUGBmrAgAHKy8sz2wwdOlQ7d+7UkiVL9PXXX2vVqlUaOXKkeT4jI0NXXXWVYmNjlZCQoFdffVUvvPCC3nnnHbPN2rVrdccdd2jEiBHavHmzhgwZoiFDhmjHjh0VqgVlq8yiIxI9bAAAAKjbvN1580GDBmnQoEGlnjMMQ9OmTdOzzz6r66+/XpL04YcfKjIyUgsXLtTtt9+uxMRELVq0SBs2bFD37t0lSW+99Zauvvpqvfbaa4qOjtbcuXNVUFCg999/X76+vmrXrp22bNmiqVOnmsFu+vTpGjhwoMaNGydJevnll7VkyRK9/fbbmjVrVrlqwbk5etgqOiSSHjYAAADUZR47h23//v1KSUlRfHy8eSwkJEQ9evTQunXrJEnr1q1TaGioGdYkKT4+XlarVevXrzfb9OvXT76+vmabAQMGaPfu3Tp9+rTZ5sz7ONo47lOeWkqTn5+vjIwMp6+6ypzDVtkethx62AAAAFD3eGxgS0lJkSRFRkY6HY+MjDTPpaSkKCIiwum8t7e36tev79SmtGuceY+y2px5/ny1lGbSpEkKCQkxv2JiYs7zqWuvyqwSKdHDBgAAgLrNYwNbbfDUU08pPT3d/Dp06JC7S3KbC+5hYw4bAAAA6iCPDWxRUVGSpGPHjjkdP3bsmHkuKipKx48fdzpfVFSk1NRUpzalXePMe5TV5szz56ulNDabTcHBwU5fdVVlV4n0CSwJbIU59LABAACg7vHYwBYXF6eoqCgtXbrUPJaRkaH169erZ8+ekqSePXsqLS1NCQkJZptly5bJbrerR48eZptVq1apsPCPH/iXLFmiVq1aKSwszGxz5n0cbRz3KU8tODd7cUkPm9W7coGtILvA5TUBAAAAns6tgS0rK0tbtmzRli1bJJUs7rFlyxYdPHhQFotFY8aM0SuvvKKvvvpK27dv1z333KPo6GgNGTJEktSmTRsNHDhQ999/v37++WetWbNGo0eP1u23367o6GhJ0p133ilfX1+NGDFCO3fu1Pz58zV9+nSNHTvWrOPRRx/VokWL9Prrr2vXrl164YUXtHHjRo0ePVqSylULzs1eVMnAFvB7D1s2PWwAAACoe9y6rP/GjRt1xRVXmK8dIWrYsGGaPXu2xo8fr+zsbI0cOVJpaWnq06ePFi1aJD8/P/M9c+fO1ejRo3XllVfKarXqpptu0ptvvmmeDwkJ0eLFizVq1Ch169ZN4eHhmjBhgtNebb169dK8efP07LPP6umnn1aLFi20cOFCtW/f3mxTnlpQtsoGNt/AktU9C3MKZRiGLBaLy2sDAAAAPJXFMAzD3UXUFRkZGQoJCVF6enqtn8+2adMmdevWTf8e+W+1bNRSWz/aqrTf0tT6htaK7Bh5/gv8zl5s1+pXVkuSeo3vJR9/H+05ukcPvPOAEhIS1LVr16r6CAAAAECVKW828Ng5bKhdKtvDZvWyytvv96X9GRYJAACAOobAhmphFJV05FY0sEksPAIAAIC6i8CGalHZHjbpjKX96WEDAABAHUNgQ7W4kMBmLjxCYAMAAEAdQ2BDtbigHrYAhkQCAACgbiKwoVowJBIAAACoOAIbqoUrhkQW5NDDBgAAgLqFwIZqQQ8bAAAAUHEENlQ5w27IsFd+WX8WHQEAAEBdRWBDlbMX281fsw8bAAAAUH4ENlQ5x3BI6cJ62Ipyi5zCHwAAAFDbEdhQ5czAZpEsVkuF3+/t7y39/rai3CIXVgYAAAB4NgIbqtyFLDgiSRaLhb3YAAAAUCcR2FDlLjSwSSw8AgAAgLqJwIYq54rAxsIjAAAAqIsIbKhyrgxs9LABAACgLiGwocq5ZEhkQMmQSHrYAAAAUJcQ2FDl6GEDAAAAKofAhipHYAMAAAAqh8CGKufKVSILchgSCQAAgLqDwIYqRw8bAAAAUDkENlQ59mEDAAAAKofAhirnyh624oJiGUWGS+oCAAAAPB2BDVXOFYHNy9dLFi+LJKk4t9gldQEAAACejsCGKufoEbuQwGaxWMxhkfZcu0vqAgAAADwdgQ1VzhU9bNIfwyLteQQ2AAAA1A0ENlQ5lwc2etgAAABQRxDYUOVcFdgYEgkAAIC6hsCGKmcvdlEPWwBDIgEAAFC3ENhQ5ehhAwAAACqHwIYqxxw2AAAAoHIIbKhyZmDzck1gYx82AAAA1BUENlQ5lw+JZA4bAAAA6ggCG6qcI7BZvC0XdB2GRAIAAKCuIbChyrlsDtvvq0TKLvnJ70LLAgAAADwegQ1VzlWBzcvHS16+XpKkAAVccF0AAACApyOwocq5KrBJkm+9knlsQQq64GsBAAAAno7Ahirn0sAWRGADAABA3UFgQ5VzZWCzBdskScEKvuBrAQAAAJ6OwIYqRw8bAAAAUDkENlQpwzBkFBuSXNTDFkQPGwAAAOoOAhuqVvEfv3RlYKOHDQAAAHUBgQ1VytG7JrloSGQwQyIBAABQdxDYUKXMwGaRLFbLBV/vzB42wzDO0xoAAACo2QhsqFJG0R/z1yyWCw9sjkVHvOWtgrSCC74eAAAA4MkIbKhaJQtEumQ4pCRZvayy+pdcK+94nkuuCQAAAHgqAhuq1Jk9bK5iDSCwAQAAoG4gsKFKuXJJfwevQC9JUt4JAhsAAABqNwIbqlSVBLaA3wMbPWwAAACo5QhsqFJVEdisgb8PiaSHDQAAALUcgQ1V6/eNsxkSCQAAAFQcgQ1VqkoWHQlk0REAAADUDQQ2VClzSKSX63vYco/nuuyaAAAAgCcisKFKVeWiI4XphSrKK3LZdQEAAABPQ2BD1aqCOWwWm0VFKglqmcmZLrsuAAAA4GkIbKhSVdHDZrFYlKEMSVLGkQyXXRcAAADwNAQ2VKmqWHREkjJV0rNGDxsAAABqMwIbqpSjh83ibXHpdR09bJlHCGwAAACovQhsqFJVMSRS+qOHjSGRAAAAqM08OrAVFxfrueeeU1xcnPz9/XXxxRfr5ZdflmEYZhvDMDRhwgQ1atRI/v7+io+P1969e52uk5qaqqFDhyo4OFihoaEaMWKEsrKynNps27ZNffv2lZ+fn2JiYjRlypSz6lmwYIFat24tPz8/dejQQd9++23VfPDapAoWHZHoYQMAAEDd4NGBbfLkyZo5c6befvttJSYmavLkyZoyZYreeusts82UKVP05ptvatasWVq/fr0CAwM1YMAA5eX9sany0KFDtXPnTi1ZskRff/21Vq1apZEjR5rnMzIydNVVVyk2NlYJCQl69dVX9cILL+idd94x26xdu1Z33HGHRowYoc2bN2vIkCEaMmSIduzYUT0Po4aq6h42AhsAAABqM48ObGvXrtX111+vwYMHq1mzZrr55pt11VVX6eeff5ZU0rs2bdo0Pfvss7r++uvVsWNHffjhh0pOTtbChQslSYmJiVq0aJHee+899ejRQ3369NFbb72lTz/9VMnJyZKkuXPnqqCgQO+//77atWun22+/XY888oimTp1q1jJ9+nQNHDhQ48aNU5s2bfTyyy+ra9euevvtt6v9udQkVb3oCEMiAQAAUJt5dGDr1auXli5dqj179kiStm7dqh9//FGDBg2SJO3fv18pKSmKj4833xMSEqIePXpo3bp1kqR169YpNDRU3bt3N9vEx8fLarVq/fr1Zpt+/frJ19fXbDNgwADt3r1bp0+fNtuceR9HG8d9SpOfn6+MjAynr7qmqnrYzCGRyZlOQ2QBAACA2sTb3QWcy5NPPqmMjAy1bt1aXl5eKi4u1j/+8Q8NHTpUkpSSkiJJioyMdHpfZGSkeS4lJUURERFO5729vVW/fn2nNnFxcWddw3EuLCxMKSkp57xPaSZNmqQXX3yxoh+7dqmiOWyOHrbi/GLlpuYqoEGAS68PAAAAeAKP7mH77LPPNHfuXM2bN0+bNm3SnDlz9Nprr2nOnDnuLq1cnnrqKaWnp5tfhw4dcndJ1a6qetiKVSzf0JIeUeaxAQAAoLby6B62cePG6cknn9Ttt98uSerQoYOSkpI0adIkDRs2TFFRUZKkY8eOqVGjRub7jh07ps6dO0uSoqKidPz4cafrFhUVKTU11Xx/VFSUjh075tTG8fp8bRznS2Oz2WSz2Sr6sWuVqgpskuQX4aeCtAJlHMlQZMfI878BAAAAqGE8uoctJydHVqtziV5eXrLb7ZKkuLg4RUVFaenSpeb5jIwMrV+/Xj179pQk9ezZU2lpaUpISDDbLFu2THa7XT169DDbrFq1SoWFhWabJUuWqFWrVgoLCzPbnHkfRxvHfVC6Kg1sDf0k0cMGAACA2sujA9u1116rf/zjH/rmm2904MABffnll5o6dapuuOEGSZLFYtGYMWP0yiuv6KuvvtL27dt1zz33KDo6WkOGDJEktWnTRgMHDtT999+vn3/+WWvWrNHo0aN1++23Kzo6WpJ05513ytfXVyNGjNDOnTs1f/58TZ8+XWPHjjVrefTRR7Vo0SK9/vrr2rVrl1544QVt3LhRo0ePrvbnUpNUdQ+bxEqRAAAAqL08ekjkW2+9peeee04PP/ywjh8/rujoaD3wwAOaMGGC2Wb8+PHKzs7WyJEjlZaWpj59+mjRokXy8/Mz28ydO1ejR4/WlVdeKavVqptuuklvvvmmeT4kJESLFy/WqFGj1K1bN4WHh2vChAlOe7X16tVL8+bN07PPPqunn35aLVq00MKFC9W+ffvqeRg1VRUtOiL9EdjoYQMAAEBtZTFYE73aZGRkKCQkROnp6QoODnZ3OVVq06ZN6tatm17yf0n2XLu6PdhN9SLrueTae47u0QPvPKAvnvlC2/6xTS2ubqE7v7nTJdcGAAAAqkN5s4FHD4lEzVeVQyL9o/wlSekH011+bQAAAMATENhQpaoysAVEl+y9lnYgjc2zAQAAUCsR2FC1HHPYvKqgh61RSQ9bQVaBclNzXX59AAAAwN0IbKgyXvIyf10VPWxeNi/Va1QyLy5tf5rLrw8AAAC4G4ENVcb7jEVIqyKwSVJos1BJJcMiAQAAgNqGwIYqc2Zgs3hZquQeBDYAAADUZgQ2VBlHYLN6W2WxENgAAACAiiKwocqcGdiqCoENAAAAtRmBDVWGwAYAAABcmEr9JP3bb7+5ug7UQtUd2NiLDQAAALVNpX6Sbt68ua644gp9/PHHysvLc3VNqCWqI7CFxIZIkgqzC5VzMqfK7gMAAAC4Q6V+kt60aZM6duyosWPHKioqSg888IB+/vlnV9eGGq46Apu3zVtB0UGSGBYJAACA2qdSP0l37txZ06dPV3Jyst5//30dPXpUffr0Ufv27TV16lSdOHHC1XWiBnIENot31awQ6cA8NgAAANRWF9T14e3trRtvvFELFizQ5MmTtW/fPv39739XTEyM7rnnHh09etRVdaIGqo4eNonABgAAgNrrgn6S3rhxox5++GE1atRIU6dO1d///nf9+uuvWrJkiZKTk3X99de7qk7UQNUV2EKalcxjI7ABAACgtvGuzJumTp2qDz74QLt379bVV1+tDz/8UFdffbWs1pIfzOPi4jR79mw1a9bMlbWihqnuHrb0A+lVeh8AAACgulUqsM2cOVP33Xef7r33XjVq1KjUNhEREfrPf/5zQcWhZmNIJAAAAHBhKhXY9u7de942vr6+GjZsWGUuj1rCHYHNMAxZLFW7yAkAAABQXSr1k/QHH3ygBQsWnHV8wYIFmjNnzgUXhdrBDGxeVTyHrWmIZJEKcwqVc4K92AAAAFB7VOon6UmTJik8PPys4xEREZo4ceIFF4Xaobp62NiLDQAAALVVpX6SPnjwoOLi4s46Hhsbq4MHD15wUagdqiuwScxjAwAAQO1UqZ+kIyIitG3btrOOb926VQ0aNLjgolA7ENgAAACAC1Opn6TvuOMOPfLII1q+fLmKi4tVXFysZcuW6dFHH9Xtt9/u6hpRQxHYAAAAgAtTqVUiX375ZR04cEBXXnmlvL1LLmG323XPPfcwhw0mAhsAAABwYSoV2Hx9fTV//ny9/PLL2rp1q/z9/dWhQwfFxsa6uj7UYG4JbPvTqvxeAAAAQHWpVGBzaNmypVq2bOmqWlDLuKuHjb3YAAAAUFtUKrAVFxdr9uzZWrp0qY4fPy673e50ftmyZS4pDjVbdQa24JhgySIV5RUp+3i26kXWq/J7AgAAAFWtUoHt0Ucf1ezZszV48GC1b9+e3gyUqjoDm7fNW8GNg5VxOENp+9MIbAAAAKgVKhXYPv30U3322We6+uqrXV0PapHqDGySFHZRmDIOZyh1X6qaXNakWu4JAAAAVKVK/STt6+ur5s2bu7oW1DLVHdgatCrZA/Dk7pPVcj8AAACgqlXqJ+nHH39c06dPl2EYrq4HtUh1B7bw1uGSpFO7TlXL/QAAAICqVqkhkT/++KOWL1+u7777Tu3atZOPj4/T+S+++MIlxaFmo4cNAAAAuDCVCmyhoaG64YYbXF0Lahm39bDtOSV7sV1Wr+q5LwAAAFBVKhXYPvjgA1fXgVqougNbaLNQefl6qTi/WOkH0xUWF1Yt9wUAAACqSqV/ki4qKtIPP/ygf//738rMzJQkJScnKysry2XFoeYyDKPaA5vVy6r6LepLkk7uYlgkAAAAar5K/SSdlJSkDh066Prrr9eoUaN04sQJSdLkyZP197//3aUFomYyigxZVLI/X3UFNumPYZEENgAAANQGlfpJ+tFHH1X37t11+vRp+fv7m8dvuOEGLV261GXFoeayF9jNX1dnYHMsPHJqNytFAgAAoOar1By21atXa+3atfL19XU63qxZMx05csQlhaFmKy4oNn9t8bJU233pYQMAAEBtUqmuD7vdruLi4rOOHz58WEFBQRdcFGo+e/7vPWxeksVSjYGt1e8rRdLDBgAAgFqgUoHtqquu0rRp08zXFotFWVlZev7553X11Ve7qjbUYMV5JYG+OnvXpD+GRGalZCkvPa9a7w0AAAC4WqUC2+uvv641a9aobdu2ysvL05133mkOh5w8ebKra0QNVJRbJEmy+FRvYPML8VO9RvUk0csGAACAmq9Sc9iaNGmirVu36tNPP9W2bduUlZWlESNGaOjQoU6LkKDuKs79vYfNu3oDm1QyLDLraJZO7jqpxpc2rvb7AwAAAK5SqcAmSd7e3rrrrrtcWQtqEXf1sElSg9YNdGDFAZ3czcIjAAAAqNkqFdg+/PDDc56/5557KlUMao/inJIetupc0t/BXHhkF0MiAQAAULNVKrA9+uijTq8LCwuVk5MjX19fBQQEENjwx5BIN/SwsbQ/AAAAaotKdX+cPn3a6SsrK0u7d+9Wnz599Mknn7i6RtRARXm/D4l0wxw2x0qRqftSZS+yn6c1AAAA4LlcNl6tRYsW+uc//3lW7xvqJseQSHf0sIU0DZG3n7eKC4qVdiCt2u8PAAAAuIpLJxh5e3srOTnZlZdEDWUuOuKGHjarl1X1W9SXJBYeAQAAQI1WqTlsX331ldNrwzB09OhRvf322+rdu7dLCkPN5s45bFLJPLbj24/r5K6Tajm4pVtqAAAAAC5UpQLbkCFDnF5bLBY1bNhQf/nLX/T666+7oi7UcO7sYZP+WHiEzbMBAABQk1UqsNntLOSAc3N3D5tj4ZGTiQyJBAAAQM1V/ZtkoU4oynFvD1tE+whJ0rFtx2TYDbfUAAAAAFyoSvWwjR07ttxtp06dWplboIYrzvt942wf9/ybQMO2DeVl81J+Rr5O/3Za9ZvXd0sdAAAAwIWoVGDbvHmzNm/erMLCQrVq1UqStGfPHnl5ealr165mO4vFPb0rcD93D4n08vFSZMdIJW9IVnJCMoENAAAANVKlAtu1116roKAgzZkzR2FhYZJKNtMePny4+vbtq8cff9ylRaLmcfeQSElq1LWRkjck6+imo2p/W3u31QEAAABUVqXGq73++uuaNGmSGdYkKSwsTK+88gqrREKS+3vYJKlRt0aSpKMJR91WAwAAAHAhKhXYMjIydOLEibOOnzhxQpmZmRdcFGo+dy/rL0nR3aIlSUc3HZVhsPAIAAAAap5KDYm84YYbNHz4cL3++uu69NJLJUnr16/XuHHjdOONN7q0QNRM1dHDlpiYeM7z9kK7LN4W5Z3O05qv1yigcUC5rx0eHq6mTZteaIkAAADABalUYJs1a5b+/ve/684771RhYWHJhby9NWLECL366qsuLRA1j2E3zFUiq6KHLTUrVZJ01113nbftSI1UtKL1wHUP6Bf9Uu57BPgHKHFXIqENAAAAblWpwBYQEKB//etfevXVV/Xrr79Kki6++GIFBga6tDhJOnLkiJ544gl99913ysnJUfPmzfXBBx+oe/fukiTDMPT888/r3XffVVpamnr37q2ZM2eqRYsW5jVSU1P1f//3f/rf//4nq9Wqm266SdOnT1e9evXMNtu2bdOoUaO0YcMGNWzYUP/3f/+n8ePHO9WyYMECPffcczpw4IBatGihyZMn6+qrr3b5Z67pCnMLpd9HIFZFD1tWXpYk6eErHlanFp3O2TZtVZpyd+VqeOfhCr40uFzXTzqRpIlfTtTJkycJbAAAAHCrSgU2h6NHj+ro0aPq16+f/P39ZRiGS5fyP336tHr37q0rrrhC3333nRo2bKi9e/c6LXYyZcoUvfnmm5ozZ47i4uL03HPPacCAAfrll1/k5+cnSRo6dKiOHj2qJUuWqLCwUMOHD9fIkSM1b948SSVz8q666irFx8dr1qxZ2r59u+677z6FhoZq5MiRkqS1a9fqjjvu0KRJk3TNNddo3rx5GjJkiDZt2qT27VmB8EyF2YXmr6tyDlvjsMZq2ajlOdskX5ysvbv2yjfT97xtAQAAAE9TqcB26tQp3XrrrVq+fLksFov27t2riy66SCNGjFBYWJjLVoqcPHmyYmJi9MEHH5jH4uLizF8bhqFp06bp2Wef1fXXXy9J+vDDDxUZGamFCxfq9ttvV2JiohYtWqQNGzaYvXJvvfWWrr76ar322muKjo7W3LlzVVBQoPfff1++vr5q166dtmzZoqlTp5qBbfr06Ro4cKDGjRsnSXr55Ze1ZMkSvf3225o1a5ZLPm9tUZBdUPL/KnD7Xnz1GpX0omYmZ7r8HxQAAACAqlapVSIfe+wx+fj46ODBgwoI+GMhh9tuu02LFi1yWXFfffWVunfvrltuuUURERHq0qWL3n33XfP8/v37lZKSovj4ePNYSEiIevTooXXr1kmS1q1bp9DQUDOsSVJ8fLysVqvWr19vtunXr598fX3NNgMGDNDu3bt1+vRps82Z93G0cdynNPn5+crIyHD6qgsKskoCW6EKz9Oy6tWLrCeL1aKi3CLlZ+S7uxwAAACgQioV2BYvXqzJkyerSZMmTsdbtGihpKQklxQmSb/99ps5H+3777/XQw89pEceeURz5syRJKWkpEiSIiMjnd4XGRlpnktJSVFERITTeW9vb9WvX9+pTWnXOPMeZbVxnC/NpEmTFBISYn7FxMRU6PPXVI4hkQUqcHMlktXbqsCIkrmVWclZbq4GAAAAqJhKBbbs7GynnjWH1NRU2Wy2Cy7KwW63q2vXrpo4caK6dOmikSNH6v77768xQxCfeuoppaenm1+HDh1yd0nVwtHD5gmBTZLqRf0+LPIoewQCAACgZqlUYOvbt68+/PBD87XFYpHdbteUKVN0xRVXuKy4Ro0aqW3btk7H2rRpo4MHD0qSoqKiJEnHjh1zanPs2DHzXFRUlI4fP+50vqioSKmpqU5tSrvGmfcoq43jfGlsNpuCg4OdvuoCxxw2TxgSKUn1oksCW9ZRetgAAABQs1QqsE2ZMkXvvPOOBg0apIKCAo0fP17t27fXqlWrNHnyZJcV17t3b+3evdvp2J49exQbGyupZAGSqKgoLV261DyfkZGh9evXq2fPnpKknj17Ki0tTQkJCWabZcuWyW63q0ePHmabVatWmXvKSdKSJUvUqlUrc0XKnj17Ot3H0cZxH/zBk4ZESlJQoyBJJT1shmG4uRoAAACg/CoV2Nq3b689e/aoT58+uv7665Wdna0bb7xRmzdv1sUXX+yy4h577DH99NNPmjhxovbt26d58+bpnXfe0ahRoySV9OyNGTNGr7zyir766itt375d99xzj6KjozVkyBBJJT1yAwcO1P3336+ff/5Za9as0ejRo3X77bcrOjpaknTnnXfK19dXI0aM0M6dOzV//nxNnz5dY8eONWt59NFHtWjRIr3++uvatWuXXnjhBW3cuFGjR4922eetLTxtSGRgZKBkKQmSBZmeURMAAABQHhVe1r+wsFADBw7UrFmz9Mwzz1RFTaZLLrlEX375pZ566im99NJLiouL07Rp0zR06FCzzfjx45Wdna2RI0cqLS1Nffr00aJFi8w92CRp7ty5Gj16tK688kpz4+w333zTPB8SEqLFixdr1KhR6tatm8LDwzVhwgRzSX9J6tWrl+bNm6dnn31WTz/9tFq0aKGFCxeyB1spzlzW3xN4+XgpsGGgso9nKzM5U7Zg182zBAAAAKpShQObj4+Ptm3bVhW1lOqaa67RNddcU+Z5i8Wil156SS+99FKZberXr29ukl2Wjh07avXq1edsc8stt+iWW245d8Ewh0R6yhw2SQpqHKTs49nKOJyh8Nbh7i4HAAAAKJdKDYm866679J///MfVtaCW8LQhkZIU0jREkpR+MN3NlQAAAADlV+EeNqlklcX3339fP/zwg7p166bAwECn81OnTnVJcaiZPG1IpPRHYMtMzpS9yC6rd6X+rQIAAACoVhUKbL/99puaNWumHTt2qGvXrpJKVm08k8VicV11qJE8cUikX5iffOv5qiCrQJnJmWaAAwAAADxZhQJbixYtdPToUS1fvlySdNttt+nNN99UZGRklRSHmskTh0RaLBYFNw3WyV9OKv1gOoENAAAANUKFxoX9eQ+r7777TtnZ2S4tCDWfp+3D5hASwzw2AAAA1CwXNJGHTYhRGkcPmycNiZT+mMeWcSiD37sAAACoESoU2CwWy1lz1Jizhj/zxEVHJKleVD1ZfawqyitSzokcd5cDAAAAnFeF5rAZhqF7771XNlvJxsN5eXl68MEHz1ol8osvvnBdhahxPHVIpMVqUXCTYKXtT1P6wXQFRgSe/00AAACAG1UosA0bNszp9V133eXSYlA7eOqQSKlkWKQjsEV3j3Z3OQAAAMA5VSiwffDBB1VVB2oRTx0SKbGBNgAAAGoWdg+Gy3nqkEhJCmocJFmk/PR85Wfku7scAAAA4JwIbHCp4sJiFRcUS/LMIZHeNm/Vi6oniV42AAAAeD4CG1zK0bsmeWYPm8SwSAAAANQcBDa4lGPBEYuXRcUqdnM1pTtzPzYAAADAkxHY4FKOBUe8Ayq0nk21Co4JliRlHctSUV6Rm6sBAAAAykZgg0s5hkR6+Xu5uZKy2YJs8gvzkwwp4zC9bAAAAPBcBDa4lGNIpCcHNol5bAAAAKgZCGxwKXNIpL/nDomUzghshwhsAAAA8FwENrhUTRgSKf0R2DIPZ8pebHdzNQAAAEDpCGxwqZoyJNK/gb+8/b1lL7Ir62iWu8sBAAAASkVgg0vVlCGRFouFeWwAAADweAQ2uFRN6WGTpJAY5rEBAADAsxHY4FKOOWyevA+bQ3DTkv3YMg5myDAMN1cDAAAAnI3ABpdyDImsCT1sQY2CZPW2qjCnULmpue4uBwAAADgLgQ0u5RgS6e3n+T1sVm+rghoHSWIeGwAAADwTgQ0uZS7rH+D5PWzSH/PYMg5muLkSAAAA4GwENrhUTdmHzcExj40eNgAAAHgiAhtcyhwS6eHL+js4ethyU3PN2gEAAABPQWCDS9WkRUekkrl2gZGBkuhlAwAAgOchsMGlzGX9a0gPm3TGfmwENgAAAHgYAhtcqiZtnO0QEktgAwAAgGcisMGlHEMia8LG2Q6OwJaVkqWivCI3VwMAAAD8gcAGlzJ72PxqTg+bLcgm//r+kiGlH6KXDQAAAJ6DwAaXMQxDhTm/z2GrQT1skhTS9PdhkUkENgAAAHgOAhtcpii3SDJKfl2T5rBJZ8xjI7ABAADAgxDY4DJn7mNWk4ZESlJos1BJUmZypowiw73FAAAAAL8jsMFlHAuO+AT4yGK1uLmairGF2GQLtsmwGyo4xgbaAAAA8AwENriMYw82n0AfN1dScRaLxRwWWXCUwAYAAADPQGCDyziGRPoG+rq5ksoxA1sKgQ0AAACegcAGl3EMifStVzMDW2hsqCSp4FiBvFSz5uABAACgdiKwwWUcPWw1cUikJPk38JdPgI9ULEUr2t3lAAAAAAQ2uI5jDltN7WE7cx5brGLdXA0AAABAYIMLmUMia+gcNkkENgAAAHgUAhtcpqYPiZT+mMfWVE1lL7S7txgAAADUeQQ2uExNHxIpSYGRgbL6WWWTTanbUt1dDgAAAOo4Ahtcxtw4uwb3sFksFtlibJKk42uOu7kaAAAA1HUENrhMTd+HzcEMbD8S2AAAAOBeBDa4TG0YEimVBDa77Mr8NVNpSWnuLgcAAAB1GIENLlMbFh2RJKvNqkM6JEna990+N1cDAACAuozABpfJPp4tSQoID3BzJRdur/aW/P+3e91cCQAAAOoyAhtcJutoliQpKDrIzZVcOEdg2790v4ryitxcDQAAAOoqAhtcJvNopiQpqFHND2zHdEx+EX4qzCnUgZUH3F0OAAAA6igCG1yiIKtABZklc9jqNarn5mpcI6J3hCSGRQIAAMB9CGxwCUfvmk+gj2xBNjdX4xqOwLbvWxYeAQAAgHsQ2OAS5vy1WjAc0qHhpQ1l9bEqdV+qTu055e5yAAAAUAcR2OASjh622jIcUpK8A70V2y9WkrTn6z1urgYAAAB1EYENLlGbVog8U6vrW0mSdn62082VAAAAoC4isMElamMPmyS1u7WdLFaLjqw/otR9qe4uBwAAAHUMgQ0uURvnsElSvch6uij+IknS9k+2u7kaAAAA1DU1KrD985//lMVi0ZgxY8xjeXl5GjVqlBo0aKB69erppptu0rFjx5zed/DgQQ0ePFgBAQGKiIjQuHHjVFTkvBnyihUr1LVrV9lsNjVv3lyzZ88+6/4zZsxQs2bN5Ofnpx49eujnn3+uio9ZI2Um184eNklqf2d7SdL2udtlGIabqwEAAEBdUmMC24YNG/Tvf/9bHTt2dDr+2GOP6X//+58WLFiglStXKjk5WTfeeKN5vri4WIMHD1ZBQYHWrl2rOXPmaPbs2ZowYYLZZv/+/Ro8eLCuuOIKbdmyRWPGjNHf/vY3ff/992ab+fPna+zYsXr++ee1adMmderUSQMGDNDx48er/sPXALW1h02S2tzQRt5+3jq1+5RSNqe4uxwAAADUITUisGVlZWno0KF69913FRYWZh5PT0/Xf/7zH02dOlV/+ctf1K1bN33wwQdau3atfvrpJ0nS4sWL9csvv+jjjz9W586dNWjQIL388suaMWOGCgpKNnqeNWuW4uLi9Prrr6tNmzYaPXq0br75Zr3xxhvmvaZOnar7779fw4cPV9u2bTVr1iwFBATo/fffr96H4aFq6xw2SbIF29Ty2paSpO3zGBYJAACA6lMjAtuoUaM0ePBgxcfHOx1PSEhQYWGh0/HWrVuradOmWrdunSRp3bp16tChgyIjI802AwYMUEZGhnbu3Gm2+fO1BwwYYF6joKBACQkJTm2sVqvi4+PNNqXJz89XRkaG01dtVJRXpLzTeZJq3yqRDh3u7CBJ2vHJDtmL7W6uBgAAAHWFxwe2Tz/9VJs2bdKkSZPOOpeSkiJfX1+FhoY6HY+MjFRKSorZ5syw5jjvOHeuNhkZGcrNzdXJkydVXFxcahvHNUozadIkhYSEmF8xMTHl+9A1TFZKyXBIL5uX/EL93FxN1Wg+qLn8Qv2UmZyppFVJ7i4HAAAAdYRHB7ZDhw7p0Ucf1dy5c+XnV/OCwFNPPaX09HTz69ChQ+4uqUo4hkMGNQqSxWJxczVVw9vmrTY3t5HEsEgAAABUH48ObAkJCTp+/Li6du0qb29veXt7a+XKlXrzzTfl7e2tyMhIFRQUKC0tzel9x44dU1RUlCQpKirqrFUjHa/P1yY4OFj+/v4KDw+Xl5dXqW0c1yiNzWZTcHCw01dtVJtXiDyTY1hk4ueJKsorOk9rAAAA4MJ5dGC78sortX37dm3ZssX86t69u4YOHWr+2sfHR0uXLjXfs3v3bh08eFA9e/aUJPXs2VPbt293Ws1xyZIlCg4OVtu2bc02Z17D0cZxDV9fX3Xr1s2pjd1u19KlS802dVltXiHyTLH9YhUcE6y8tDwlfpHo7nIAAABQB3i7u4BzCQoKUvv27Z2OBQYGqkGDBubxESNGaOzYsapfv76Cg4P1f//3f+rZs6cuu+wySdJVV12ltm3b6u6779aUKVOUkpKiZ599VqNGjZLNZpMkPfjgg3r77bc1fvx43XfffVq2bJk+++wzffPNN+Z9x44dq2HDhql79+669NJLNW3aNGVnZ2v48OHV9DQ8V21eIfJMVi+ruozoopUvrFTCOwlmjxsAAABQVTw6sJXHG2+8IavVqptuukn5+fkaMGCA/vWvf5nnvby89PXXX+uhhx5Sz549FRgYqGHDhumll14y28TFxembb77RY489punTp6tJkyZ67733NGDAALPNbbfdphMnTmjChAlKSUlR586dtWjRorMWIqmLzB62WrpC5Jm63NdFq15apaSVSTq5+6TCW4W7uyQAAADUYjUusK1YscLptZ+fn2bMmKEZM2aU+Z7Y2Fh9++2357zu5Zdfrs2bN5+zzejRozV69Ohy11pXOAJbbe9hk6SQmBC1uLqF9ny9R5ve26SrXr3K3SUBAACgFvPoOWyoGRyLjtT2OWwOXe/vKknaOnurivJZfAQAAABVh8CGC1ZX5rA5tLi6hYKig5RzMke7Fu5ydzkAAACoxQhsuCDFhcXKOZEjqe70sFm9SxYfkaRN72xyczUAAACozQhsuCDZx7IllYSYgPAAN1dTfbqM6CJZpP3L9it1X6q7ywEAAEAtRWDDBTGHQ0bVk8VqcXM11Sc0NlTNBzaXJCW8k+DmagAAAFBb1bhVIuFZavMKkYmJ594cOyw+TPpO2vDOBoVcHyJv//L9cQoPD1fTpk1dUSIAAABqOQIbLkhtXCEyNatkiONdd911znYWWfSIHlFYepge6vOQNql889kC/AOUuCuR0AYAAIDzIrDhgtTGFSKz8kp6DR++4mF1atHp3G23ZSnzp0zdWP9GjbxppCyWcw8LTTqRpIlfTtTJkycJbAAAADgvAhsuSG0eEtk4rLFaNmp5zjaFoYX6KeEnFaUWKbIgUqHNQqunOAAAANQJLDqCC+IIbLVpSGRF+Pj7KLJjpCTpyM9H3FwNAAAAahsCGy6IY0hkUHTdDGyS1LhHY0nSyV0nlZeW5+ZqAAAAUJsQ2HBBavOQyPIKbBio0ItCJUNK3pDs7nIAAABQixDYUGn2YruyUur2kEiHxpeW9LId3XRUxYXFbq4GAAAAtQWBDZWWcyJHht2QLFJgRKC7y3GrBi0ayC/MT0V5RUrZnOLucgAAAFBLENhQaY492AIjAmX1rtu/lSxWi5pc1kSSdPinwyVBFgAAALhAdfunbFyQk7tPSpLqN6/v5ko8Q1SXKHn7eyvvdJ5OJJ5wdzkAAACoBQhsqLQTv5SEkoZtG7q5Es/g5eNlzmU7vPawDINeNgAAAFwYAhsq7cTO3wNbOwKbQ/Ql0bJ6W5WZnKn0pHR3lwMAAIAajsCGSqOH7Wy+gb6K6hwlSTq05pCbqwEAAEBNR2BDpRTlFyl1X6okAtufNenZRLJIqftSlX08293lAAAAoAYjsKFSTu05JaPYkC3EpqDour0H25/51/dXeJtwSdKhtfSyAQAAoPIIbKiUM4dDWiwWN1fjeWJ6xUiSjm8/rvyMfDdXAwAAgJqKwIZKYf7auQU3DlZIbIgMu6HDPx12dzkAAACooQhsqBRWiDw/Ry/b0YSjKsorcnM1AAAAqIkIbKgUetjOr36L+gpoGKDigmIlJyS7uxwAAADUQAQ2VFhxQbFS97JC5PlYLBazl+3I+iOyF9ndXBEAAABqGgIbKuzU3lOyF9nlG+Sr4CbB7i7Ho0V0iJBvkK8KMgt0fPtxd5cDAACAGobAhgpjhcjys3pZ1aRHE0nSoXWHZBiGmysCAABATUJgQ4Uxf61iGnVrJC9fL+WcyFF+Ekv8AwAAoPwIbKgwVoisGG8/b0VfEi1JytqU5eZqAAAAUJMQ2FBh9LBVXJOeTWT1sarwZKGaq7m7ywEAAEANQWBDhRQXFuvUnlOSCGwV4Rvoq+juJb1s/dWfuWwAAAAoFwIbKiR1X6rshXb51vNVSNMQd5dTo8T0ipG8pBjF6OSGk+4uBwAAADUAgQ0V4hgOGd4mnBUiK8i3nq8CWgdIkva+t9fN1QAAAKAmILChQpi/dmHqdaqnIhXpVMIpJa1Kcnc5AAAA8HAENlQIK0ReGK96XtqszZKkFS+sYC4bAAAAzonAhgpJ3ZsqSQpvFe7mSmquH/WjrD5WHVh+QL/98Ju7ywEAAIAHI7ChQk7vPy1JCrsozM2V1FzpSlfsLbGSpKVPLZVhp5cNAAAApSOwodzy0vOUdzpPkhQSywqRF6LFfS3kW89XRxOO6pf/94u7ywEAAICHIrCh3NIOpEmS/Bv4yxZkc28xNZwtzKaef+8pSVr2zDIVFxa7uSIAAAB4IgIbys0R2MLiGA7pCj3H9lRAwwCl7k3Vlg+2uLscAAAAeCACG8rNEdhCm4W6tY7awhZkU79n+0mSVr64UoU5hW6uCAAAAJ6GwIZyS9ufJkkKjQt1ax21SbcHuikkNkSZyZn6cfKP7i4HAAAAHobAhnKjh831vG3euuq1qyRJayavUeq+VDdXBAAAAE9CYEO5mYGNHjaXanNTG1181cUqzi/Wd498x2baAAAAMBHYUC6GYfwxJJIeNpeyWCwa9NYgefl6ad93+7Rr4S53lwQAAAAPQWBDueSl5Sk/I1+SFBob6t5iaqEGLRuo17hekqRFjy5SQXaBmysCAACAJyCwoVwcvWuBkYHyCfBxbzG1VN+n+yokNkQZhzK06uVV7i4HAAAAHoDAhnJhwZGq5xPgo0FvDpIkrX11rQ6uOejmigAAAOBuBDaUC5tmV49W17VSp3s6ybAb+uLOL5SXlufukgAAAOBGBDaUy+n9pyVJIc1C3FxJ7Tfo7UEKuyhM6QfT9fUDX7NqJAAAQB3m7e4CUDOkH0iXxJBIV0lMTDzn+XbPt9Oa+9Zo52c75dPGRzHXxZT72uHh4WratOmFlggAAAAPQGBDuTh62BgSeWFSs0o2xr7rrrvO27aP+ihe8fr5xZ/1txf/ppM6Wa57BPgHKHFXIqENAACgFiCw4bwMw2DRERfJysuSJD18xcPq1KLTOdsadkOp36ZKydKjwY8qfEi4rH7nHsWcdCJJE7+cqJMnTxLYAAAAagECG84r91SuCrMLJUkhscxhc4XGYY3VslHL87YruLNAm9/brLy0POWtyFPHuzvK6s3UUwAAgLqCn/xwXo7hkEHRQfK2kfGrk2+gr9rf2V5eNi+lH0zXnq/3sAgJAABAHUJgw3kxHNK9AhsGqu0tbSWLdGzrMR38kf3ZAAAA6goCG87LDGxxoW6toy6rf3F9tRjUQpJ0YNkBndh5ws0VAQAAoDoQ2HBeafvTJNHD5m7Rl0SrcY/GkqRdC3cp40iGmysCAABAVfPowDZp0iRdcsklCgoKUkREhIYMGaLdu3c7tcnLy9OoUaPUoEED1atXTzfddJOOHTvm1ObgwYMaPHiwAgICFBERoXHjxqmoqMipzYoVK9S1a1fZbDY1b95cs2fPPqueGTNmqFmzZvLz81OPHj30888/u/wzeyJ62DzHxVddrPot6steZNeOT3YoLz3P3SUBAACgCnl0YFu5cqVGjRqln376SUuWLFFhYaGuuuoqZWdnm20ee+wx/e9//9OCBQu0cuVKJScn68YbbzTPFxcXa/DgwSooKNDatWs1Z84czZ49WxMmTDDb7N+/X4MHD9YVV1yhLVu2aMyYMfrb3/6m77//3mwzf/58jR07Vs8//7w2bdqkTp06acCAATp+/Hj1PAw3oofNc1isFrW5qY0CIwNVmF2oHfN2qCi/6PxvBAAAQI3k0YFt0aJFuvfee9WuXTt16tRJs2fP1sGDB5WQkCBJSk9P13/+8x9NnTpVf/nLX9StWzd98MEHWrt2rX766SdJ0uLFi/XLL7/o448/VufOnTVo0CC9/PLLmjFjhgoKCiRJs2bNUlxcnF5//XW1adNGo0eP1s0336w33njDrGXq1Km6//77NXz4cLVt21azZs1SQECA3n///ep/MNXozD3Y2DTbM3jbvNX+jvbyCfRR9vFsJf6/RBl2Vo4EAACojWrUGu3p6emSpPr160uSEhISVFhYqPj4eLNN69at1bRpU61bt06XXXaZ1q1bpw4dOigyMtJsM2DAAD300EPauXOnunTponXr1jldw9FmzJgxkqSCggIlJCToqaeeMs9brVbFx8dr3bp1Zdabn5+v/Px883VGhmfNOTp48KBOnjx5zjb5p/JVlFckWaVfT/wqa1r5Mn5iYqIrSkQZ/EL81P6O9to6e6tS96bq18W/qvnA5u4uCwAAAC5WYwKb3W7XmDFj1Lt3b7Vv316SlJKSIl9fX4WGhjq1jYyMVEpKitnmzLDmOO84d642GRkZys3N1enTp1VcXFxqm127dpVZ86RJk/Tiiy9W/MNWg4MHD6pN6zbKyc05Z7smaqK/6W9Kt6frkssuqfB9srKyKlsiziO4cbBaD2mtXz7/RUfWH1FAgwCpiburAgAAgCvVmMA2atQo7dixQz/++KO7Sym3p556SmPHjjVfZ2RkKCYmxo0V/eHkyZPKyc3R0zc8rdiGsWW2y/01V2lL0xQeFa5/X/fvcl9//d71en/5+8rLY1GMqtSwXUM1O9VMB5Yf0N7v9qr+oPruLgkAAAAuVCMC2+jRo/X1119r1apVatLkjy6EqKgoFRQUKC0tzamX7dixY4qKijLb/Hk1R8cqkme2+fPKkseOHVNwcLD8/f3l5eUlLy+vUts4rlEam80mm81W8Q9cjWIbxqplo5Zlnj+0/5DSlKawhmHnbPdnB0+yuXN1adq3qXJTc3Vs6zGdXnJakYo8/5sAAABQI3j0oiOGYWj06NH68ssvtWzZMsXFxTmd79atm3x8fLR06VLz2O7du3Xw4EH17NlTktSzZ09t377daTXHJUuWKDg4WG3btjXbnHkNRxvHNXx9fdWtWzenNna7XUuXLjXb1Fb56SVz8GzBnh086zKLxaKW17RUSGyIjEJDQzVUuSm57i4LAAAALuDRgW3UqFH6+OOPNW/ePAUFBSklJUUpKSnKzS35YTQkJEQjRozQ2LFjtXz5ciUkJGj48OHq2bOnLrvsMknSVVddpbZt2+ruu+/W1q1b9f333+vZZ5/VqFGjzN6vBx98UL/99pvGjx+vXbt26V//+pc+++wzPfbYY2YtY8eO1bvvvqs5c+YoMTFRDz30kLKzszV8+PDqfzDVKD+DwFYTWL2tandbO3mHeStYwVr/yHrlpTEcFQAAoKbz6MA2c+ZMpaen6/LLL1ejRo3Mr/nz55tt3njjDV1zzTW66aab1K9fP0VFRemLL74wz3t5eenrr7+Wl5eXevbsqbvuukv33HOPXnrpJbNNXFycvvnmGy1ZskSdOnXS66+/rvfee08DBgww29x222167bXXNGHCBHXu3FlbtmzRokWLzlqIpLYxA1sIgc3T+fj7qP6g+spUpjJ/zdT8G+azRxsAAEAN59Fz2Azj/HtL+fn5acaMGZoxY0aZbWJjY/Xtt9+e8zqXX365Nm/efM42o0eP1ujRo89bU22Sl17SS0MPW83gVc9LH+tj/V/g/+nAigP64s4vdPP8m2X19uh/mwEAAEAZ+CkOZbIX2VWYXSipZN8v1AzHdEzdX+suL18vJX6RqP/e91821gYAAKihCGwoU35myXBIq7dV3v4e3RmLP2l4aUPd/NnNsnhZtO2jbfp29Lfl6rEGAACAZyGwoUxnrhBpsVjcXA0qqvX1rXXDhzdIFmnjzI364YkfCG0AAAA1DIENZWLBkZqvw50ddM2/r5EkrX11rVa9ssrNFQEAAKAiCGwoE3uw1Q7d7u+mAW+UrHi6YsIKrXtjnZsrAgAAQHkR2FAm9mCrPS4bc5kuf+lySdLisYuV8G6CewsCAABAuRDYUKa8jN+X9GdIZK3Q79l+6jW+lyTp6we+1uYPzr2NBQAAANyPpf9QJoZE1lyJiYmlHq9/a301299MBxYc0Ff3faXdG3erxX0tyr2oTHh4uJo2berKUgEAAHAOBDaUyTEkkj3Yao7UrFRJ0l133VVmG4ssulJXqo/6aPe/dmvuv+bqW30ru+znvX6Af4ASdyUS2gAAAKoJgQ2lKi4oVlFukSR62GqSrLwsSdLDVzysTi06nbNt9o5sZazNUHd1V++mvRV6eaisfmWPkk46kaSJX07UyZMnCWwAAADVhMCGUjl617x8veTtx2+TmqZxWGO1bNTy3I0aSSeanNCuL3Yp/2C+Tn95Wq2HtFbYRWHVUyQAAADOi0VHUKq8dBYcqQsatmmozsM7y7++vwoyC7Tto2369ftfZS86//BIAAAAVD0CG0rFptl1R1B0kLo90E2NujWSJB3+6bA2ztqotANp7i0MAAAABDaUzrFCpF8wC47UBV6+Xmp5TUu1u72dfAJ9lHsqV1vnbNXu/+5WYU6hu8sDAACos5ichFKxaXbdFN4qXKGxofrth990NOGoUrak6NSeU7roqotkNDTcXR4AAECdQ2BDqRgSWXd5+3mr5TUtFdkpUnu/3qvs49navXC3fKN91UAN3F0eAABAncKQSJSKTbMREhOiriO7Ku7KOFm9rSpILtBDekh73t2jovwid5cHAABQJxDYcBbDMOhhgyTJ6mVV0z5N1f3h7vJt4itveWv3rN36d+d/K2lVkrvLAwAAqPUIbDhLcX6xiguKJdHDhhL+Yf6qP6i+PtfnsjWw6eSuk5rdf7b+O+K/yjmV4+7yAAAAai0CG87i2IPN299bXj5ebq4GnsJisWiHdujyzy9Xtwe6SZK2vL9FM9rM0PZPtsswWJQEAADA1QhsOItjOKRfCEv642y+wb66ZtY1Gv7jcDVs21A5J3L0xZ1faN7geTq9/7S7ywMAAKhVCGw4CwuOoDya9m6qBzY/oMtfulxevl7a990+zWgzQ0ufXmqGfgAAAFwYAhvOwh5sKC8vXy/1f66/Htz2oOL+Eqfi/GL9OOlHvdXiLSW8kyB7kd3dJQIAANRo7MOGs7BCJM4lMTGx1OPtprRT+Kpw/TLtF2UfzNbXD3ytZS8vU8u/tVTjQY1l9T7/vw+Fh4eradOmri4ZAACgxiKw4SwMiURpUrNSJUl33XXXOdt5yUuX6BL1VV/psLTlhS1a9sIyrdRKbdd22VV2r1uAf4ASdyUS2gAAAH5HYMNZ8tJKVomkhw1nysrLkiQ9fMXD6tSi03nb2wvtyvklR9lbs1U/r75u0A26Ofhm1etaT/7N/WWxWpzaJ51I0sQvJ+rkyZMENgAAgN8R2OCkuLDYDGwB4QFurgaeqHFYY7Vs1LJ8jZtKxX8pVvKGZB1ae0iFGYVKX5Gu/K35anZFM0W0j5DFYjn/dQAAAOooAhuc5J7KlVSyB5tvoK+bq0Ft4OXrpZjeMYq+JNoMbnmn87Tri106vO6wLoq/SGEXhbm7TAAAAI9EYIOTnBM5kqSAhvSuwbXODG6HfzqsQ2sOKetolrZ9tE1hF4XJqzObtAMAAPwZgQ1Osk9mS5ICGhDYUDW8fL0U2y9W0d2jlbQqSckbknX6t9PSb9KNulE5R3Kkru6uEgAAwDOwDxuc5Jykhw3VwyfAR80HNtcloy9RRIcISVJHddSyG5fpy7u/1MEfD8owDDdXCQAA4F70sMFJ7smSOWwsOILq4h/mrzY3tpG9hV3rv1ivi4su1raPt2nbx9sU3iZcnYd3VstrWiq8dTgLlAAAgDqHwAaTYTeUc6qkhy2wYaCbq0Fd4xPuo4/0kX6Y84OyVmZp56c7dTLxpH4Y/4N+GP+DQuNC1eLqFmp9Q2s169+sXBtxAwAA1HQENphyT+fKKDZk9bayBxvcJqx9mK6850oNmDpAOz7ZoV1f7tKBFQeUtj9NG2Zs0IYZGxQYEag2N7VRhzs7KKZ3DD1vAACg1iKwwWTOXwsP4AdguE1iYqL5a+ulVrW9tK1a5rbUyQ0ndWzlMR1dflTZx7O1ceZGbZy5UcEtgxV3e5waD2wsL1vZK02Gh4ezITcAAKhxCGwwmUv6M38NbpCalSpJuuuuu87Zziqr4hSn9mqvdmqnjD0Z2vrSVq19aa0SlKAN2qBMZZ71vgD/ACXuSiS0AQCAGoXABpNj/hqBDe6QlZclSXr4iofVqUWncr3Hnm9Xzq4c5ezMUWBWoPqpn/pZ+snvIj8Ftg+UT4SPLBaLkk4kaeKXE3Xy5EkCGwAAqFEIbDCxaTY8QeOwxmrZqGX539BMMq4ydHL3SR1Zf0TpSenK+zVPeb/myb+BvyI7RqpxVOMqqxcAAKAqEdggSTIMw2kOG1CTWKwWNWzTUA3bNFTm0Uwd+fmITuw4odxTuTqw/IAk6V7dq6Qvk9T2orbyC/Vzb8EAAADlRGCDJKkgq0DF+cWSRfKv7+/ucoBKC2oUpNbXt1bzgc11MvGkjm07prT9aWqmZtr2yjbtfHWnWl3XSh2GdlDzgc3lbeOvQQAA4Ln4SQWS/hgO6R/mz/5WqBW8bd6K6hylqM5RStybqLnz5urGi29U5q+Z+mXBL/plwS/yC/NT25vbqt1t7RTbL1ZePmWvMgkAAOAOBDZIOmNJf+avoRbyquelNVqj6fOnK9oarW0fb9POT3cqMzlTm97dpE3vbpJ/fX+1vLalWt/QWnFXxMkWzF6EAADA/QhskCTmr6FO2LVrlyxtLGo4tKH6395fpzad0pFFR5SyIkW5qbnaOmerts7ZKouXRSGtQxTePVz1O9dXSJsQ2cJtZe5PyB5vAACgqhDYIInAhtrtfHu8WWVVjGLURm3UUi1Vv7i+0namKW1nmjSnpE2WsnT09/+lKEVHdVSndVpSzdjjLT8jXxlHMpR5JFOG3VBwk2AFNQ6SLbjsIAoAANyPwAZJbJqN2q2ie7wVZxUrPzlfBckFKjxRqKK0ItUz6qnF7/9zsPhaVBxcrJ9O/qQtH26R/03+atCygaxe7psHahiGTu0+pSM/H1FyQrJSNqXo2LZjys/IL7W9LdimFoNbqNvIbortH0t4AwDAwxDYoKK8IhVkFUgisKF2q9Aeb3/kMhUXFiv7WLayjmYp82imslKylH08W0aBIetJq3qplzY/t1mbn9ssnwAfRXaKVGTHSIVdHKawi8IUFhemoOggBYQHVGpRn4MHD+rkyZOlnjOKDWXsy9CpTaeUujlVpzadUsHpglLbetfzll+EnywWi/KO56kws1D5Gfna8ckO7fhkhxq0bKBLRl2i7g91ZwEWAAA8BIEN5nBI3yBfefvxWwL4My8fLwU3CVZwk2DzmL3YrpwTOdqXuE+LVy1W/xb9VXioUIU5hTq87rAOrztc6rV8Qnxkq2+Trb5NvmG+stW3yT/SXwHRAQpoHCD/KH/5hvnKYi3p6Tp69KhuufkW5eblSpKCFaxIRSpKUYpRjJqqqfzkvK9coQqVrGQd1VElK1kpSlGa0kr+YSbrjFrko6a2pnrl5le0/7/7dWrPKS16dJE2vbtJ17xzjWJ6xrj4SQIAgIrip3MoMzlTEr1rQEVYvayqF1VPeZl5+k7f6bu938kiixqogRqpkcIVrjCFqb7qK1ShClSgLLKoML1QhemFytqfVea17bIrW9nKUpYMGRqu4Wrg30Dexd4yCoyz2lt8LPKN8i35auQrn4Y+aup1/vl0SSeSNPHLiWo5tqVunHWjtn60VSsmrNDxHcf1fu/31f3B7rpy0pXyC2GjcQAA3IXABp1IPCFJqt+8vpsrAWqe8s6PM+yG7Pl22XPP+MqzqzinWMVZxSrOLPmy59hllVVBv//PlCsZMmSxWhQQHqDAiEDVi66n0NhQ1YuqZ/bIVZZvPV9d8tAlandrOy0Zt0RbPtiijTM3au+3e3Xj3BvVtLfnLqgCAEBtRmCr44pzipV+IF2S1LBtQzdXA9RcFZofdw72YrsKcwpVkFWggqwCbTmwRXPXztV9/e9Tl7Zd5F+/aje3D2gQoOvfv16d7umkr0Z8pdO/ndbsfrPV77l+6vdsvyq9NwAAOBv/5a3j8n7LkyQFNQmSXyjDngB3s3pZZQuyKahRkBq0aCAjytB+7Ze1gVWBEYHVFpiaXd5MD2x+QB3v7ijDbmjliys1u/9spR1Iq5b7AwCAEvSw1XG5v5UsZBDRNsLNlQBwl8TExDLPxY6JlVcrL22ftF2H1h7SjPYz1PHpjmo8sHG5rs2m4gAAXBgCWx0WpCAVphRKkhq2YzgkUNecb0PxM4UqVDfqRjXNbqpNz2zS+8+8r2/1rQpU+hYCDjVhU3EAADwZga0Oa6d2kqTgmGDZgm1urgZAdavohuKG3VDWpixlbc5SZ6OzugZ2VUjvEPk1K304tWMVypMnTxLYAACoJAJbHeYIbPSuAXVbhRZMaSyld0rXri93KS8tT6cXn1aDVg3UfGBz5sECAFAFWHSkjso5mqMYlWyKy+qQACoipGmIuj/cXU37NJXFatGp3ae04V8b9OuSX1WQfe4hkgAAoGLoYaujjv5wVJLk28hXtiCGQwKoGC8fL8VdGaeIjhHa+81epSel6/Daw0rekKzGlzZWk55N3F0iAAC1AoGtjkpekixJ8ruIIUwAKi+wYaA6Deuk1L2pSlqZpMzkTB1ac0iH1x2Wb1NftVRL2Yvs7i4TAIAai8BWB+Wl5SnnSI7ssssvjsAG4MJYLBY1aNlA9VvULwluq5OUeThT+Qfydafu1A9X/6DDgw8rLj5OF8VfpKBGQe4uGQCAGoPAVkEzZszQq6++qpSUFHXq1ElvvfWWLr30UneXVSF+oX7666K/ashlQzQhYIK7ywFQSziCW4OWDZR9PFuJPybq+Pbj0ilp64dbtfXDrZKk+s3rK7JTpKI6RymyU6TCW4UrNC5UXj5ebv4EAAB4HgJbBcyfP19jx47VrFmz1KNHD02bNk0DBgzQ7t27FRFRszaetvpYdURH3F0GgFoqMCJQwT2D9eT2JzXzyZkKOBqgEz+fUPqudKXuS1XqvlQl/r8/Nuy2eFnk38hfAdEBsjWwydbAJr8GfrKF22QLL/m1b6ivvAK85OXnJYvFwqbcAIA6gcBWAVOnTtX999+v4cOHS5JmzZqlb775Ru+//76efPJJN1cHAJ4lNStVxSrWyH+ONI/5y1+N1EhRv/8vQhGqr/ryLfZVzuEc5RzOOe917bKr4Pf/RTSJkF+IX0mI87bI6mOV1dsqq4/VfO103Ntasj6ypaRH8Mz///OvAwMDFRoWKovV4tTWYrWU+n6LxeJcqOXs2s9qcwHtzne/Cp138bVxtlK/p+d8g2ddvzru4XHXr8Q9aiXD3QW4XmBkoGL7xrq7jHIjsJVTQUGBEhIS9NRTT5nHrFar4uPjtW7dulLfk5+fr/z8fPN1enq6JCkjI6Nqiy2HrKySDXP3JO9RbkGuy6+fdCJJkrT/xH4FJgXWmGtX9fWp3T3Xr6nXrurrV3XtOw/tlCQN7jhYF0VfVGa7TCNTlnyLrNlWWfItpX5Z861SkfP7fOWrtMNp0mGXlw4AqMUa92mse765x91lmJnAMM6dii3G+VpAkpScnKzGjRtr7dq16tmzp3l8/PjxWrlypdavX3/We1544QW9+OKL1VkmAAAAgBrk0KFDatKk7O1w6GGrQk899ZTGjh1rvrbb7UpNTVWDBg0q1y3vIhkZGYqJidGhQ4cUHBzstjrqIp69e/Dc3YPn7h48d/fh2bsHz909eO4XzjAMZWZmKjo6+pztCGzlFB4eLi8vLx07dszp+LFjxxQVFVXqe2w2m2w2502pQ0NDq6rECgsODuYPmJvw7N2D5+4ePHf34Lm7D8/ePXju7sFzvzAhISHnbWOthjpqBV9fX3Xr1k1Lly41j9ntdi1dutRpiCQAAAAAuAo9bBUwduxYDRs2TN27d9ell16qadOmKTs721w1EgAAAABcicBWAbfddptOnDihCRMmKCUlRZ07d9aiRYsUGRnp7tIqxGaz6fnnnz9ruCaqHs/ePXju7sFzdw+eu/vw7N2D5+4ePPfqwyqRAAAAAOChmMMGAAAAAB6KwAYAAAAAHorABgAAAAAeisAGAAAAAB6KwFYHzZgxQ82aNZOfn5969Oihn3/+2d0l1RiTJk3SJZdcoqCgIEVERGjIkCHavXu3U5u8vDyNGjVKDRo0UL169XTTTTedteH6wYMHNXjwYAUEBCgiIkLjxo1TUVGRU5sVK1aoa9eustlsat68uWbPnl3VH6/G+Oc//ymLxaIxY8aYx3juVefIkSO666671KBBA/n7+6tDhw7auHGjed4wDE2YMEGNGjWSv7+/4uPjtXfvXqdrpKamaujQoQoODlZoaKhGjBihrKwspzbbtm1T37595efnp5iYGE2ZMqVaPp8nKi4u1nPPPae4uDj5+/vr4osv1ssvv6wz1wnjuV+4VatW6dprr1V0dLQsFosWLlzodL46n/GCBQvUunVr+fn5qUOHDvr2229d/nk9ybmefWFhoZ544gl16NBBgYGBio6O1j333KPk5GSna/DsK+58v+fP9OCDD8pisWjatGlOx3nubmCgTvn0008NX19f4/333zd27txp3H///UZoaKhx7Ngxd5dWIwwYMMD44IMPjB07dhhbtmwxrr76aqNp06ZGVlaW2ebBBx80YmJijKVLlxobN240LrvsMqNXr17m+aKiIqN9+/ZGfHy8sXnzZuPbb781wsPDjaeeesps89tvvxkBAQHG2LFjjV9++cV46623DC8vL2PRokXV+nk90c8//2w0a9bM6Nixo/Hoo4+ax3nuVSM1NdWIjY017r33XmP9+vXGb7/9Znz//ffGvn37zDb//Oc/jZCQEGPhwoXG1q1bjeuuu86Ii4szcnNzzTYDBw40OnXqZPz000/G6tWrjebNmxt33HGHeT49Pd2IjIw0hg4dauzYscP45JNPDH9/f+Pf//53tX5eT/GPf/zDaNCggfH1118b+/fvNxYsWGDUq1fPmD59utmG537hvv32W+OZZ54xvvjiC0OS8eWXXzqdr65nvGbNGsPLy8uYMmWK8csvvxjPPvus4ePjY2zfvr3Kn4G7nOvZp6WlGfHx8cb8+fONXbt2GevWrTMuvfRSo1u3bk7X4NlX3Pl+zzt88cUXRqdOnYzo6GjjjTfecDrHc69+BLY65tJLLzVGjRplvi4uLjaio6ONSZMmubGqmuv48eOGJGPlypWGYZT8R8bHx8dYsGCB2SYxMdGQZKxbt84wjJK/LK1Wq5GSkmK2mTlzphEcHGzk5+cbhmEY48ePN9q1a+d0r9tuu80YMGBAVX8kj5aZmWm0aNHCWLJkidG/f38zsPHcq84TTzxh9OnTp8zzdrvdiIqKMl599VXzWFpammGz2YxPPvnEMAzD+OWXXwxJxoYNG8w23333nWGxWIwjR44YhmEY//rXv4ywsDDze+G4d6tWrVz9kWqEwYMHG/fdd5/TsRtvvNEYOnSoYRg896rw5x9eq/MZ33rrrcbgwYOd6unRo4fxwAMPuPQzeqpzBQeHn3/+2ZBkJCUlGYbBs3eFsp774cOHjcaNGxs7duwwYmNjnQIbz909GBJZhxQUFCghIUHx8fHmMavVqvj4eK1bt86NldVc6enpkqT69etLkhISElRYWOj0jFu3bq2mTZuaz3jdunXq0KGD04brAwYMUEZGhnbu3Gm2OfMajjZ1/fs0atQoDR48+Kxnw3OvOl999ZW6d++uW265RREREerSpYveffdd8/z+/fuVkpLi9NxCQkLUo0cPp2cfGhqq7t27m23i4+NltVq1fv16s02/fv3k6+trthkwYIB2796t06dPV/XH9Di9evXS0qVLtWfPHknS1q1b9eOPP2rQoEGSeO7VoTqfMX/3nF96erosFotCQ0Ml8eyrit1u1913361x48apXbt2Z53nubsHga0OOXnypIqLi51+YJWkyMhIpaSkuKmqmstut2vMmDHq3bu32rdvL0lKSUmRr6+v+R8UhzOfcUpKSqnfA8e5c7XJyMhQbm5uVXwcj/fpp59q06ZNmjRp0lnneO5V57ffftPMmTPVokULff/993rooYf0yCOPaM6cOZL+eHbn+nslJSVFERERTue9vb1Vv379Cn1/6pInn3xSt99+u1q3bi0fHx916dJFY8aM0dChQyXx3KtDdT7jstrU9e+BQ15enp544gndcccdCg4OlsSzryqTJ0+Wt7e3HnnkkVLP89zdw9vdBQA11ahRo7Rjxw79+OOP7i6l1jt06JAeffRRLVmyRH5+fu4up06x2+3q3r27Jk6cKEnq0qWLduzYoVmzZmnYsGFurq72+uyzzzR37lzNmzdP7dq105YtWzRmzBhFR0fz3FGnFBYW6tZbb5VhGJo5c6a7y6nVEhISNH36dG3atEkWi8Xd5eAM9LDVIeHh4fLy8jpr5bxjx44pKirKTVXVTKNHj9bXX3+t5cuXq0mTJubxqKgoFRQUKC0tzan9mc84Kiqq1O+B49y52gQHB8vf39/VH8fjJSQk6Pjx4+ratau8vb3l7e2tlStX6s0335S3t7ciIyN57lWkUaNGatu2rdOxNm3a6ODBg5L+eHbn+nslKipKx48fdzpfVFSk1NTUCn1/6pJx48aZvWwdOnTQ3Xffrccee8zsYea5V73qfMZltanr3wNHWEtKStKSJUvM3jWJZ18VVq9erePHj6tp06bmf2uTkpL0+OOPq1mzZpJ47u5CYKtDfH191a1bNy1dutQ8ZrfbtXTpUvXs2dONldUchmFo9OjR+vLLL7Vs2TLFxcU5ne/WrZt8fHycnvHu3bt18OBB8xn37NlT27dvd/oLz/EfIscPxj179nS6hqNNXf0+XXnlldq+fbu2bNlifnXv3l1Dhw41f81zrxq9e/c+a+uKPXv2KDY2VpIUFxenqKgop+eWkZGh9evXOz37tLQ0JSQkmG2WLVsmu92uHj16mG1WrVqlwsJCs82SJUvUqlUrhYWFVdnn81Q5OTmyWp3/E+3l5SW73S6J514dqvMZ83fP2Rxhbe/evfrhhx/UoEEDp/M8e9e7++67tW3bNqf/1kZHR2vcuHH6/vvvJfHc3cbdq56gen366aeGzWYzZs+ebfzyyy/GyJEjjdDQUKeV81C2hx56yAgJCTFWrFhhHD161PzKyckx2zz44ING06ZNjWXLlhkbN240evbsafTs2dM871he/qqrrjK2bNliLFq0yGjYsGGpy8uPGzfOSExMNGbMmFHnl5f/szNXiTQMnntV+fnnnw1vb2/jH//4h7F3715j7ty5RkBAgPHxxx+bbf75z38aoaGhxn//+19j27ZtxvXXX1/q0uddunQx1q9fb/z4449GixYtnJaBTktLMyIjI427777b2LFjh/Hpp58aAQEBdWZ5+T8bNmyY0bhxY3NZ/y+++MIIDw83xo8fb7bhuV+4zMxMY/PmzcbmzZsNScbUqVONzZs3mysRVtczXrNmjeHt7W289tprRmJiovH888/X+iXOz/XsCwoKjOuuu85o0qSJsWXLFqf/3p658iDPvuLO93v+z/68SqRh8NzdgcBWB7311ltG06ZNDV9fX+PSSy81fvrpJ3eXVGNIKvXrgw8+MNvk5uYaDz/8sBEWFmYEBAQYN9xwg3H06FGn6xw4cMAYNGiQ4e/vb4SHhxuPP/64UVhY6NRm+fLlRufOnQ1fX1/joosucroHzg5sPPeq87///c9o3769YbPZjNatWxvvvPOO03m73W4899xzRmRkpGGz2Ywrr7zS2L17t1ObU6dOGXfccYdRr149Izg42Bg+fLiRmZnp1Gbr1q1Gnz59DJvNZjRu3Nj45z//WeWfzVNlZGQYjz76qNG0aVPDz8/PuOiii4xnnnnG6YdVnvuFW758eal/pw8bNswwjOp9xp999pnRsmVLw9fX12jXrp3xzTffVNnn9gTnevb79+8v87+3y5cvN6/Bs6+48/2e/7PSAhvPvfpZDMMwqqMnDwAAAABQMcxhAwAAAAAPRWADAAAAAA9FYAMAAAAAD0VgAwAAAAAPRWADAAAAAA9FYAMAAAAAD0VgAwAAAAAPRWADAAAAAA9FYAMAoBQWi0ULFy50dxke4fLLL9eYMWPcXQYA1EkENgBAjXLvvffKYrHIYrHIx8dHcXFxGj9+vPLy8lx6n6NHj2rQoEEuvea5eEIoWrFihSwWi9LS0txaBwDgD97uLgAAgIoaOHCgPvjgAxUWFiohIUHDhg2TxWLR5MmTXXaPqKgol10LAIDKoocNAFDj2Gw2RUVFKSYmRkOGDFF8fLyWLFlinrfb7Zo0aZLi4uLk7++vTp066fPPPzfPNWnSRDNnznS65ubNm2W1WpWUlCTp7CGRhw4d0q233qrQ0FDVr19f119/vQ4cOCBJ2rFjh6xWq06cOCFJSk1NldVq1e23326+/5VXXlGfPn0q/Zl//PFH9e3bV/7+/oqJidEjjzyi7Oxs83yzZs00ceJE3XfffQoKClLTpk31zjvvOF1j7dq16ty5s/z8/NS9e3ctXLhQFotFW7Zs0YEDB3TFFVdIksLCwmSxWHTvvfc6PdPx48erfv36ioqK0gsvvFDpzwIAKD8CGwCgRtuxY4fWrl0rX19f89ikSZP04YcfatasWdq5c6cee+wx3XXXXVq5cqWsVqvuuOMOzZs3z+k6c+fOVe/evRUbG3vWPQoLCzVgwAAFBQVp9erVWrNmjerVq6eBAweqoKBA7dq1U4MGDbRy5UpJ0urVq51eS9LKlSt1+eWXV+oz/vrrrxo4cKBuuukmbdu2TfPnz9ePP/6o0aNHO7V7/fXX1b17d23evFkPP/ywHnroIe3evVuSlJGRoWuvvVYdOnTQpk2b9PLLL+uJJ54w3xsTE6P/9//+nyRp9+7dOnr0qKZPn26enzNnjgIDA7V+/XpNmTJFL730klNIBgBUEQMAgBpk2LBhhpeXlxEYGGjYbDZDkmG1Wo3PP//cMAzDyMvLMwICAoy1a9c6vW/EiBHGHXfcYRiGYWzevNmwWCxGUlKSYRiGUVxcbDRu3NiYOXOm2V6S8eWXXxqGYRgfffSR0apVK8Nut5vn8/PzDX9/f+P77783DMMwbrzxRmPUqFGGYRjGmDFjjHHjxhlhYWFGYmKiUVBQYAQEBBiLFy8u83P179/fePTRR0s9N2LECGPkyJFOx1avXm1YrVYjNzfXMAzDiI2NNe666y7zvN1uNyIiIszPNHPmTKNBgwZme8MwjHfffdeQZGzevNkwDMNYvny5Ick4ffr0WbX16dPH6dgll1xiPPHEE2V+HgCAazCHDQBQ41xxxRWaOXOmsrOz9cYbb8jb21s33XSTJGnfvn3KycnRX//6V6f3FBQUqEuXLpKkzp07q02bNpo3b56efPJJrVy5UsePH9ctt9xS6v22bt2qffv2KSgoyOl4Xl6efv31V0lS//79zSGIK1eu1MSJE7Vnzx6tWLFCqampKiwsVO/evSv1ebdu3apt27Zp7ty55jHDMGS327V//361adNGktSxY0fzvMViUVRUlI4fPy6ppNesY8eO8vPzM9tceuml5a7hzGtLUqNGjcxrAwCqDoENAFDjBAYGqnnz5pKk999/X506ddJ//vMfjRgxQllZWZKkb775Ro0bN3Z6n81mM389dOhQM7DNmzdPAwcOVIMGDUq9X1ZWlrp16+YUmBwaNmwo6Y9VHvfu3atffvlFffr00a5du7RixQqdPn1a3bt3V0BAQKU+b1ZWlh544AE98sgjZ51r2rSp+WsfHx+ncxaLRXa7vVL3/LOqvDYAoGwENgBAjWa1WvX0009r7NixuvPOO9W2bVvZbDYdPHhQ/fv3L/N9d955p5599lklJCTo888/16xZs8ps27VrV82fP18REREKDg4utU2HDh0UFhamV155RZ07d1a9evV0+eWXa/LkyTp9+nSl56857v/LL7+YIbUyWrVqpY8//lj5+flmcN2wYYNTG8c8wOLi4krfBwDgWiw6AgCo8W655RZ5eXlpxowZCgoK0t///nc99thjmjNnjn799Vdt2rRJb731lubMmWO+p1mzZurVq5dGjBih4uJiXXfddWVef+jQoQoPD9f111+v1atXa//+/VqxYoUeeeQRHT58WFJJj1O/fv00d+5cM5x17NhR+fn5Wrp06TnDo8OJEye0ZcsWp69jx47piSee0Nq1azV69Ght2bJFe/fu1X//+9+zFh05lzvvvFN2u10jR45UYmKivv/+e7322mtm7ZIUGxsri8Wir7/+WidOnDB7KwEA7kNgAwDUeN7e3ho9erSmTJmi7Oxsvfzyy3ruuec0adIktWnTRgMHDtQ333yjuLg4p/cNHTpUW7du1Q033CB/f/8yrx8QEKBVq1apadOmuvHGG9WmTRuNGDFCeXl5Tj1u/fv3V3FxsRnYrFar+vXrJ4vFUq75a/PmzVOXLl2cvt5991117NhRK1eu1J49e9S3b1916dJFEyZMUHR0dLmfUXBwsP73v/9py5Yt6ty5s5555hlNmDBBksx5bY0bN9aLL76oJ598UpGRkRUKhACAqmExDMNwdxEAAKD6zZ07V8OHD1d6evo5AysAwH2YwwYAQB3x4Ycf6qKLLlLjxo21detWPfHEE7r11lsJawDgwQhsAADUESkpKZowYYJSUlLUqFEj3XLLLfrHP/7h7rIAAOfAkEgAAAAA8FAsOgIAAAAAHorABgAAAAAeisAGAAAAAB6KwAYAAAAAHorABgAAAAAeisAGAAAAAB6KwAYAAAAAHorABgAAAOD/bxQMUgAAH3M3/imKRHkAAAAASUVORK5CYII=",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAskAAAIjCAYAAADx6oYJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuNSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/xnp5ZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABfvElEQVR4nO3deVyU5f7/8fewK7IosoQhmqJimZqW4kalXzEtpazcKi3T00krs6ysVCzTosysPJp1yurYT8tzXNIyyQU1d3NJRcJStAxBFBA30Ll/f3iY4wygIMvMwOv5eMzjwVzXNfd87mGZN/dc93WbDMMwBAAAAMDCxd4FAAAAAI6GkAwAAADYICQDAAAANgjJAAAAgA1CMgAAAGCDkAwAAADYICQDAAAANgjJAAAAgA1CMgAAAGCDkAyg2pkzZ45MJpMOHTpk71Kclslk0siRI+1dhtNo0KCBhgwZYrm/Zs0amUwmrVmzxm41AbgyQjIAuygIqgU3Nzc31atXT0OGDNGff/5p7/IqxZAhQ1SrVi17l1GsDRs2KC4uTllZWfYupVzk5uZqwoQJuummm+Tt7a2AgAC1atVKzzzzjI4ePWrv8gA4GDd7FwCgenvttdfUsGFDnTt3Tps2bdKcOXO0fv167dmzR15eXhXynA8//LD69+8vT0/PCtl+VbFhwwZNnDhRQ4YMkb+/v73LKZP8/Hx16dJF+/fv1+DBg/XUU08pNzdXe/fu1VdffaV7771XoaGhFfb8ycnJcnHhuBTgTAjJAOzqrrvuUtu2bSVJjz/+uOrWrau33npLS5Ys0YMPPlghz+nq6ipXV9cK2TYc06JFi7Rjxw7NnTtXAwcOtOo7d+6c8vLyKvT5K/ofstOnT8vb27tCnwOobvi3FoBD6dy5syTpt99+s2rfv3+/7r//ftWpU0deXl5q27atlixZYunftm2bTCaTPv/880Lb/OGHH2QymbR06VJJxc9J/v7779W5c2d5e3vLx8dHvXr10t69ey39S5Yskclk0u7duy1t//73v2UymXTfffdZbSsyMlL9+vW7thfBxubNm9WjRw/5+fmpZs2aio6O1k8//WQ1Ji4uTiaTSQcOHLAc+fXz89Ojjz6qM2fOWI09e/asnn76adWtW1c+Pj7q3bu3/vzzT5lMJsXFxVm2N2bMGElSw4YNLdNibF+zRYsW6aabbpKnp6duvPFGLV++/Ir7cuzYMbm5uWnixImF+pKTk2UymfThhx9KunT0d+LEiYqIiJCXl5cCAgLUqVMnJSQklOblk/S/n6eOHTsW6vPy8pKvr6/lfsE0mN9//10xMTHy9vZWaGioXnvtNRmGYfXY06dP67nnnlNYWJg8PT3VtGlTvfPOO4XG2c5JLk5pvtf79u3TwIEDVbt2bXXq1KmkLwWAEiIkA3AoBSGsdu3alra9e/eqffv2SkpK0ksvvaSpU6fK29tbsbGxWrhwoSSpbdu2uuGGG/T1118X2ub8+fNVu3ZtxcTEFPu8X375pXr16qVatWrprbfe0rhx47Rv3z516tTJUlOnTp1kMpm0du1ay+PWrVsnFxcXrV+/3tKWkZGh/fv3q0uXLmV5KSRJq1atUpcuXZSTk6MJEyZo8uTJysrK0p133qktW7YUGv/ggw/q1KlTmjJlih588EHNmTOnUCAdMmSIPvjgA/Xs2VNvvfWWatSooV69elmNue+++zRgwABJ0rRp0/Tll1/qyy+/VGBgoGXM+vXr9eSTT6p///6Kj4/XuXPn1LdvX2VmZha7P8HBwYqOji72++Tq6qoHHnhA0qUwOHHiRN1xxx368MMP9corr6h+/fr6+eefS/4C/ld4eLgk6YsvvigUYIty8eJF9ejRQ8HBwYqPj1ebNm00YcIETZgwwTLGMAz17t1b06ZNU48ePfTuu++qadOmGjNmjEaPHl3qGkv7vX7ggQd05swZTZ48WcOGDSv18wG4CgMA7OCzzz4zJBk//vijkZGRYRw5csRYsGCBERgYaHh6ehpHjhyxjO3atavRokUL49y5c5Y2s9lsdOjQwYiIiLC0jR071nB3dzdOnDhhaTt//rzh7+9vPPbYY4We++DBg4ZhGMapU6cMf39/Y9iwYVY1pqWlGX5+flbtN954o/Hggw9a7t9yyy3GAw88YEgykpKSDMMwjP/85z+GJGPXrl1XfA0GDx5seHt7F9tvNpuNiIgIIyYmxjCbzZb2M2fOGA0bNjT+7//+z9I2YcIEQ5LVfhqGYdx7771GQECA5f727dsNScaoUaOsxg0ZMsSQZEyYMMHS9vbbb1u9TpeTZHh4eBgHDhywtO3atcuQZHzwwQdX3O+PPvrIkGT88ssvVu3Nmzc37rzzTsv9li1bGr169britkrqzJkzRtOmTQ1JRnh4uDFkyBDjn//8p3Hs2LFCYwcPHmxIMp566ilLm9lsNnr16mV4eHgYGRkZhmEYxqJFiwxJxqRJk6wef//99xsmk8nqtQkPDzcGDx5sub969WpDkrF69WrL9kv7vR4wYECZXhMAV8aRZAB21a1bNwUGBiosLEz333+/vL29tWTJEl1//fWSpBMnTmjVqlWWI6THjx/X8ePHlZmZqZiYGKWkpFhWw+jXr5/y8/P1n//8x7L9FStWKCsr64pTHxISEpSVlaUBAwZYtn/8+HG5urqqXbt2Wr16tWVs586dtW7dOknSqVOntGvXLg0fPlx169a1tK9bt07+/v666aabyvTa7Ny5UykpKRo4cKAyMzMtdZ0+fVpdu3bV2rVrZTabrR7zxBNPWN3v3LmzMjMzlZOTI0mW6RBPPvmk1binnnqq1PV169ZNjRo1sty/+eab5evrq99///2Kj7vvvvvk5uam+fPnW9r27Nmjffv2WX2f/P39tXfvXqWkpJS6Nls1atTQ5s2bLVNI5syZo6FDh+q6667TU089pfPnzxd6zOVL3BUseZeXl6cff/xRkvTdd9/J1dVVTz/9tNXjnnvuORmGoe+//77E9ZXH9xpA+SIkA7CrGTNmKCEhQQsWLFDPnj11/Phxq5OcDhw4IMMwNG7cOAUGBlrdCj76Tk9PlyS1bNlSzZo1swpf8+fPV926dXXnnXcWW0NBCLvzzjsLPceKFSss25cuhc6//vpLBw4c0IYNG2QymRQVFWUVntetW6eOHTuWeTWDgroGDx5cqK5PPvlE58+fV3Z2ttVj6tevb3W/YNrKyZMnJUmpqalycXFRw4YNrcY1bty41PXZPlfB8xU8V3Hq1q2rrl27Wk25mD9/vtzc3Kzmdr/22mvKyspSkyZN1KJFC40ZM8ZqPnhp+fn5KT4+XocOHdKhQ4f0z3/+U02bNtWHH36o119/3Wqsi4uLbrjhBqu2Jk2aSPrflKDU1FSFhobKx8fHalxkZKSlv6Su5Xtt+z0EUL5Y3QKAXd12222W1S1iY2PVqVMnDRw4UMnJyapVq5bl6Nnzzz9f7JziywNev3799MYbb+j48ePy8fHRkiVLNGDAALm5Ff/nruA5vvzyS4WEhBTqv/yxBSdIrV27Vr///rtuueUWeXt7q3Pnznr//feVm5urHTt26I033ijlK1F8XW+//bZatWpV5BjbdZaLW7XDKME83NIqy3P1799fjz76qHbu3KlWrVrp66+/VteuXVW3bl3LmC5duui3337T4sWLtWLFCn3yySeaNm2aZs2apccff7xMtYeHh+uxxx7TvffeqxtuuEFz587VpEmTyrTNsriW73WNGjUquiygWiMkA3AYrq6umjJliuVErZdeeslyNM/d3V3dunW76jb69euniRMn6t///reCg4OVk5Oj/v37X/ExBVMGgoKCrvoc9evXV/369bVu3Tr9/vvvltU4unTpotGjR+ubb77RxYsXy+WkvYK6fH19S7TvJREeHi6z2ayDBw8qIiLC0n7gwIFCY00mU7k8Z1FiY2P1t7/9zXLU/9dff9XYsWMLjatTp44effRRPfroo8rNzVWXLl0UFxdX5pBcoHbt2mrUqJH27Nlj1W42m/X7779bjh4X1ChdWqlCuvRa/vjjjzp16pTV0eT9+/db+kuqIr7XAMqG6RYAHMrtt9+u2267Te+9957OnTunoKAg3X777froo4/0119/FRqfkZFhdT8yMlItWrTQ/PnzNX/+fF133XVXDawxMTHy9fXV5MmTlZ+ff9Xn6Ny5s1atWqUtW7ZYQnKrVq3k4+OjN998UzVq1FCbNm1Ku+uFtGnTRo0aNdI777yj3Nzcq9ZVEgVH4//xj39YtX/wwQeFxhasu1sRV9zz9/dXTEyMvv76a82bN08eHh6KjY21GmO7SkatWrXUuHFjq/nD2dnZ2r9/f6GpCLZ27dql48ePF2pPTU3Vvn371LRp00J9BUvRSZeOjn/44Ydyd3dX165dJUk9e/bUxYsXrcZJl1YDMZlMuuuuu65Y0+Uq4nsNoGw4kgzA4YwZM0YPPPCA5syZoyeeeEIzZsxQp06d1KJFCw0bNkw33HCDjh07po0bN+qPP/7Qrl27rB7fr18/jR8/Xl5eXho6dOhV5wb7+vpq5syZevjhh3XLLbeof//+CgwM1OHDh7Vs2TJ17NjRKgh17txZc+fOlclksky/cHV1VYcOHfTDDz/o9ttvl4eHR4n2NT8/v8iP+evUqaMnn3xSn3zyie666y7deOONevTRR1WvXj39+eefWr16tXx9ffXtt9+W6HkKtGnTRn379tV7772nzMxMtW/fXomJiZajpJcfPS4I+q+88or69+8vd3d33XPPPeV20Yp+/frpoYce0j/+8Q/FxMQUuqpf8+bNdfvtt6tNmzaqU6eOtm3bpgULFlidULdw4UI9+uij+uyzz664DnFCQoImTJig3r17q3379pZ1kD/99FOdP3/esj50AS8vLy1fvlyDBw9Wu3bt9P3332vZsmV6+eWXLcvg3XPPPbrjjjv0yiuv6NChQ2rZsqVWrFihxYsXa9SoUVYnNV6Ni4tLuX+vAZSRXdfWAFBtFSzDtnXr1kJ9Fy9eNBo1amQ0atTIuHDhgmEYhvHbb78ZjzzyiBESEmK4u7sb9erVM+6++25jwYIFhR6fkpJiSDIkGevXry/2uW2XNlu9erURExNj+Pn5GV5eXkajRo2MIUOGGNu2bbMat3fvXkOSERkZadU+adIkQ5Ixbty4Er0GBUuNFXVr1KiRZdyOHTuM++67zwgICDA8PT2N8PBw48EHHzRWrlxpGVOwLFjB8mRX2tfTp08bI0aMMOrUqWPUqlXLiI2NNZKTkw1Jxptvvmn1+Ndff92oV6+e4eLiYrUdScaIESMK7ZPtUmdXkpOTY9SoUcOQZPzrX/8q1D9p0iTjtttuM/z9/Y0aNWoYzZo1M9544w0jLy+v0P599tlnV3yu33//3Rg/frzRvn17IygoyHBzczMCAwONXr16GatWrbIaW7A032+//WZ0797dqFmzphEcHGxMmDDBuHjxotXYU6dOGc8++6wRGhpquLu7GxEREcbbb79ttYxbUa+L7RJwBcryvQZQvkyGUQFncwAAnMrOnTvVunVr/etf/9KgQYPsXY5dDRkyRAsWLChy2gOA6oM5yQBQzZw9e7ZQ23vvvScXF5dyOeEQAKoC5iQDQDUTHx+v7du364477pCbm5u+//57ff/99xo+fLjCwsLsXR4AOARCMgBUMx06dFBCQoJef/115ebmqn79+oqLi9Mrr7xi79IAwGEwJxkAAACwwZxkAAAAwAYhGQAAALDBnORyYjabdfToUfn4+FTopVwBAABwbQzD0KlTpxQaGnrVC00RksvJ0aNHOSscAADACRw5ckTXX3/9FccQksuJj4+PpEsvuq+vr52rAQAAgK2cnByFhYVZctuVEJLLScEUC19fX0IyAACAAyvJ1FhO3AMAAABsEJIBAAAAG4RkAAAAwAYhGQAAALBBSAYAAABsEJIBAAAAG4RkAAAAwAYhGQAAALBBSAYAAABsEJIBAAAAG4RkAAAAwAYhGQAAALBBSAYAAABsEJIBJ5OUlKT4+HglJSXZuxQAAKosQjLgRPLy8rR48WJlZWVp8eLFysvLs3dJAABUSYRkwIkkJibq1KlTkqRTp04pMTHRzhUBAFA1EZIBJ5GZmanExEQZhiFJMgxDiYmJyszMtHNlAABUPYRkwAkYhqElS5YU2bdkyRJLcAYAAOWDkAw4gYyMDKWkpMhsNlu1m81mpaSkKCMjw06VAQBQNRGSAScQGBioiIgIubhY/8q6uLgoIiJCgYGBdqoMAICqiZAMOAGTyaTevXsX2de7d2+ZTKZKrggAgKqNkAw4iYCAAEVHR1sCsclkUnR0tAICAuxcGQAAVQ8hGXAi0dHR8vHxkST5+PgoOjrazhUBAFA1EZIBJ+Lh4aE+ffrI399fffr0kYeHh71LAgCgSnKzdwEASicyMlKRkZH2LgMAgCqNI8kAAACADUIyAAAAYIOQDAAAANggJAMAAAA2CMkAAACADUIyAAAAYIOQDAAA7CopKUnx8fFKSkqydymABSEZAADYTV5enhYvXqysrCwtXrxYeXl59i4JkERIBgAAdpSYmKhTp05Jkk6dOqXExEQ7VwRcQkgGAAB2kZmZqcTERBmGIUkyDEOJiYnKzMy0c2UAIRkAANiBYRhasmRJkX1LliyxBGfAXgjJAACg0mVkZCglJUVms9mq3Ww2KyUlRRkZGXaqDLiEkAwAACpdYGCgIiIi5OJiHUVcXFwUERGhwMBAO1UGXEJIBgAAlc5kMql3795F9vXu3Vsmk6mSKwKsEZIBAIBdBAQEqFOnTlZtnTp1UkBAgJ0qAv6HkAwAAADYsGtIXrt2re655x6FhobKZDJp0aJFxY594oknZDKZ9N5771m1nzhxQoMGDZKvr6/8/f01dOhQ5ebmWo3ZvXu3OnfuLC8vL4WFhSk+Pr7Q9r/55hs1a9ZMXl5eatGihb777rvy2EUAAFCMzMxMrV+/3qpt/fr1LAEHh2DXkHz69Gm1bNlSM2bMuOK4hQsXatOmTQoNDS3UN2jQIO3du1cJCQlaunSp1q5dq+HDh1v6c3Jy1L17d4WHh2v79u16++23FRcXp9mzZ1vGbNiwQQMGDNDQoUO1Y8cOxcbGKjY2Vnv27Cm/nQUAABYsAQdHZzIc5KfQZDJp4cKFio2NtWr/888/1a5dO/3www/q1auXRo0apVGjRkm6dK335s2ba+vWrWrbtq0kafny5erZs6f++OMPhYaGaubMmXrllVeUlpYmDw8PSdJLL72kRYsWaf/+/ZKkfv366fTp01q6dKnledu3b69WrVpp1qxZJao/JydHfn5+ys7Olq+vbxlfDQAAqrb09PRCnw5fbtSoUQoKCqq8glAtlCavOfScZLPZrIcfflhjxozRjTfeWKh/48aN8vf3twRkSerWrZtcXFy0efNmy5guXbpYArIkxcTEKDk5WSdPnrSM6datm9W2Y2JitHHjxmJrO3/+vHJycqxuAACgZFgCDo7OoUPyW2+9JTc3Nz399NNF9qelpRX6L9PNzU116tRRWlqaZUxwcLDVmIL7VxtT0F+UKVOmyM/Pz3ILCwsr3c4BAFCNsQQcHJ3DhuTt27dr+vTpmjNnjkP+oowdO1bZ2dmW25EjR+xdEgAATiUgIEDR0dGW93mTyaTo6GiWgINDcNiQvG7dOqWnp6t+/fpyc3OTm5ubUlNT9dxzz6lBgwaSpJCQEKWnp1s97sKFCzpx4oRCQkIsY44dO2Y1puD+1cYU9BfF09NTvr6+VjcAAFA60dHR8vHxkST5+PgoOjrazhUBlzhsSH744Ye1e/du7dy503ILDQ3VmDFj9MMPP0iSoqKilJWVpe3bt1set2rVKpnNZrVr184yZu3atcrPz7eMSUhIUNOmTVW7dm3LmJUrV1o9f0JCgqKioip6NwEAqNY8PDzUp08f+fv7q0+fPlbnEAH25GbPJ8/NzdWBAwcs9w8ePKidO3eqTp06ql+/fqGPW9zd3RUSEqKmTZtKkiIjI9WjRw8NGzZMs2bNUn5+vkaOHKn+/ftblosbOHCgJk6cqKFDh+rFF1/Unj17NH36dE2bNs2y3WeeeUbR0dGaOnWqevXqpXnz5mnbtm1Wy8QBAICKERkZqcjISHuXAVix65Hkbdu2qXXr1mrdurUkafTo0WrdurXGjx9f4m3MnTtXzZo1U9euXdWzZ0916tTJKtz6+flpxYoVOnjwoNq0aaPnnntO48ePt1pLuUOHDvrqq680e/ZstWzZUgsWLNCiRYt00003ld/OAgAAwGk4zDrJzo51kgEAABxblVknGQAAALAHQjIAAABgg5AMAAAA2CAkAwAAADYIyQAAAIANQjIAAABgg5AMAAAA2CAkAwAAADYIyQAAAIANQjIAAABgg5AMAAAA2CAkAwAAADYIyQAAAIANQjIAAABgg5AMAAAA2CAkAwAAADYIyQAAAIANQjIAAABgg5AMAAAA2CAkAwAAADYIyQAAAIANQjIAAABgg5AMAAAA2CAkAwAAADYIyQAAAIANQjIAAABgg5AMAAAA2CAkAwAAADYIyQAAAIANQjIAAABgg5AMAADsKikpSfHx8UpKSrJ3KYAFIRkAANhNXl6eFixYoKysLC1YsEB5eXn2LgmQREgGAAB2tGrVKp09e1aSdPbsWa1atcrOFQGXEJIBAIBdZGZmau3atVZta9euVWZmpp0qAv6HkAwAACqdYRhasGBBkX0LFiyQYRiVXBFgjZAMAAAqXXp6ulJTU4vsS01NVXp6eiVXBFgjJAMAAAA2CMkAAKDSBQUFKTw8vMi+Bg0aKCgoqJIrAqwRkgEAQKUzmUy6//77ZTKZCrX37du3UDtQ2QjJAADALgICAtS5c2erts6dOysgIMBOFQH/Q0gGAAB2c+edd6pGjRqSpJo1a+rOO++0c0XAJYRkAABgNx4eHrr//vvl7++vvn37ysPDw94lAZIkN3sXAAAAqrfIyEhFRkbauwzACkeSAQAAABuEZAAAAMCGXUPy2rVrdc899yg0NFQmk0mLFi2y9OXn5+vFF19UixYt5O3trdDQUD3yyCM6evSo1TZOnDihQYMGydfXV/7+/ho6dKhyc3OtxuzevVudO3eWl5eXwsLCFB8fX6iWb775Rs2aNZOXl5datGih7777rkL2GQAAAI7PriH59OnTatmypWbMmFGo78yZM/r55581btw4/fzzz/rPf/6j5ORk9e7d22rcoEGDtHfvXiUkJGjp0qVau3athg8fbunPyclR9+7dFR4eru3bt+vtt99WXFycZs+ebRmzYcMGDRgwQEOHDtWOHTsUGxur2NhY7dmzp+J2HgAASJKSkpIUHx+vpKQke5cCWJgMwzDsXYR0afHwhQsXKjY2ttgxW7du1W233abU1FTVr19fSUlJat68ubZu3aq2bdtKkpYvX66ePXvqjz/+UGhoqGbOnKlXXnlFaWlpljNmX3rpJS1atEj79++XJPXr10+nT5/W0qVLLc/Vvn17tWrVSrNmzSpR/Tk5OfLz81N2drZ8fX2v8VUAAKB6ycvL01tvvaWzZ8+qRo0aevHFF1nhAhWmNHnNqeYkZ2dny2Qyyd/fX5K0ceNG+fv7WwKyJHXr1k0uLi7avHmzZUyXLl2sfuFiYmKUnJyskydPWsZ069bN6rliYmK0cePGYms5f/68cnJyrG4AAKB0Vq1apbNnz0qSzp49q1WrVtm5IuASpwnJ586d04svvqgBAwZYkn9aWlqha7u7ubmpTp06SktLs4wJDg62GlNw/2pjCvqLMmXKFPn5+VluYWFhZdtBAACqmczMTK1du9aqbe3atcrMzLRTRcD/OEVIzs/P14MPPijDMDRz5kx7lyNJGjt2rLKzsy23I0eO2LskAACchmEYWrBgQZF9CxYskIPMBkU15vAXEykIyKmpqVq1apXV/JGQkBClp6dbjb9w4YJOnDihkJAQy5hjx45ZjSm4f7UxBf1F8fT0lKen57XvGAAA1Vh6erpSU1OL7EtNTVV6enqhT3mByuTQR5ILAnJKSop+/PFHBQQEWPVHRUUpKytL27dvt7StWrVKZrNZ7dq1s4xZu3at8vPzLWMSEhLUtGlT1a5d2zJm5cqVVttOSEhQVFRURe0aAAAAHJhdQ3Jubq527typnTt3SpIOHjyonTt36vDhw8rPz9f999+vbdu2ae7cubp48aLS0tKUlpamvLw8SZcuY9mjRw8NGzZMW7Zs0U8//aSRI0eqf//+Cg0NlSQNHDhQHh4eGjp0qPbu3av58+dr+vTpGj16tKWOZ555RsuXL9fUqVO1f/9+xcXFadu2bRo5cmSlvyYAAFQHQUFBCg8PL7KvQYMGhc45AiqbXZeAW7Nmje64445C7YMHD1ZcXJwaNmxY5ONWr16t22+/XdKli4mMHDlS3377rVxcXNS3b1+9//77qlWrlmX87t27NWLECG3dulV169bVU089pRdffNFqm998841effVVHTp0SBEREYqPj1fPnj1LvC8sAQcAQOkcOHBAn376aaH2oUOHqlGjRnaoCFVdafKaw6yT7OwIyQAAlJxhGJozZ45SUlIK9UVERGjIkCEymUx2qAxVWZVdJxkAAFQNGRkZRQZkSUpJSVFGRkYlVwRYIyQDAIBKFxgYqIiICLm4WEcRFxcXRUREKDAw0E6VAZcQkgEAQKUzmUzq3bt3kX29e/dmqgXsjpAMOJmkpCTFx8crKSnJ3qUAQJkEBAQoOjraEohNJpOio6MLLfkK2AMhGXAieXl5Wrx4sbKysrR48WLLcogA4Kyio6Pl4+MjSfLx8VF0dLSdKwIuISQDTiQxMVGnTp2SJJ06dUqJiYl2rggAysbDw0N9+vSRv7+/+vTpIw8PD3uXBEhygstSA7gkMzNTiYmJKli10TAMJSYm6pZbbuGjSQBOLTIyUpGRkfYuA7DCkWTACRiGoSVLlhTZt2TJErHcOQAA5YuQDDiBgvVEzWazVbvZbGY9UQAAKgAhGXACrCcKAEDlIiQDToD1RAFUZSxtCUdESAacBOuJAqiKWNoSjoqQDDgR1hMFUNWwtCUcFSEZcCKsJwqgKiluacvMzEw7VwawTjLgdFhPFEBVcLWlLYcMGcL5FrArjiQDAIBKx9KWcHSEZAAAUOlY2hKOjpAMAAAqHUtbwtERkgEAgF0EBASoU6dOVm2dOnViaUs4BEIyAAAAYIOQDAAA7CIzM1Pr16+3alu/fj1LwMEhEJIBAEClu9oScAVrJwP2QkgGAACVjiXg4OgIyQAAoNKxBBwcHSEZAABUOpaAg6MjJAMAALsICAhQdHS0JRCbTCZFR0ezBBwcAiEZAADYTXR0tLy8vCRJNWrUUHR0tJ0rAi4hJAMAAIfAihZwJIRkAABgN4mJiTp79qwk6ezZs0pMTLRzRcAlhGQAAGAXmZmZWrNmjVXbmjVruJgIHAIhGQAAVLqCi4nYTrEorh2obIRkAABQ6QouJlIULiYCR0BIBgAAla5u3bqqWbNmkX01a9ZU3bp1K7kiwBohGQAAVLrjx4/rzJkzRfadOXNGx48fr+SKAGuEZAAAUOkKLktdFC5LDUdASAYAAJWu4LLUtpefLq4dqGyEZMDJJCUlKT4+XklJSfYuBQDKJCAgQPXr17dqq1+/PpelhkMgJANOJC8vT4sXL1ZWVpYWL16svLw8e5cEANcsMzNTR44csWo7cuQI6yTDIRCSASeSmJioU6dOSZJOnTrFlakAOK2C9ZCLa2edZNgbIRlwEpmZmUpMTLS8cRiGocTERI64AHBKBeskm81mq3bDMFgnGQ6BkAw4geKOuEjiiAsApxQYGKh69eoV2VevXj1Wt4DdEZIBJ1DcERez2cwRFwBOyTCMYj8Jy8zM5J9/2B0hGXACBeuJurhY/8q6uLiwnigAp/Trr7/q3LlzRfadO3dOv/76ayVXBFgjJANOoGDd0KKwnigAZ9SkSRN5eXkV2efl5aUmTZpUckWANUIy4CQCAgIUHR1tCcQmk0nR0dGsJwrAKZlMpmL/fgUEBPDPP+zOriF57dq1uueeexQaGiqTyaRFixZZ9RuGofHjx+u6665TjRo11K1bN6WkpFiNOXHihAYNGiRfX1/5+/tr6NChys3NtRqze/dude7cWV5eXgoLC1N8fHyhWr755hs1a9ZMXl5eatGihb777rty31+grKKjo+Xj4yNJ8vHxUXR0tJ0rAoBrk5GRoT///LPIvj///JNzLWB3dg3Jp0+fVsuWLTVjxowi++Pj4/X+++9r1qxZ2rx5s7y9vRUTE2M1h2nQoEHau3evEhIStHTpUq1du1bDhw+39Ofk5Kh79+4KDw/X9u3b9fbbbysuLk6zZ8+2jNmwYYMGDBigoUOHaseOHYqNjVVsbKz27NlTcTsPXAMPDw/16dNH/v7+6tOnjzw8POxdEgBck8DAQIWHhxfZ16BBA861gN2ZDAc5fdRkMmnhwoWKjY2VdOkocmhoqJ577jk9//zzkqTs7GwFBwdrzpw56t+/v5KSktS8eXNt3bpVbdu2lSQtX75cPXv21B9//KHQ0FDNnDlTr7zyitLS0iyB4qWXXtKiRYu0f/9+SVK/fv10+vRpLV261FJP+/bt1apVK82aNatE9efk5MjPz0/Z2dny9fUtr5cFAIAqyTAMzZgxQ0ePHi3UFxoaqhEjRjDlAuWuNHnNYeckHzx4UGlpaerWrZulzc/PT+3atdPGjRslSRs3bpS/v78lIEtSt27d5OLios2bN1vGdOnSxeqIW0xMjJKTk3Xy5EnLmMufp2BMwfMU5fz588rJybG6AZUhKSlJ8fHxSkpKsncpAHDN0tPTiwzIknT06FGlp6dXckWANYcNyWlpaZKk4OBgq/bg4GBLX1pamoKCgqz63dzcVKdOHasxRW3j8ucobkxBf1GmTJkiPz8/yy0sLKy0uwiUWl5enhYvXqysrCwtXrxYeXl59i4JAK7J1T7IdpAPulGNOWxIdnRjx45Vdna25XbkyBF7l4RqIDExUadOnZIknTp1SomJiXauCACAqslhQ3JISIgk6dixY1btx44ds/SFhIQU+jjmwoULOnHihNWYorZx+XMUN6agvyienp7y9fW1ugEVKTMzU4mJiZajK4ZhKDExsdgrVgEAgGvnsCG5YcOGCgkJ0cqVKy1tOTk52rx5s6KioiRJUVFRysrK0vbt2y1jVq1aJbPZrHbt2lnGrF27Vvn5+ZYxCQkJatq0qWrXrm0Zc/nzFIwpeB7A3gzD0JIlS4rsW7JkCR9LAgBQzuwaknNzc7Vz507t3LlT0qWT9Xbu3KnDhw/LZDJp1KhRmjRpkpYsWaJffvlFjzzyiEJDQy0rYERGRqpHjx4aNmyYtmzZop9++kkjR45U//79FRoaKkkaOHCgPDw8NHToUO3du1fz58/X9OnTNXr0aEsdzzzzjJYvX66pU6dq//79iouL07Zt2zRy5MjKfkmAImVkZCglJUVms9mq3Ww2KyUlhfVEATidq61cwcoWsDe7huRt27apdevWat26tSRp9OjRat26tcaPHy9JeuGFF/TUU09p+PDhuvXWW5Wbm6vly5dbXcZy7ty5atasmbp27aqePXuqU6dOVmsg+/n5acWKFTp48KDatGmj5557TuPHj7daS7lDhw766quvNHv2bLVs2VILFizQokWLdNNNN1XSKwFcWWBgoCIiIuTiYv0r6+LiooiICNYTBeB0goKCCp18X5I+oLI4zDrJzo51klHRMjMzNW3aNKujyS4uLnr22We5NDUAp2M2m/X666/r/Pnzhfo8PT01bty4QgcGgLKqEuskA7AWEBBQ6DLU0dHRBGQATik5ObnIgCxduhZBcnJyJVcEWCMkA04kKirKMk/PZDJxcikAp+Xv71+mfqCiEZIBJ7Jx40arJeCudFVIAHBkV5tKwVQL2Bs/gYCTKFgn+XKskwzAWQUFBSk8PLzIvgYNGnDiHuyOkAw4AdZJBlDVmEwm3X///UX29e3blyXgYHeEZMAJsE4ygKooICBA9evXt2qrX78+JyTDIRCSASdQsE5yUVgnGYCzyszM1B9//GHV9scffzCNDA6BkAw4AZPJpM6dOxfZ17lzZz6WBOB0mEYGR0dIBpyAYRhauXJlkX0rV67kzQSA02EaGRwdIRlwAunp6UpNTS2yLzU1Venp6ZVcEQCUTWBg4BVXt2AaGeyNkAwAAOwiPz+/yPa8vLxKrgQojJAMOIHAwEB5eXkV2efl5cURFwBOJz09XUePHi2y7+jRo3xCBrsjJANO4Pjx4zp37lyRfefOndPx48cruSIAAKo2QjLgBFgCDkBVwxX34OgIyYATMJlM6t27d6Gl3oprBwBHxxX34OjcruVBK1eu1MqVK5Wenl5o6ZZPP/20XAoDYC0gIEAdOnTQTz/9ZGnr0KEDV6YC4LQCAgLk6+urnJwcS5uvry9/1+AQSn0keeLEierevbtWrlyp48eP6+TJk1Y3ABXnyJEjV7wPAM7kwIEDVgFZknJycnTgwAE7VQT8T6mPJM+aNUtz5szRww8/XBH1ACjGgQMHdPjwYau2w4cP68CBA2rcuLGdqgKAa2M2mzVv3rwi++bNm6eXX35ZLi7MCoX9lPqnLy8vTx06dKiIWgAU42pvJrbTngDA0f366686c+ZMkX1nzpzRr7/+WskVAdZKHZIff/xxffXVVxVRC4Bi8GYCoKpp0qSJatasWWRfzZo11aRJk0quCLBWoukWo0ePtnxtNps1e/Zs/fjjj7r55pvl7u5uNfbdd98t3woBWN5MigrKvJkAcEYuLi7q379/kSf8DxgwgKkWsLsSheQdO3ZY3W/VqpUkac+ePeVeEIDCeDMBUBXVrl27yHZ/f//KLQQoQolC8urVqyu6DgBXwZsJgKrEMAwtWbJEJpNJhmFY2k0mk5YsWaIhQ4awVjLsqtSHnx577DGdOnWqUPvp06f12GOPlUtRAKwZhqEFCxYU2bdgwQKrNxgAcAYZGRlKSUkp9PfLMAylpKQoIyPDTpUBl5Q6JH/++ec6e/ZsofazZ8/qiy++KJeiAFhLT09XampqkX2pqalKT0+v5IoAoGwCAwNVr169Ivvq1aunwMDASq4IsFbidZJzcnJkGIYMw9CpU6fk5eVl6bt48aK+++47rrMOAABKxDCMYv/BT09Pl2EYTLeAXZU4JPv7+8tkMslkMhV5Jr3JZNLEiRPLtTgAlwQFBSk8PLzIo8kNGjTgH1QATmf//v3Kz88vsi8/P1/79+9X8+bNK7kq4H9KHJJXr14twzB055136t///rfq1Klj6fPw8FB4eLhCQ0MrpEigujOZTLr//vs1derUQn19+/blaAsAp3O1cyk41wL2VuKQHB0dLUk6ePCg6tevz5syUMkCAgJUv359q0tT169fXwEBAXasCgCuzdX+dvG3DfZW4pBcIDs7W7/88kuhdpPJJC8vL9WvX1+enp7lUhyA/8nMzNQff/xh1fbHH38oMzOTNxMATicoKEgeHh7Ky8sr1Ofh4cE0MthdqUNyq1atrngU2d3dXf369dNHH31kdXIfgGtXsJ5oUVhPFIAzOn78eJEBWZLy8vJ0/PhxgjLsqtRLwC1cuFARERGaPXu2du7cqZ07d2r27Nlq2rSpvvrqK/3zn//UqlWr9Oqrr1ZEvUC1VLCeqNlstmo3m82sJwrAKdWtW7fYg2leXl6qW7duJVcEWCv1keQ33nhD06dPV0xMjKWtRYsWuv766zVu3Dht2bJF3t7eeu655/TOO++Ua7FAdRUYGKiIiAgdOHCg0JWpGjduzHqiAJxORkaGzp07V2TfuXPnlJGRoeDg4EquCvifUh9J/uWXXxQeHl6oPTw83DJXuVWrVvrrr7/KXh0ASZfCcO/evYu8MlXv3r2ZagEAQDkrdUhu1qyZ3nzzTat5RPn5+XrzzTfVrFkzSdKff/7Jf39ABbANw4RjAM4qMDDwitMt+IQM9lbq6RYzZsxQ7969df311+vmm2+WdOno8sWLF7V06VJJ0u+//64nn3yyfCsFqrGCE/dMJlOh6RacuAfAGR0/fvyK0y04cQ/2VuqQ3KFDBx08eFBz587Vr7/+Kkl64IEHNHDgQPn4+EiSHn744fKtEqjmCk7cs3X5iXu8mQBwJnXr1lXNmjV15syZQn01a9bkxD3YXalDsiT5+PjoiSeeKO9aABSj4MS93377zWqFCxcXFzVq1IiPJQE4nePHjxcZkCXpzJkzHEmG3V1TSE5JSdHq1auVnp5eaEmq8ePHl0thAP6n4MS9adOmFerjxD0AzigwMFDh4eFKTU0t1BceHs4//7C7Uofkjz/+WH//+99Vt25dhYSEWL05m0wmQjJQQQICAhQdHa3Vq1db2qKjo7naHgAAFaDUIXnSpEl644039OKLL1ZEPQCuoG3btlYhuW3btnasBgCuXUZGRpFHkSUpNTWVcy1gd6VeAu7kyZN64IEHKqIWAFfx9ddfX/E+ADgLrrgHR1fqkPzAAw9oxYoVFVELgCs4cOBAoaMuqampOnDggJ0qAoBrV5Ir7gH2VOrpFo0bN9a4ceO0adMmtWjRQu7u7lb9Tz/9dLkVB+ASs9msefPmFdk3b948vfzyy3JxKfX/vABgN7Yn/pe2H6hopQ7Js2fPVq1atZSYmKjExESrPpPJREgGKsCvv/56xaWSfv31V8sVLwHAGWRlZV21/7rrrqucYoAilDokHzx4sCLqAHAFTZo0kZeXV5EfTXp5ealJkyZ2qAoArl1ERESZ+oGKds2fz+bl5Sk5OVkXLlwoz3qsXLx4UePGjVPDhg1Vo0YNNWrUSK+//rrVZXkNw9D48eN13XXXqUaNGurWrVuhK5OdOHFCgwYNkq+vr/z9/TV06FDl5uZajdm9e7c6d+4sLy8vhYWFKT4+vsL2Cygtk8kkPz+/Ivv8/PxYJxmA0ynqKqKl6QcqWqlD8pkzZzR06FDVrFlTN954ow4fPixJeuqpp/Tmm2+Wa3FvvfWWZs6cqQ8//FBJSUl66623FB8frw8++MAyJj4+Xu+//75mzZqlzZs3y9vbWzExMVZH3AYNGqS9e/cqISFBS5cu1dq1azV8+HBLf05Ojrp3767w8HBt375db7/9tuLi4jR79uxy3R/gWqWnp+vYsWNF9h07dkzp6emVXBEAlE1x//iXtB+oaKUOyWPHjtWuXbu0Zs0aq6VbunXrpvnz55drcRs2bFCfPn3Uq1cvNWjQQPfff7+6d++uLVu2SLp0FPm9997Tq6++qj59+ujmm2/WF198oaNHj2rRokWSpKSkJC1fvlyffPKJ2rVrp06dOumDDz7QvHnzdPToUUnS3LlzlZeXp08//VQ33nij+vfvr6efflrvvvtusbWdP39eOTk5VjcAAFAyhw4dKlM/UNFKHZIXLVqkDz/8UJ06dbL6iPfGG2/Ub7/9Vq7FdejQQStXrtSvv/4qSdq1a5fWr1+vu+66S9Kl+dFpaWnq1q2b5TF+fn5q166dNm7cKEnauHGj/P39rS660K1bN7m4uGjz5s2WMV26dJGHh4dlTExMjJKTk3Xy5Mkia5syZYr8/Pwst7CwsHLdd+ByQUFBCg8PL7IvPDycBfcBOB1fX98y9QMVrdQhubgr4Jw+fbrc50W+9NJL6t+/v5o1ayZ3d3e1bt1ao0aN0qBBgyRJaWlpkqTg4GCrxwUHB1v60tLSCtXr5uamOnXqWI0pahuXP4etsWPHKjs723I7cuRIGfcWKJ7JZFLXrl2L7OvatStzkgE4nTp16pSpH6hopQ7Jbdu21bJlyyz3C96cP/nkE0VFRZVfZbp0NbG5c+fqq6++0s8//6zPP/9c77zzjj7//PNyfZ5r4enpKV9fX6sbUFEMw9C6deuKDMPr1q2zOpkVAJxBdnZ2mfqBilbqJeAmT56su+66S/v27dOFCxc0ffp07du3Txs2bCi0bnJZjRkzxnI0WZJatGih1NRUTZkyRYMHD1ZISIikSycuXb6W4rFjx9SqVStJUkhISKGTmi5cuKATJ05YHh8SElLopKiC+wVjAHvKyMgo9kzvlJSUYj/hAQBH1aRJE7m4uBR50RAXFxeWtoTdlfpIcqdOnbRz505duHBBLVq00IoVKxQUFKSNGzeqTZs25VrcmTNnCl1FzNXV1fIL1bBhQ4WEhGjlypWW/pycHG3evNlyVDsqKkpZWVnavn27ZcyqVatkNpvVrl07y5i1a9cqPz/fMiYhIUFNmzZV7dq1y3WfgGsRGBioiIiIQkeSXVxcFBERocDAQDtVBgDXJjMzs9ir6pnNZmVmZlZyRYC1a1onuVGjRvr444+1ZcsW7du3T//6178UHBysyZMnl2tx99xzj9544w0tW7ZMhw4d0sKFC/Xuu+/q3nvvlXRpqseoUaM0adIkLVmyRL/88oseeeQRhYaGKjY2VpIUGRmpHj16aNiwYdqyZYt++uknjRw5Uv3791doaKgkaeDAgfLw8NDQoUO1d+9ezZ8/X9OnT9fo0aPLdX+Aa2UymdS7d+9C7YZhqHfv3sxJBuB0AgICiv3bZTKZFBAQUMkVAdau+WIitv766y+NGzeuvDYnSfrggw90//3368knn1RkZKSef/55/e1vf9Prr79uGfPCCy/oqaee0vDhw3XrrbcqNzdXy5cvt1qebu7cuWrWrJm6du2qnj17qlOnTlZrIPv5+WnFihU6ePCg2rRpo+eee07jx4+3WksZcAS2c4+ZiwzAWSUnJxf7N8wwDCUnJ1dyRYA1k1FO77K7du3SLbfcoosXL5bH5pxOTk6O/Pz8lJ2dzUl8KHeGYWjOnDlFzkuOiIjQkCFDOJoMwKkUfBJdnIceekjNmzevxIpQHZQmr5XbkWQAFackJ+4BgDNp1KhRmfqBikZIBpxA3bp1VbNmzSL7atasqbp161ZyRQBQNt9//32Z+oGKVuIl4K52EhtHsoCKc/z4cZ05c6bIvjNnzuj48eMsAQfAqdx6663asmXLFfsBeypxSN6xY8dVx3Tp0qVMxQAoWmBgoMLDw5WamlqoLzw8nCXgADid6667Tq6urkWey+Tm5mZ1/QPAHkocklevXl2RdQAAgGrk+PHjxZ7sf+HCBT4hg90xJxlwAhkZGUUeRZak1NRUpjsBcDoFF0kqChdJgiMgJANOgCvuAahqTCaTOnfuXGRfly5dWNYSdkdIBpxAwRX3inrT4Ip7AJyRYRhaunRpkX3ffvstF0uC3RGSAScREBCgTp06WbV16tSJS7cCcEppaWlKT08vsi89PV1paWmVXBFgjZAMOJG8vLwr3gcAZ3Ho0KEy9QMVrdQhuUuXLho/frxWrlypc+fOVURNAIqQmZmpTZs2WbVt2rRJmZmZdqoIAK5dvXr1ytQPVLRSh+Tu3btr06ZN6tOnj/z9/dWpUye9+uqrSkhIKPZiBwDKxjAM/b//9/+K7Pt//+//MXcPgNNZt25dmfqBilbqkPzqq69qxYoVysrK0urVq3X33Xdr27Zt6tWrl+rUqVMRNQLV3rFjx3T06NEi+44ePapjx45VckUAUDY33XRTmfqBinbNc5J///13/fLLL9q1a5d2794tHx8f3XXXXeVZG4D/OnnyZJn6AcDRBAcHl6kfqGglvuJegYEDByoxMVHnz59Xly5dFB0drZdeekk333wzy1ABFaRp06by8vIq8jwALy8vNW3a1A5VAcC1CwoKkqenp86fP1+oz9PTk6vtwe5KfSR53rx5ys/P1+OPP64nnnhCw4YNU8uWLQnIQAVycXHR3XffXWTfPffcIxcXFqoB4FyOHz9eZECWpPPnz+v48eOVXBFgrdTvrJmZmfrkk0+Ul5ensWPHqm7duurQoYNefvllrVixoiJqBKo9wzC0devWIvu2bNnCiXsAnM7VzmPiPCfYW6lDcu3atdW7d2+9++672r59u3bv3q0mTZro7bffZk4yUEHS09OVmppaZF9qamqxC/IDgKMq7h//kvYDFa3Uc5IzMzOVmJioNWvWaM2aNdq3b5/8/f11zz33KDo6uiJqBKo9s9lcpn4AcDS+vr5l6gcqWqlDclBQkOrWravOnTtr2LBhuv3229WiRYuKqA3Af5VkdYvrrruukqoBgLK72gnHnJAMeyt1SN69e7duvPHGiqgFQDGYuwegqjlw4MBV+5s1a1ZJ1QCFlXpO8o033qgLFy7oxx9/1EcffaRTp05JunRBg9zc3HIvEMCl9UKLC8J16tRhPVEATqdBgwZl6gcqWqlDcmpqqlq0aKE+ffpoxIgRysjIkCS99dZbev7558u9QACXVrc4ffp0kX2nT59mdQsATmfhwoVl6gcqWqlD8jPPPKO2bdvq5MmTqlGjhqX93nvv1cqVK8u1OACXJCcnX3E90eTk5EquCADKpmPHjmXqBypaqeckr1u3Ths2bJCHh4dVe4MGDfTnn3+WW2EA/qd27dpl6gcAR1MwXfNa+4GKVuojyWazWRcvXizU/scff8jHx6dcigJgLTAwsEz9AACgdEodkrt376733nvPct9kMik3N1cTJkxQz549y7M2AP+VkpJSpn4AcDR+fn5l6gcqWqlD8tSpU/XTTz+pefPmOnfunAYOHGiZavHWW29VRI1Atde4ceMy9QOAo9myZUuZ+oGKVuo5yddff7127dqlefPmaffu3crNzdXQoUM1aNAgqxP5AJSfkhxJjoyMrKRqAKDsGjVqpG3btl2xH7CnUodkSXJzc9NDDz1U3rUAKAYfSwKoao4ePXrV/pYtW1ZSNUBhJQrJS5Ys0V133SV3d3ctWbLkimN79+5dLoUB+J+SXJY6NDS0kqoBgLKrWbNmmfqBilaikBwbG6u0tDQFBQUpNja22HEmk6nIlS8AAAAuxxJwcHQlCslms7nIrwFUDn9//zL1A4CjOXLkSJn6gYpW6tUt+KEFKl9qamqZ+gHA0Zw9e7ZM/UBFK3VIbtCggaKjo/Xxxx9fdZ4kgPLh6+tbpn4AcDQ33HBDmfqBilbqkLxt2zbddttteu2113TdddcpNjZWCxYs0Pnz5yuiPgCS6tatW6Z+AHA0f/75Z5n6gYpW6pDcunVrvf322zp8+LC+//57BQYGavjw4QoODtZjjz1WETUC1V6dOnXK1A8AjiYzM7NM/UBFK3VILmAymXTHHXfo448/1o8//qiGDRvq888/L8/aAPzX0qVLy9QPAI4mPz+/TP1ARbvmkPzHH38oPj5erVq10m233aZatWppxowZ5VkbgP8KCAgoUz8AOBpPT88y9QMVrdRX3Pvoo4/01Vdf6aefflKzZs00aNAgLV68WOHh4RVRHwBJrq6uZeoHAEdz5syZMvUDFa3UIXnSpEkaMGCA3n//fS4XCVQSb2/vMvUDAIDSKXVIPnz4sEwmU0XUAqAYv/zyy1X7W7duXUnVAABQ9ZV6TrLJZNK6dev00EMPKSoqyrJEy5dffqn169eXe4EAOMEFAIDKVuqQ/O9//1sxMTGqUaOGduzYYVkfOTs7W5MnTy73AgFIp0+fLlM/AAAonVKH5EmTJmnWrFn6+OOP5e7ubmnv2LGjfv7553ItDsAlnOACAEDlKnVITk5OVpcuXQq1+/n5KSsrqzxqsvLnn3/qoYceUkBAgGrUqKEWLVpo27Ztln7DMDR+/Hhdd911qlGjhrp166aUlBSrbZw4cUKDBg2Sr6+v/P39NXToUOXm5lqN2b17tzp37iwvLy+FhYUpPj6+3PcFuFatWrUqUz8AACidUofkkJAQHThwoFD7+vXry/066ydPnlTHjh3l7u6u77//Xvv27dPUqVNVu3Zty5j4+Hi9//77mjVrljZv3ixvb2/FxMTo3LlzljGDBg3S3r17lZCQoKVLl2rt2rUaPny4pT8nJ0fdu3dXeHi4tm/frrfffltxcXGaPXt2ue4PcK327t1bpn4AAFA6pV7dYtiwYXrmmWf06aefymQy6ejRo9q4caOef/55jRs3rlyLe+uttxQWFqbPPvvM0tawYUPL14Zh6L333tOrr76qPn36SJK++OILBQcHa9GiRerfv7+SkpK0fPlybd26VW3btpUkffDBB+rZs6feeecdhYaGau7cucrLy9Onn34qDw8P3Xjjjdq5c6feffddqzAN2MvVVpRhxRkAAMpXqY8kv/TSSxo4cKC6du2q3NxcdenSRY8//rj+9re/6amnnirX4pYsWaK2bdvqgQceUFBQkFq3bq2PP/7Y0n/w4EGlpaWpW7duljY/Pz+1a9dOGzdulCRt3LhR/v7+loAsSd26dZOLi4s2b95sGdOlSxd5eHhYxsTExCg5OVknT54ssrbz588rJyfH6gZUlMzMzDL1AwCA0rmmJeBeeeUVnThxQnv27NGmTZuUkZGh119/XWfPni3X4n7//XfNnDlTERER+uGHH/T3v/9dTz/9tD7//HNJUlpamiQpODjY6nHBwcGWvrS0NAUFBVn1u7m5qU6dOlZjitrG5c9ha8qUKfLz87PcwsLCyri3QPEMwyhTPwAAKJ1Sh+QCHh4eat68uW677Ta5u7vr3XfftZoKUR7MZrNuueUWTZ48Wa1bt9bw4cM1bNgwzZo1q1yf51qMHTtW2dnZltuRI0fsXRIAAADKSYlD8vnz5zV27Fi1bdtWHTp00KJFiyRJn332mRo2bKhp06bp2WefLdfirrvuOjVv3tyqLTIyUocPH5Z06SRCSTp27JjVmGPHjln6QkJClJ6ebtV/4cIFnThxwmpMUdu4/DlseXp6ytfX1+oGAACAqqHEIXn8+PGaOXOmGjRooEOHDumBBx7Q8OHDNW3aNL377rs6dOiQXnzxxXItrmPHjkpOTrZq+/XXXxUeHi7p0kl8ISEhWrlypaU/JydHmzdvVlRUlCQpKipKWVlZ2r59u2XMqlWrZDab1a5dO8uYtWvXWl21LCEhQU2bNrVaSQMAAADVQ4lD8jfffKMvvvhCCxYs0IoVK3Tx4kVduHBBu3btUv/+/eXq6lruxT377LPatGmTJk+erAMHDuirr77S7NmzNWLECEmX5kePGjVKkyZN0pIlS/TLL7/okUceUWhoqGJjYyVdOvLco0cPDRs2TFu2bNFPP/2kkSNHqn///goNDZUkDRw4UB4eHho6dKj27t2r+fPna/r06Ro9enS57xMAAAAcX4mXgPvjjz/Upk0bSdJNN90kT09PPfvssxW69NStt96qhQsXauzYsXrttdfUsGFDvffeexo0aJBlzAsvvKDTp09r+PDhysrKUqdOnbR8+XJ5eXlZxsydO1cjR45U165d5eLior59++r999+39Pv5+WnFihUaMWKE2rRpo7p162r8+PEs/wYAAFBNlTgkX7x40WqJNDc3N9WqVatCirrc3XffrbvvvrvYfpPJpNdee02vvfZasWPq1Kmjr7766orPc/PNN2vdunXXXCcAAACqjhKHZMMwNGTIEHl6ekqSzp07pyeeeELe3t5W4/7zn/+Ub4UAAABAJStxSB48eLDV/YceeqjciwEAAAAcQYlD8uWXhgYAAACqsmu+mAgAAABQVRGSAQAAABuEZAAAAMAGIRkAAACwQUgGAAAAbBCSAQAAABuEZAAAAMAGIRkAAACwQUgGAAAAbBCSAQAAABuEZAAAAMAGIRkAAACwQUgGAAAAbBCSAQAAABuEZAAAAMAGIRkAAACwQUgGAAAAbBCSAQAAABuEZAAAAMAGIRkAAACwQUgGAAAAbBCSAQAAABtu9i4AAABIhmEoPz/f3mU4lLy8PHuXUCnc3d1lMpnsXQZsEJIBAHAA+fn5iouLs3cZDqW6vB5xcXHy8PCwdxmwwXQLAAAAwAZHkgEAcADu7u7V5sipVLKjxNXl9XB3d7d3CSgCIRkAAAdgMpmq1UfukydP1ssvv3zFfsCemG4BAADsorggTECGIyAkAwAAADYIyQAAwG5s5x1zFBmOgpAMAAAcQnU5UQ/OgZAMAAAA2CAkAwAAADYIyQAAAIANQjIAAABgg5AMAAAA2CAkAwAAADYIyQAAAIANQjIAAABgg5AMAAAA2CAkAwAAADYIyQAAAIANpwrJb775pkwmk0aNGmVpO3funEaMGKGAgADVqlVLffv21bFjx6wed/jwYfXq1Us1a9ZUUFCQxowZowsXLliNWbNmjW655RZ5enqqcePGmjNnTiXsEQAAAByR04TkrVu36qOPPtLNN99s1f7ss8/q22+/1TfffKPExEQdPXpU9913n6X/4sWL6tWrl/Ly8rRhwwZ9/vnnmjNnjsaPH28Zc/DgQfXq1Ut33HGHdu7cqVGjRunxxx/XDz/8UGn7BwAAAMfhFCE5NzdXgwYN0scff6zatWtb2rOzs/XPf/5T7777ru688061adNGn332mTZs2KBNmzZJklasWKF9+/bpX//6l1q1aqW77rpLr7/+umbMmKG8vDxJ0qxZs9SwYUNNnTpVkZGRGjlypO6//35NmzbNLvsLAAAA+3KKkDxixAj16tVL3bp1s2rfvn278vPzrdqbNWum+vXra+PGjZKkjRs3qkWLFgoODraMiYmJUU5Ojvbu3WsZY7vtmJgYyzaKcv78eeXk5FjdAAAAUDW42buAq5k3b55+/vlnbd26tVBfWlqaPDw85O/vb9UeHBystLQ0y5jLA3JBf0Hflcbk5OTo7NmzqlGjRqHnnjJliiZOnHjN+wUAAADH5dBHko8cOaJnnnlGc+fOlZeXl73LsTJ27FhlZ2dbbkeOHLF3SQAAACgnDh2St2/frvT0dN1yyy1yc3OTm5ubEhMT9f7778vNzU3BwcHKy8tTVlaW1eOOHTumkJAQSVJISEih1S4K7l9tjK+vb5FHkSXJ09NTvr6+VjcAAABUDQ4dkrt27apffvlFO3futNzatm2rQYMGWb52d3fXypUrLY9JTk7W4cOHFRUVJUmKiorSL7/8ovT0dMuYhIQE+fr6qnnz5pYxl2+jYEzBNgAAAFC9OPScZB8fH910001Wbd7e3goICLC0Dx06VKNHj1adOnXk6+urp556SlFRUWrfvr0kqXv37mrevLkefvhhxcfHKy0tTa+++qpGjBghT09PSdITTzyhDz/8UC+88IIee+wxrVq1Sl9//bWWLVtWuTsMAAAAh+DQIbkkpk2bJhcXF/Xt21fnz59XTEyM/vGPf1j6XV1dtXTpUv39739XVFSUvL29NXjwYL322muWMQ0bNtSyZcv07LPPavr06br++uv1ySefKCYmxh67BAAAADtzupC8Zs0aq/teXl6aMWOGZsyYUexjwsPD9d13311xu7fffrt27NhRHiUCAADAyTn0nGQAAADAHgjJAAAAgA1CMgAAAGCDkAwAAADYICQDAAAANgjJAAAAgA1CMgAAAGCDkAwAAADYICQDAAAANgjJAAAAgA1CMgAAAGCDkAwAAADYICQDAAAANgjJAAAAgA1CMgAAAGCDkAwAAADYICQDAAAANgjJAAAAgA1CMgAAAGCDkAwAAADYICQDAAAANtzsXQBwLQzDUH5+vr3LcCh5eXn2LqFSuLu7y2Qy2bsMAEAVR0iGU8rPz1dcXJy9y3Ao1eX1iIuLk4eHh73LAABUcUy3AAAAAGxwJBlOyd3dvdocOZVKdpS4urwe7u7u9i4BAFANEJLhlEwmU7X6yH3y5Ml6+eWXr9gPAADKD9MtACdRXBAmIAMAUP4IyQAAAIANQjLgRGznHXMUGQCAikFIBpxUdTlRDwAAeyAkAwAAADYIyQAAAIANQjIAAABgg5AMAAAA2OBiIgAAh2IYhvLz8+1dBipJXl5ekV+j6nN3d5fJZLJ3GcUiJAMAHEp+fj6rt1RTLGtZvcTFxTn01XOZbgEAAADY4EgyAMBh/b1zc7m7cjynKjMMQxfMhiTJzcXk0B+/o+zyL5o1c90+e5dRIoRkAIDDcnd1ISRXA477gTuqM/7yAAAAADYIyQAAAIANQjIAAABgg5AMAAAA2CAkAwAAADYIyQAAAIANhw7JU6ZM0a233iofHx8FBQUpNjZWycnJVmPOnTunESNGKCAgQLVq1VLfvn117NgxqzGHDx9Wr169VLNmTQUFBWnMmDG6cOGC1Zg1a9bolltukaenpxo3bqw5c+ZU9O4BAADAQTl0SE5MTNSIESO0adMmJSQkKD8/X927d9fp06ctY5599ll9++23+uabb5SYmKijR4/qvvvus/RfvHhRvXr1Ul5enjZs2KDPP/9cc+bM0fjx4y1jDh48qF69eumOO+7Qzp07NWrUKD3++OP64YcfKnV/AQAA4Bgc+mIiy5cvt7o/Z84cBQUFafv27erSpYuys7P1z3/+U1999ZXuvPNOSdJnn32myMhIbdq0Se3bt9eKFSu0b98+/fjjjwoODlarVq30+uuv68UXX7RcM3zWrFlq2LChpk6dKkmKjIzU+vXrNW3aNMXExFT6fgMAAMC+HPpIsq3s7GxJUp06dSRJ27dvV35+vrp162YZ06xZM9WvX18bN26UJG3cuFEtWrRQcHCwZUxMTIxycnK0d+9ey5jLt1EwpmAbRTl//rxycnKsbgAAAKganCYkm81mjRo1Sh07dtRNN90kSUpLS5OHh4f8/f2txgYHBystLc0y5vKAXNBf0HelMTk5OTp79myR9UyZMkV+fn6WW1hYWJn3EQAAAI7BaULyiBEjtGfPHs2bN8/epUiSxo4dq+zsbMvtyJEj9i4JAAAA5cSh5yQXGDlypJYuXaq1a9fq+uuvt7SHhIQoLy9PWVlZVkeTjx07ppCQEMuYLVu2WG2vYPWLy8fYrohx7Ngx+fr6qkaNGkXW5OnpKU9PzzLvGwAAAByPQx9JNgxDI0eO1MKFC7Vq1So1bNjQqr9NmzZyd3fXypUrLW3Jyck6fPiwoqKiJElRUVH65ZdflJ6ebhmTkJAgX19fNW/e3DLm8m0UjCnYBgAAAKoXhz6SPGLECH311VdavHixfHx8LHOI/fz8VKNGDfn5+Wno0KEaPXq06tSpI19fXz311FOKiopS+/btJUndu3dX8+bN9fDDDys+Pl5paWl69dVXNWLECMuR4CeeeEIffvihXnjhBT322GNatWqVvv76ay1btsxu+w4AAAD7cegjyTNnzlR2drZuv/12XXfddZbb/PnzLWOmTZumu+++W3379lWXLl0UEhKi//znP5Z+V1dXLV26VK6uroqKitJDDz2kRx55RK+99pplTMOGDbVs2TIlJCSoZcuWmjp1qj755BOWfwMAAKimHPpIsmEYVx3j5eWlGTNmaMaMGcWOCQ8P13fffXfF7dx+++3asWNHqWsEAABA1ePQR5IBAAAAeyAkAwAAADYIyQAAAIANh56TjKszDEP5+fn2LgOVJC8vr8ivUfW5u7vLZDLZuwwAqDYIyU4uPz9fcXFx9i4DdjB58mR7l4BKFBcXJw8PD3uXAQDVBtMtAAAAABscSa5Cbuv5jFxd3e1dBiqQYRgyX7w0vcbFlY/fq7qLF/O15bvp9i6j0l2+/Gf+RbMdKwFQ3i7/nS7JUr/2REiuQlxd3eXqxsexVZ67p70rACrU5edZzFy3z46VAKhI+fn5lqsfOyKmWwAAAAA2OJIMAHAo7u7/mzb2987N5e7K8Rygqsi/aLZ8QnT577ojIiQDABzK5XPt3V1dCMlAFeXo59XwlwcAAACwQUgGAAAAbBCSAQAAABuEZAAAAMAGIRkAAACwQUgGAAAAbBCSAQAAABuEZAAAAMAGIRkAAACwQUgGAAAAbHBZaidnGIbl64sX8uxYCYDydvnv9OW/69VJ/kWzvUtABTMMQxfMl36+3VxMDn+pYpSNM/1OE5KdXH5+vuXrLd+/b8dKAFSk/Px8eXp62ruMSjdz3T57lwCgmmK6BQAAAGCDI8lOzt3d3fL1bXc9LVc3DztWA6A8XbyQZ/mE6PLf9arO3d1dcXFx9i4DlSQvL0+TJ0+WJL388svy8OB9rLpw9L9rhGQnd/ncLVc3D0IyUEVVp3maJpOJoFRNeXh48L2Hw2C6BQAAAGCDkAwAAADYYLpFFXLxYv7VB8GpGYYh83+/zy6u7tXqI/jqiN9pALAfQnIVsuW76fYuAQAAoEpgugUAAABggyPJTo6lkqoXlkqqvhx9qSQAqGoIyU6OpZKqL5ZKAgCg4jDdAgAAALBBSAYAAABsEJIBAAAAG4RkAAAAwAYhGQAAALBBSAYAAABsEJIBAAAAG4RkAAAAwAYhGQAAALBBSAYAAABsEJIBAAAAG4RkAAAAwAYh2caMGTPUoEEDeXl5qV27dtqyZYu9SwIAAEAlc7N3AY5k/vz5Gj16tGbNmqV27drpvffeU0xMjJKTkxUUFGTv8gAAVZhhGMrPz7d3GZUuLy+vyK+rE3d3d5lMJnuXARuE5Mu8++67GjZsmB599FFJ0qxZs7Rs2TJ9+umneumll+xcHS7HmwlvJkBVk5+fr7i4OHuXYVeTJ0+2dwl2ERcXJw8PD3uXARuE5P/Ky8vT9u3bNXbsWEubi4uLunXrpo0bNxYaf/78eZ0/f95yPycnp1LqxCW8mfBmAgBARSIk/9fx48d18eJFBQcHW7UHBwdr//79hcZPmTJFEydOrKzyAABVnLu7e7X85//yTwar6ydF7u7u9i4BRSAkX6OxY8dq9OjRlvs5OTkKCwuzY0XVC28mvJkAVY3JZKq2n5J4enrauwSgEELyf9WtW1eurq46duyYVfuxY8cUEhJSaLynpye/1HbEmwkAAKhILAH3Xx4eHmrTpo1WrlxpaTObzVq5cqWioqLsWBkAAAAqG0eSLzN69GgNHjxYbdu21W233ab33ntPp0+ftqx2AQAAgOqBkHyZfv36KSMjQ+PHj1daWppatWql5cuXFzqZDwAAAFWbyTAMw95FVAU5OTny8/NTdna2fH197V0OAAAAbJQmrzEnGQAAALBBSAYAAABsEJIBAAAAG4RkAAAAwAYhGQAAALBBSAYAAABsEJIBAAAAG4RkAAAAwAYhGQAAALBBSAYAAABsEJIBAAAAG4RkAAAAwAYhGQAAALDhZu8CqgrDMCRJOTk5dq4EAAAARSnIaQW57UoIyeXk1KlTkqSwsDA7VwIAAIArOXXqlPz8/K44xmSUJErjqsxms44ePSofHx+ZTCZ7l4MqLCcnR2FhYTpy5Ih8fX3tXQ4AlBl/11BZDMPQqVOnFBoaKheXK8865khyOXFxcdH1119v7zJQjfj6+vJmAqBK4e8aKsPVjiAX4MQ9AAAAwAYhGQAAALBBSAacjKenpyZMmCBPT097lwIA5YK/a3BEnLgHAAAA2OBIMgAAAGCDkAwAAADYICQDAAAANgjJgBOZM2eO/P397V0GAABVHiEZsIMhQ4bIZDIVuh04cMDepQHANSvq79rlt7i4OHuXCJQYV9wD7KRHjx767LPPrNoCAwPtVA0AlN1ff/1l+Xr+/PkaP368kpOTLW21atWyfG0Yhi5evCg3N6IIHBNHkgE78fT0VEhIiNVt+vTpatGihby9vRUWFqYnn3xSubm5xW5j165duuOOO+Tj4yNfX1+1adNG27Zts/SvX79enTt3Vo0aNRQWFqann35ap0+frozdA1ANXf73zM/PTyaTyXJ///798vHx0ffff682bdrI09NT69ev15AhQxQbG2u1nVGjRun222+33DebzZoyZYoaNmyoGjVqqGXLllqwYEHl7hyqHUIy4EBcXFz0/vvva+/evfr888+1atUqvfDCC8WOHzRokK6//npt3bpV27dv10svvSR3d3dJ0m+//aYePXqob9++2r17t+bPn6/169dr5MiRlbU7AFDISy+9pDfffFNJSUm6+eabS/SYKVOm6IsvvtCsWbO0d+9ePfvss3rooYeUmJhYwdWiOuMzDsBOli5davXR41133aVvvvnGcr9BgwaaNGmSnnjiCf3jH/8ochuHDx/WmDFj1KxZM0lSRESEpW/KlCkaNGiQRo0aZel7//33FR0drZkzZ8rLy6sC9goAruy1117T//3f/5V4/Pnz5zV58mT9+OOPioqKkiTdcMMNWr9+vT766CNFR0dXVKmo5gjJgJ3ccccdmjlzpuW+t7e3fvzxR02ZMkX79+9XTk6OLly4oHPnzunMmTOqWbNmoW2MHj1ajz/+uL788kt169ZNDzzwgBo1aiTp0lSM3bt3a+7cuZbxhmHIbDbr4MGDioyMrPidBAAbbdu2LdX4AwcO6MyZM4WCdV5enlq3bl2epQFWCMmAnXh7e6tx48aW+4cOHdLdd9+tv//973rjjTdUp04drV+/XkOHDlVeXl6RITkuLk4DBw7UsmXL9P3332vChAmaN2+e7r33XuXm5upvf/ubnn766UKPq1+/foXuGwAUx9vb2+q+i4uLDMOwasvPz7d8XXBexrJly1SvXj2rcZ6enhVUJUBIBhzG9u3bZTabNXXqVLm4XDpd4Ouvv77q45o0aaImTZro2Wef1YABA/TZZ5/p3nvv1S233KJ9+/ZZBXEAcDSBgYHas2ePVdvOnTst51c0b95cnp6eOnz4MFMrUKk4cQ9wEI0bN1Z+fr4++OAD/f777/ryyy81a9asYsefPXtWI0eO1Jo1a5SamqqffvpJW7dutUyjePHFF7VhwwaNHDlSO3fuVEpKihYvXsyJewAcyp133qlt27bpiy++UEpKiiZMmGAVmn18fPT888/r2Wef1eeff67ffvtNP//8sz744AN9/vnndqwcVR0hGXAQLVu21Lvvvqu33npLN910k+bOnaspU6YUO97V1VWZmZl65JFH1KRJEz344IO66667NHHiREnSzTffrMTERP3666/q3LmzWrdurfHjxys0NLSydgkAriomJkbjxo3TCy+8oFtvvVWnTp3SI488YjXm9ddf17hx4zRlyhRFRkaqR48eWrZsmRo2bGinqlEdmAzbiUAAAABANceRZAAAAMAGIRkAAACwQUgGAAAAbBCSAQAAABuEZAAAAMAGIRkAAACwQUgGAAAAbBCSAQAAABuEZABAmR06dEgmk0k7d+6UJK1Zs0Ymk0lZWVl2rQsArhUhGQAc3JAhQxQbG3vNj1+4cKHat28vPz8/+fj46MYbb9SoUaPKrT5JCgsL019//aWbbrqpXLcLAPbiZu8CAAAVZ+XKlerXr5/eeOMN9e7dWyaTSfv27VNCQkK5Po+rq6tCQkLKdZt5eXny8PAo120CQElxJBkAnMyCBQvUokUL1ahRQwEBAerWrZtOnz5d5Nhvv/1WHTt21JgxY9S0aVM1adJEsbGxmjFjhmVMXFycWrVqpY8++khhYWGqWbOmHnzwQWVnZ1vGmM1mvfbaa7r++uvl6empVq1aafny5ZZ+2+kWRVm/fr06d+6sGjVqKCwsTE8//bRV3Q0aNNDrr7+uRx55RL6+vho+fHgZXiUAKBtCMgA4kb/++ksDBgzQY489pqSkJK1Zs0b33XefDMMocnxISIj27t2rPXv2XHG7Bw4c0Ndff61vv/1Wy5cv144dO/Tkk09a+qdPn66pU6fqnXfe0e7duxUTE6PevXsrJSWlRHX/9ttv6tGjh/r27avdu3dr/vz5Wr9+vUaOHGk17p133lHLli21Y8cOjRs3rkTbBoCKYDKK+8sKAHAIQ4YMUVZWlhYtWqSff/5Zbdq00aFDhxQeHn7Vx54+fVoPPvigvvvuO4WHh6t9+/bq3r27Bg0aJE9PT0mXjiRPmjRJqampqlevniRp+fLl6tWrl/7880+FhISoXr16GjFihF5++WXLtm+77TbdeuutmjFjhg4dOqSGDRtqx44datWqldasWaM77rhDJ0+elL+/vx5//HG5urrqo48+sjx+/fr1io6O1unTp+Xl5aUGDRqodevWWrhwYTm/ggBQehxJBgAn0rJlS3Xt2lUtWrTQAw88oI8//lgnT54sdry3t7eWLVumAwcO6NVXX1WtWrX03HPP6bbbbtOZM2cs4+rXr28JyJIUFRUls9ms5ORk5eTk6OjRo+rYsaPVtjt27KikpKQS1b1r1y7NmTNHtWrVstxiYmJkNpt18OBBy7i2bduW9KUAgApFSAYAJ+Lq6qqEhAR9//33at68uT744AM1bdrUKmgWpVGjRnr88cf1ySef6Oeff9a+ffs0f/78Sqpays3N1d/+9jft3LnTctu1a5dSUlLUqFEjyzhvb+9KqwkAroSQDABOxmQyqWPHjpo4caJ27NghDw+PUk1RaNCggWrWrGl10tzhw4d19OhRy/1NmzbJxcVFTZs2la+vr0JDQ/XTTz9Zbeenn35S8+bNS/Sct9xyi/bt26fGjRsXurGCBQBHxBJwAOBENm/erJUrV6p79+4KCgrS5s2blZGRocjIyCLHx8XF6cyZM+rZs6fCw8OVlZWl999/X/n5+fq///s/yzgvLy8NHjxY77zzjnJycvT000/rwQcftCzrNmbMGE2YMEGNGjVSq1at9Nlnn2nnzp2aO3duiep+8cUX1b59e40cOVKPP/64vL29LUvRffjhh2V/YQCgnBGSAcCJ+Pr6au3atXrvvfeUk5Oj8PBwTZ06VXfddVeR46OjozVjxgw98sgjOnbsmGrXrq3WrVtrxYoVatq0qWVc48aNdd9996lnz546ceKE7r77bv3jH/+w9D/99NPKzs7Wc889p/T0dDVv3lxLlixRREREieq++eablZiYqFdeeUWdO3eWYRhq1KiR+vXrV7YXBAAqCKtbAEA1FxcXp0WLFl1xjWMAqG6YkwwAAADYICQDAAAANphuAQAAANjgSDIAAABgg5AMAAAA2CAkAwAAADYIyQAAAIANQjIAAABgg5AMAAAA2CAkAwAAADYIyQAAAICN/w/9Cz9F0Ly5HwAAAABJRU5ErkJggg==",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "import matplotlib.pyplot as plt\n",
+ "import seaborn as sns\n",
+ "\n",
+ "# Plot distribution of spoilers vs. non-spoilers\n",
+ "plt.figure(figsize=(8, 6))\n",
+ "sns.countplot(x='is_spoiler', data=df, palette='coolwarm')\n",
+ "plt.title('Distribution of Spoiler vs. Non-Spoiler Reviews')\n",
+ "plt.xlabel('Is Spoiler')\n",
+ "plt.ylabel('Count')\n",
+ "plt.show()\n",
+ "\n",
+ "# Plot the distribution of review lengths\n",
+ "plt.figure(figsize=(10, 6))\n",
+ "sns.histplot(df['review_length'], kde=True, bins=30, color='purple')\n",
+ "plt.title('Distribution of Review Lengths')\n",
+ "plt.xlabel('Review Length')\n",
+ "plt.ylabel('Frequency')\n",
+ "plt.show()\n",
+ "\n",
+ "# Correlation between review length and is_spoiler\n",
+ "plt.figure(figsize=(8, 6))\n",
+ "sns.boxplot(x='is_spoiler', y='review_length', data=df, palette='coolwarm')\n",
+ "plt.title('Review Length vs. Spoiler')\n",
+ "plt.xlabel('Is Spoiler')\n",
+ "plt.ylabel('Review Length')\n",
+ "plt.show()\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "37f4587a",
+ "metadata": {
+ "papermill": {
+ "duration": 0.012845,
+ "end_time": "2024-08-16T07:46:30.784398",
+ "exception": false,
+ "start_time": "2024-08-16T07:46:30.771553",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "source": [
+ "### **3. Data Preprocessing**"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "id": "681653cb",
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2024-08-16T07:46:30.812422Z",
+ "iopub.status.busy": "2024-08-16T07:46:30.811937Z",
+ "iopub.status.idle": "2024-08-16T07:48:00.760312Z",
+ "shell.execute_reply": "2024-08-16T07:48:00.759275Z"
+ },
+ "papermill": {
+ "duration": 89.964917,
+ "end_time": "2024-08-16T07:48:00.762642",
+ "exception": false,
+ "start_time": "2024-08-16T07:46:30.797725",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "0abe9c980f1f4b19939762b120a4e9f5",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "Cleaning Text: 0%| | 0/301848 [00:00, ?it/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "import re\n",
+ "import nltk\n",
+ "from nltk.corpus import stopwords\n",
+ "from nltk.stem import PorterStemmer\n",
+ "from tqdm.notebook import tqdm\n",
+ "# Set of English stopwords\n",
+ "stop_words = set(stopwords.words('english'))\n",
+ "\n",
+ "def clean_text(text):\n",
+ " # Remove URLs\n",
+ " text = re.sub(r'http\\S+', '', text)\n",
+ " text = re.sub(r'www\\S+', '', text)\n",
+ " \n",
+ " # Remove emails\n",
+ " text = re.sub(r'\\S*@\\S*\\s?', '', text)\n",
+ " \n",
+ " # Remove all non-word characters and digits\n",
+ " text = re.sub(r'[^a-zA-Z\\s]', '', text)\n",
+ " \n",
+ " # Normalize whitespaces\n",
+ " text = re.sub(r'\\s+', ' ', text)\n",
+ " \n",
+ " # Convert text to lowercase\n",
+ " text = text.lower()\n",
+ " \n",
+ " return text\n",
+ "# Set up tqdm for pandas apply\n",
+ "tqdm.pandas(desc=\"Cleaning Text\")\n",
+ "\n",
+ "# Apply the cleaning function with a progress bar\n",
+ "df['cleaned_review_text'] = df['review_text'].progress_apply(clean_text)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "id": "51c4cc6c",
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2024-08-16T07:48:00.791648Z",
+ "iopub.status.busy": "2024-08-16T07:48:00.791293Z",
+ "iopub.status.idle": "2024-08-16T07:48:13.757187Z",
+ "shell.execute_reply": "2024-08-16T07:48:13.756196Z"
+ },
+ "papermill": {
+ "duration": 12.982821,
+ "end_time": "2024-08-16T07:48:13.759393",
+ "exception": false,
+ "start_time": "2024-08-16T07:48:00.776572",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "DataFrame saved successfully to /kaggle/working/preprocessed.json.\n"
+ ]
+ }
+ ],
+ "source": [
+ "# Specify the path where you want to save the JSON file\n",
+ "json_file_path = '/kaggle/working/preprocessed.json' \n",
+ "\n",
+ "# Save the DataFrame to a JSON file\n",
+ "df.to_json(json_file_path, orient='records', lines=True)\n",
+ "\n",
+ "print(f\"DataFrame saved successfully to {json_file_path}.\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "id": "e334948c",
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2024-08-16T07:48:13.788310Z",
+ "iopub.status.busy": "2024-08-16T07:48:13.787993Z",
+ "iopub.status.idle": "2024-08-16T07:48:15.559539Z",
+ "shell.execute_reply": "2024-08-16T07:48:15.558562Z"
+ },
+ "papermill": {
+ "duration": 1.788951,
+ "end_time": "2024-08-16T07:48:15.562150",
+ "exception": false,
+ "start_time": "2024-08-16T07:48:13.773199",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [],
+ "source": [
+ "import re\n",
+ "from sklearn.model_selection import train_test_split\n",
+ "from sklearn.preprocessing import LabelEncoder\n",
+ "from imblearn.over_sampling import SMOTE\n",
+ "import torch\n",
+ "from torch.utils.data import DataLoader, Dataset\n",
+ "from transformers import BertTokenizer\n",
+ "\n",
+ "# Encode the target label\n",
+ "label_encoder = LabelEncoder()\n",
+ "df['label'] = label_encoder.fit_transform(df['is_spoiler'])\n",
+ "train_df, temp_df = train_test_split(df, test_size=0.8, random_state=42, stratify=df['label'])\n",
+ "val_df, test_df = train_test_split(temp_df, test_size=0.05, random_state=42, stratify=temp_df['label'])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "id": "48bc8443",
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2024-08-16T07:48:15.591615Z",
+ "iopub.status.busy": "2024-08-16T07:48:15.590702Z",
+ "iopub.status.idle": "2024-08-16T07:48:15.600986Z",
+ "shell.execute_reply": "2024-08-16T07:48:15.600005Z"
+ },
+ "papermill": {
+ "duration": 0.026783,
+ "end_time": "2024-08-16T07:48:15.603016",
+ "exception": false,
+ "start_time": "2024-08-16T07:48:15.576233",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [],
+ "source": [
+ "class SpoilerDataset(Dataset):\n",
+ " def __init__(self, texts, labels, tokenizer, max_length=512, stride=256):\n",
+ " self.texts = texts\n",
+ " self.labels = labels\n",
+ " self.tokenizer = tokenizer\n",
+ " self.max_length = max_length\n",
+ " self.stride = stride\n",
+ "\n",
+ " def __len__(self):\n",
+ " return len(self.texts)\n",
+ "\n",
+ " def __getitem__(self, idx):\n",
+ " text = self.texts[idx]\n",
+ " label = self.labels[idx]\n",
+ " inputs = self.tokenizer(\n",
+ " text,\n",
+ " add_special_tokens=True,\n",
+ " return_attention_mask=True,\n",
+ " return_tensors='pt',\n",
+ " truncation=True,\n",
+ " max_length=self.max_length,\n",
+ " padding='max_length',\n",
+ " stride=self.stride,\n",
+ " return_overflowing_tokens=True\n",
+ " )\n",
+ "\n",
+ " # Here you might want to handle multiple chunks if they exist\n",
+ " if 'overflowing_tokens' in inputs:\n",
+ " num_chunks = len(inputs['input_ids'])\n",
+ " chunks = [{\n",
+ " 'input_ids': inputs['input_ids'][i].flatten(),\n",
+ " 'attention_mask': inputs['attention_mask'][i].flatten(),\n",
+ " 'label': torch.tensor(label, dtype=torch.long)\n",
+ " } for i in range(num_chunks)]\n",
+ " return chunks\n",
+ " else:\n",
+ " return {\n",
+ " 'input_ids': inputs['input_ids'].flatten(),\n",
+ " 'attention_mask': inputs['attention_mask'].flatten(),\n",
+ " 'label': torch.tensor(label, dtype=torch.long)\n",
+ " }"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "id": "4b17c21f",
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2024-08-16T07:48:15.631657Z",
+ "iopub.status.busy": "2024-08-16T07:48:15.631325Z",
+ "iopub.status.idle": "2024-08-16T07:48:17.245490Z",
+ "shell.execute_reply": "2024-08-16T07:48:17.244611Z"
+ },
+ "papermill": {
+ "duration": 1.631282,
+ "end_time": "2024-08-16T07:48:17.247872",
+ "exception": false,
+ "start_time": "2024-08-16T07:48:15.616590",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "9399bcd4f4284470ab28ad1543ac955b",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "tokenizer_config.json: 0%| | 0.00/48.0 [00:00, ?B/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "8d04502224564a5880872f0937afb08b",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "vocab.txt: 0%| | 0.00/232k [00:00, ?B/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "a107680ccada42129be9e8ab2cbccc8b",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "tokenizer.json: 0%| | 0.00/466k [00:00, ?B/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "d8f811a908544cf48db61b0c463bc48c",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "config.json: 0%| | 0.00/570 [00:00, ?B/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "from transformers import BertTokenizer\n",
+ "\n",
+ "# Initialize the tokenizer\n",
+ "tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')\n",
+ "\n",
+ "# Create datasets with the resampled training data\n",
+ "train_dataset = SpoilerDataset(train_df['cleaned_review_text'].tolist(), train_df['label'].tolist(), tokenizer)\n",
+ "val_dataset = SpoilerDataset(val_df['cleaned_review_text'].tolist(), val_df['label'].tolist(), tokenizer)\n",
+ "test_dataset = SpoilerDataset(test_df['cleaned_review_text'].tolist(), test_df['label'].tolist(), tokenizer)\n",
+ "\n",
+ "train_loader = DataLoader(train_dataset, batch_size=8, shuffle=True)\n",
+ "val_loader = DataLoader(val_dataset, batch_size=8, shuffle=False)\n",
+ "test_loader = DataLoader(test_dataset, batch_size=8, shuffle=False)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "83ac7f76",
+ "metadata": {
+ "papermill": {
+ "duration": 0.013854,
+ "end_time": "2024-08-16T07:48:17.276630",
+ "exception": false,
+ "start_time": "2024-08-16T07:48:17.262776",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "source": [
+ "### **4. Modeling**"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "id": "f6fe0d7a",
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2024-08-16T07:48:17.306693Z",
+ "iopub.status.busy": "2024-08-16T07:48:17.306318Z",
+ "iopub.status.idle": "2024-08-16T07:48:21.184083Z",
+ "shell.execute_reply": "2024-08-16T07:48:21.183229Z"
+ },
+ "papermill": {
+ "duration": 3.895699,
+ "end_time": "2024-08-16T07:48:21.186495",
+ "exception": false,
+ "start_time": "2024-08-16T07:48:17.290796",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "df62b71be79f46c2a37d4137c6abb88f",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "model.safetensors: 0%| | 0.00/440M [00:00, ?B/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Some weights of BertForSequenceClassification were not initialized from the model checkpoint at bert-base-uncased and are newly initialized: ['classifier.bias', 'classifier.weight']\n",
+ "You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n"
+ ]
+ }
+ ],
+ "source": [
+ "from transformers import RobertaForSequenceClassification\n",
+ "import torch.nn as nn\n",
+ "import torch.optim as optim\n",
+ "import torch\n",
+ "import matplotlib.pyplot as plt\n",
+ "from tqdm.notebook import tqdm\n",
+ "from sklearn.metrics import accuracy_score\n",
+ "\n",
+ "# Initialize RoBERTa model for sequence classification\n",
+ "roberta_model = RobertaForSequenceClassification.from_pretrained('roberta-base', num_labels=2)\n",
+ "roberta_model = roberta_model.to(device)\n",
+ "# Define the loss function\n",
+ "loss_fn = nn.CrossEntropyLoss()\n",
+ "\n",
+ "\n",
+ "# Define optimizer (assuming the optimizer setup is missing in the provided code snippet)\n",
+ "optimizer = torch.optim.Adam(bert_model.parameters(), lr=2e-5)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "4e2038dc",
+ "metadata": {
+ "papermill": {
+ "duration": 0.013882,
+ "end_time": "2024-08-16T07:48:21.215112",
+ "exception": false,
+ "start_time": "2024-08-16T07:48:21.201230",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "source": [
+ "### **5. Training and Evaluation**"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "5921b623",
+ "metadata": {
+ "papermill": {
+ "duration": 0.014045,
+ "end_time": "2024-08-16T07:48:21.243424",
+ "exception": false,
+ "start_time": "2024-08-16T07:48:21.229379",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "source": [
+ "BERT model"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 17,
+ "id": "c0a560e0",
+ "metadata": {
+ "execution": {
+ "iopub.execute_input": "2024-08-16T07:48:21.273714Z",
+ "iopub.status.busy": "2024-08-16T07:48:21.273177Z",
+ "iopub.status.idle": "2024-08-16T07:48:21.289702Z",
+ "shell.execute_reply": "2024-08-16T07:48:21.288322Z"
+ },
+ "papermill": {
+ "duration": 0.034949,
+ "end_time": "2024-08-16T07:48:21.292510",
+ "exception": false,
+ "start_time": "2024-08-16T07:48:21.257561",
+ "status": "completed"
+ },
+ "tags": []
+ },
+ "outputs": [],
+ "source": [
+ "\n",
+ "# Define the train function\n",
+ "def train(model, dataloader, optimizer, loss_fn):\n",
+ " model.train()\n",
+ " total_loss, total_acc = 0, 0\n",
+ " progress_bar = tqdm(dataloader, desc=\"Training\")\n",
+ "\n",
+ " for batch in progress_bar:\n",
+ " if isinstance(batch, list): # Check if batch is a list (multiple chunks)\n",
+ " for chunk in batch:\n",
+ " loss, acc = process_chunk(model, chunk, optimizer, loss_fn)\n",
+ " total_loss += loss\n",
+ " total_acc += acc\n",
+ " else:\n",
+ " loss, acc = process_chunk(model, batch, optimizer, loss_fn)\n",
+ " total_loss += loss\n",
+ " total_acc += acc\n",
+ "\n",
+ " progress_bar.set_postfix(loss=total_loss / len(dataloader), acc=total_acc / len(dataloader))\n",
+ "\n",
+ " return total_loss / len(dataloader), total_acc / len(dataloader)\n",
+ "\n",
+ "# Process chunk function\n",
+ "def process_chunk(model, chunk, optimizer, loss_fn):\n",
+ " optimizer.zero_grad()\n",
+ " input_ids = chunk['input_ids'].to(device)\n",
+ " attention_mask = chunk['attention_mask'].to(device)\n",
+ " labels = chunk['label'].to(device)\n",
+ "\n",
+ " outputs = model(input_ids, attention_mask=attention_mask, labels=labels)\n",
+ " loss = outputs.loss\n",
+ " preds = torch.argmax(outputs.logits, dim=1)\n",
+ " acc = accuracy_score(labels.cpu().numpy(), preds.cpu().numpy())\n",
+ "\n",
+ " loss.backward()\n",
+ " optimizer.step()\n",
+ "\n",
+ " return loss.item(), acc\n",
+ "\n",
+ "# Define the evaluate function\n",
+ "def evaluate(model, dataloader):\n",
+ " model.eval()\n",
+ " total_acc = 0\n",
+ " progress_bar = tqdm(dataloader, desc=\"Evaluating\")\n",
+ "\n",
+ " for batch in progress_bar:\n",
+ " input_ids = batch['input_ids'].to(device)\n",
+ " attention_mask = batch['attention_mask'].to(device)\n",
+ " labels = batch['label'].to(device)\n",
+ "\n",
+ " with torch.no_grad():\n",
+ " outputs = model(input_ids, attention_mask=attention_mask)\n",
+ " preds = torch.argmax(outputs.logits, dim=1)\n",
+ " acc = accuracy_score(labels.cpu().numpy(), preds.cpu().numpy())\n",
+ "\n",
+ " total_acc += acc\n",
+ " progress_bar.set_postfix(acc=total_acc / len(dataloader))\n",
+ "\n",
+ " return total_acc / len(dataloader)\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "d0463a9b-cbe9-470b-983c-bdda599f97b6",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "train_losses = []\n",
+ "train_accuracies = []\n",
+ "val_accuracies = []"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "a33ca783",
+ "metadata": {
+ "papermill": {
+ "duration": 31591.533756,
+ "end_time": "2024-08-16T16:34:52.859133",
+ "exception": true,
+ "start_time": "2024-08-16T07:48:21.325377",
+ "status": "failed"
+ },
+ "tags": []
+ },
+ "outputs": [],
+ "source": [
+ "\n",
+ "# Training loop\n",
+ "n_epochs = 12 # Number of epochs\n",
+ "for epoch in range(n_epochs):\n",
+ " print(f\"Epoch {epoch+1}/{n_epochs}\")\n",
+ " \n",
+ " train_loss, train_acc = train(roberta_model, train_loader, optimizer, loss_fn)\n",
+ " val_acc = evaluate(roberta_model, val_loader)\n",
+ " \n",
+ " print(f'Epoch {epoch+1}: Train Loss {train_loss:.4f}, Validation Accuracy {val_acc:.4f}')\n",
+ "\n",
+ "# Function to get predictions and true labels\n",
+ "def get_predictions(model, dataloader):\n",
+ " model.eval()\n",
+ " predictions = []\n",
+ " true_labels = []\n",
+ " with torch.no_grad():\n",
+ " for batch in dataloader:\n",
+ " input_ids = batch['input_ids'].to(device)\n",
+ " labels = batch['labels'].to(device)\n",
+ " outputs = model(input_ids)\n",
+ " preds = torch.argmax(outputs.logits, dim=1)\n",
+ " predictions.extend(preds.tolist())\n",
+ " true_labels.extend(labels.tolist())\n",
+ " return predictions, true_labels\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "7d75a3fb",
+ "metadata": {
+ "execution": {
+ "iopub.status.busy": "2024-08-16T07:23:43.247960Z",
+ "iopub.status.idle": "2024-08-16T07:23:43.248327Z",
+ "shell.execute_reply": "2024-08-16T07:23:43.248155Z",
+ "shell.execute_reply.started": "2024-08-16T07:23:43.248142Z"
+ },
+ "papermill": {
+ "duration": null,
+ "end_time": null,
+ "exception": null,
+ "start_time": null,
+ "status": "pending"
+ },
+ "tags": []
+ },
+ "outputs": [],
+ "source": [
+ "torch.save(bert_model, 'RoBERTa_model_complete.pth')\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "id": "56a423c2-f8d5-4a3f-89b4-4a2b62a9a011",
+ "metadata": {},
+ "outputs": [
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABKUAAAHqCAYAAADVi/1VAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAADTSElEQVR4nOzdd3iT5dvG8W+6Cx2sLqC0pcyy95ChAgKyhwxloyiKiuCrorJRnPxQUHCwNyogOFCGOAApe5W9RwdQ6YKuJO8fkWptgQKlT8f5OY4ckDt3npwJpHl65R4mq9VqRUREREREREREJAfZGR1AREREREREREQKHhWlREREREREREQkx6koJSIiIiIiIiIiOU5FKRERERERERERyXEqSomIiIiIiIiISI5TUUpERERERERERHKcilIiIiIiIiIiIpLjVJQSEREREREREZEcp6KUiIiIiIiIiIjkOBWlRCTXGzBgAIGBgXd133HjxmEymbI3kIiIiIiIiNwzFaVE5K6ZTKYsXTZt2mR0VEMMGDAANzc3o2OIiIhIPvTpp59iMplo0KCB0VFERO6ayWq1Wo0OISJ508KFC9Ndnz9/PuvWrWPBggXp2lu1aoWPj89dP05KSgoWiwVnZ+c7vm9qaiqpqam4uLjc9ePfrQEDBvD1118THx+f448tIiIi+dsDDzzAxYsXOX36NMeOHaNcuXJGRxIRuWMORgcQkbyrT58+6a7/+eefrFu3LkP7f127do1ChQpl+XEcHR3vKh+Ag4MDDg76USciIiL5x6lTp9iyZQsrVqzg6aefZtGiRYwdO9boWBkkJCRQuHBho2OISC6m6Xsicl89+OCDVK1alZ07d9KsWTMKFSrE66+/DsC3335Lu3btKFmyJM7OzgQHBzNx4kTMZnO6Y/x3TanTp09jMpn44IMP+PzzzwkODsbZ2Zl69eqxffv2dPfNbE0pk8nEsGHDWLVqFVWrVsXZ2ZkqVaqwdu3aDPk3bdpE3bp1cXFxITg4mM8++yzb16n66quvqFOnDq6urpQoUYI+ffpw4cKFdH0iIiIYOHAgpUuXxtnZGT8/Pzp16sTp06fT+uzYsYPWrVtTokQJXF1dCQoKYtCgQdmWU0RERHKHRYsWUbRoUdq1a0f37t1ZtGhRhj5Xr17lpZdeIjAwEGdnZ0qXLk2/fv24fPlyWp/ExETGjRtHhQoVcHFxwc/Pj65du3LixAnAdh6U2VIMN87F5s6dm9Z2Y9mCEydO8Oijj+Lu7s4TTzwBwO+//85jjz1GmTJlcHZ2xt/fn5deeonr169nyH348GF69OiBl5cXrq6uVKxYkTfeeAOAX375BZPJxMqVKzPcb/HixZhMJrZu3XrHr6eIGEfDB0Tkvrty5Qpt27alV69e9OnTJ20q39y5c3Fzc2PEiBG4ubmxceNGxowZQ2xsLO+///5tj7t48WLi4uJ4+umnMZlMvPfee3Tt2pWTJ0/ednTVH3/8wYoVK3j22Wdxd3fn448/plu3bpw9e5bixYsDsHv3btq0aYOfnx/jx4/HbDYzYcIEvLy87v1F+dvcuXMZOHAg9erVY/LkyURGRvLRRx+xefNmdu/eTZEiRQDo1q0bBw8e5PnnnycwMJCoqCjWrVvH2bNn064/8sgjeHl58dprr1GkSBFOnz7NihUrsi2riIiI5A6LFi2ia9euODk50bt3b2bMmMH27dupV68eAPHx8TRt2pRDhw4xaNAgateuzeXLl1m9ejXnz5+nRIkSmM1m2rdvz4YNG+jVqxcvvvgicXFxrFu3jgMHDhAcHHzHuVJTU2ndujVNmjThgw8+SBsZ/9VXX3Ht2jWGDh1K8eLFCQ0NZdq0aZw/f56vvvoq7f779u2jadOmODo6MmTIEAIDAzlx4gRr1qzhrbfe4sEHH8Tf359FixbRpUuXDK9JcHAwjRo1uodXVkRynFVEJJs899xz1v/+WGnevLkVsM6cOTND/2vXrmVoe/rpp62FChWyJiYmprX179/fGhAQkHb91KlTVsBavHhxa3R0dFr7t99+awWsa9asSWsbO3ZshkyA1cnJyXr8+PG0tr1791oB67Rp09LaOnToYC1UqJD1woULaW3Hjh2zOjg4ZDhmZvr3728tXLjwTW9PTk62ent7W6tWrWq9fv16Wvt3331nBaxjxoyxWq1W619//WUFrO+///5Nj7Vy5UorYN2+ffttc4mIiEjetWPHDitgXbdundVqtVotFou1dOnS1hdffDGtz5gxY6yAdcWKFRnub7FYrFar1Tp79mwrYJ0yZcpN+/zyyy9WwPrLL7+ku/3GudicOXPS2vr3728FrK+99lqG42V2zjd58mSryWSynjlzJq2tWbNmVnd393Rt/85jtVqto0aNsjo7O1uvXr2a1hYVFWV1cHCwjh07NsPjiEjupul7InLfOTs7M3DgwAztrq6uaX+Pi4vj8uXLNG3alGvXrnH48OHbHrdnz54ULVo07XrTpk0BOHny5G3v27Jly3TfAFavXh0PD4+0+5rNZtavX0/nzp0pWbJkWr9y5crRtm3b2x4/K3bs2EFUVBTPPvtsuoXY27VrR6VKlfj+++8B2+vk5OTEpk2b+OuvvzI91o0RVd999x0pKSnZkk9ERERyn0WLFuHj48NDDz0E2JYl6NmzJ0uXLk1bAuGbb76hRo0aGUYT3eh/o0+JEiV4/vnnb9rnbgwdOjRD27/P+RISErh8+TKNGzfGarWye/duAC5dusRvv/3GoEGDKFOmzE3z9OvXj6SkJL7++uu0tmXLlpGamnrbdU1FJPdRUUpE7rtSpUrh5OSUof3gwYN06dIFT09PPDw88PLySjuZiImJue1x/3vCcqNAdbPCza3ue+P+N+4bFRXF9evXM93JJrt2tzlz5gwAFStWzHBbpUqV0m53dnbm3Xff5ccff8THx4dmzZrx3nvvERERkda/efPmdOvWjfHjx1OiRAk6derEnDlzSEpKypasIiIiYjyz2czSpUt56KGHOHXqFMePH+f48eM0aNCAyMhINmzYAMCJEyeoWrXqLY914sQJKlasmK0bwjg4OFC6dOkM7WfPnmXAgAEUK1YMNzc3vLy8aN68OfDPOd+NLwZvl7tSpUrUq1cv3TpaixYtomHDhtqBUCQPUlFKRO67f387dsPVq1dp3rw5e/fuZcKECaxZs4Z169bx7rvvAmCxWG57XHt7+0zbrVbrfb2vEYYPH87Ro0eZPHkyLi4ujB49msqVK6d9u2gymfj666/ZunUrw4YN48KFCwwaNIg6deoQHx9vcHoRERHJDhs3biQ8PJylS5dSvnz5tEuPHj0AMl3w/F7cbMTUfzelucHZ2Rk7O7sMfVu1asX333/Pq6++yqpVq1i3bl3aIulZOef7r379+vHrr79y/vx5Tpw4wZ9//qlRUiJ5lBY6FxFDbNq0iStXrrBixQqaNWuW1n7q1CkDU/3D29sbFxcXjh8/nuG2zNruRkBAAABHjhzh4YcfTnfbkSNH0m6/ITg4mJEjRzJy5EiOHTtGzZo1+fDDD1m4cGFan4YNG9KwYUPeeustFi9ezBNPPMHSpUt58sknsyWziIiIGGfRokV4e3vzySefZLhtxYoVrFy5kpkzZxIcHMyBAwdueazg4GC2bdtGSkrKTTeIuTEK/erVq+nab4zmzor9+/dz9OhR5s2bR79+/dLa161bl65f2bJlAW6bG6BXr16MGDGCJUuWcP36dRwdHenZs2eWM4lI7qGRUiJiiBsjlf49Mik5OZlPP/3UqEjp2Nvb07JlS1atWsXFixfT2o8fP86PP/6YLY9Rt25dvL29mTlzZrppdj/++COHDh2iXbt2AFy7do3ExMR09w0ODsbd3T3tfn/99VeGUV41a9YE0BQ+ERGRfOD69eusWLGC9u3b07179wyXYcOGERcXx+rVq+nWrRt79+5l5cqVGY5z43yhW7duXL58menTp9+0T0BAAPb29vz222/pbr+T87XMzvmsVisfffRRun5eXl40a9aM2bNnc/bs2Uzz3FCiRAnatm3LwoULWbRoEW3atKFEiRJZziQiuYdGSomIIRo3bkzRokXp378/L7zwAiaTiQULFuSq6XPjxo3j559/5oEHHmDo0KGYzWamT59O1apV2bNnT5aOkZKSwqRJkzK0FytWjGeffZZ3332XgQMH0rx5c3r37k1kZCQfffQRgYGBvPTSSwAcPXqUFi1a0KNHD0JCQnBwcGDlypVERkbSq1cvAObNm8enn35Kly5dCA4OJi4uji+++AIPDw8effTRbHtNRERExBirV68mLi6Ojh07Znp7w4YN8fLyYtGiRSxevJivv/6axx57LG06f3R0NKtXr2bmzJnUqFGDfv36MX/+fEaMGEFoaChNmzYlISGB9evX8+yzz9KpUyc8PT157LHHmDZtGiaTieDgYL777juioqKynLtSpUoEBwfz8ssvc+HCBTw8PPjmm28yXQP0448/pkmTJtSuXZshQ4YQFBTE6dOn+f777zOce/Xr14/u3bsDMHHixKy/kCKSq6goJSKGKF68ON999x0jR47kzTffpGjRovTp04cWLVrQunVro+MBUKdOHX788UdefvllRo8ejb+/PxMmTODQoUNZ2h0QbKO/Ro8enaE9ODiYZ599lgEDBlCoUCHeeecdXn31VQoXLkyXLl14991303bU8/f3p3fv3mzYsIEFCxbg4OBApUqVWL58Od26dQNsC52HhoaydOlSIiMj8fT0pH79+ixatIigoKBse01ERETEGIsWLcLFxYVWrVplerudnR3t2rVj0aJFJCUl8fvvvzN27FhWrlzJvHnz8Pb2pkWLFmkLkdvb2/PDDz+kTfn/5ptvKF68OE2aNKFatWppx502bRopKSnMnDkTZ2dnevTowfvvv3/bBclvcHR0ZM2aNbzwwgtpa2N26dKFYcOGUaNGjXR9a9SowZ9//sno0aOZMWMGiYmJBAQEpK2Z9W8dOnSgaNGiWCyWmxbqRCT3M1lz07AEEZE8oHPnzhw8eJBjx44ZHUVERESkQEpNTaVkyZJ06NCBWbNmGR1HRO6S1pQSEbmF69evp7t+7NgxfvjhBx588EFjAomIiIgIq1at4tKlS+kWTxeRvEcjpUREbsHPz48BAwZQtmxZzpw5w4wZM0hKSmL37t2UL1/e6HgiIiIiBcq2bdvYt28fEydOpESJEuzatcvoSCJyD7SmlIjILbRp04YlS5YQERGBs7MzjRo14u2331ZBSkRERMQAM2bMYOHChdSsWZO5c+caHUdE7pFGSomIiIiIiIiISI7TmlIiIiIiIiIiIpLjVJQSEREREREREZEcV+DWlLJYLFy8eBF3d3dMJpPRcURERCSPsFqtxMXFUbJkSezsCs73ejp3EhERkTuV1fOmAleUunjxIv7+/kbHEBERkTzq3LlzlC5d2ugYOUbnTiIiInK3bnfeVOCKUu7u7oDthfHw8DA4jYiIiOQVsbGx+Pv7p51LFBQ6dxIREZE7ldXzpgJXlLox7NzDw0MnViIiInLHCtoUNp07iYiIyN263XlTwVkQQURERCSfiYuLY/jw4QQEBODq6krjxo3Zvn172u1Wq5UxY8bg5+eHq6srLVu25NixYwYmFhEREfmHilIiIiIiedSTTz7JunXrWLBgAfv37+eRRx6hZcuWXLhwAYD33nuPjz/+mJkzZ7Jt2zYKFy5M69atSUxMNDi5iIiICJisVqvV6BA5KTY2Fk9PT2JiYjQEXURERLIst51DXL9+HXd3d7799lvatWuX1l6nTh3atm3LxIkTKVmyJCNHjuTll18GICYmBh8fH+bOnUuvXr2y9Di57XmLiIhI7pfV84cCt6aUiIhIdrJYLCQnJxsdQ7KBo6Mj9vb2RsfIstTUVMxmMy4uLunaXV1d+eOPPzh16hQRERG0bNky7TZPT08aNGjA1q1bb1qUSkpKIikpKe16bGzsbbPofSD5mZOT0y23MxcRkbunopSIiMhdSk5O5tSpU1gsFqOjSDYpUqQIvr6+eWIxc3d3dxo1asTEiROpXLkyPj4+LFmyhK1bt1KuXDkiIiIA8PHxSXc/Hx+ftNsyM3nyZMaPH5/lHHofSH5nZ2dHUFAQTk5ORkcREcl3VJQSERG5C1arlfDwcOzt7fH399e36Hmc1Wrl2rVrREVFAeDn52dwoqxZsGABgwYNolSpUtjb21O7dm169+7Nzp077/qYo0aNYsSIEWnXb2zpnBm9DyS/s1gsXLx4kfDwcMqUKZMnCtYiInmJilIiIiJ3ITU1lWvXrlGyZEkKFSpkdBzJBq6urgBERUXh7e2dJ6byBQcH8+uvv5KQkEBsbCx+fn707NmTsmXL4uvrC0BkZGS6IltkZCQ1a9a86TGdnZ1xdnbO0uPrfSAFgZeXFxcvXiQ1NRVHR0ej44iI5Cv6OktEROQumM1mAE3nyGduFFZSUlIMTnJnChcujJ+fH3/99Rc//fQTnTp1IigoCF9fXzZs2JDWLzY2lm3bttGoUaNseVy9D6QguPH/+8b/dxERyT4aKSUiInIPNJUjf8lr/54//fQTVquVihUrcvz4cf7v//6PSpUqMXDgQEwmE8OHD2fSpEmUL1+eoKAgRo8eTcmSJencuXO25shrr5vIndD/bxGR+0dFKREREZE8KiYmhlGjRnH+/HmKFStGt27deOutt9KmGL3yyiskJCQwZMgQrl69SpMmTVi7dm2GHftEREREjKDpeyIiInJPAgMDmTp1qtExCqQePXpw4sQJkpKSCA8PZ/r06Xh6eqbdbjKZmDBhAhERESQmJrJ+/XoqVKhgYOL8S+8DERGRO6eiVDYyW6xsPXGFb/dcYOuJK5gtVqMjiYhILpeTnx0mk+mWl3Hjxt3Vcbdv386QIUPuKduDDz7I8OHD7+kYknfpfZDekiVLsLe357nnnsuW44mIiPxbbqpdaPpeNll7IJzxa8IIj0lMa/PzdGFshxDaVM0b20qLiEjOyunPjvDw8LS/L1u2jDFjxnDkyJG0Njc3t7S/W61WzGYzDg63P1Xw8vLK3qBSoOh9kNGsWbN45ZVX+Oyzz/jwww8NnW6ZnJyshexFRPKR3Fa70EipbLD2QDhDF+5K948KEBGTyNCFu1h7IPwm9xQRkYLKiM8OX1/ftIunpycmkynt+uHDh3F3d+fHH3+kTp06ODs788cff3DixAk6deqEj48Pbm5u1KtXj/Xr16c77n+nLZlMJr788ku6dOlCoUKFKF++PKtXr76n7N988w1VqlTB2dmZwMBAPvzww3S3f/rpp5QvXx4XFxd8fHzo3r172m1ff/011apVw9XVleLFi9OyZUsSEhLuKY9kD70PMjp16hRbtmzhtddeo0KFCqxYsSJDn9mzZ6e9H/z8/Bg2bFjabVevXuXpp5/Gx8cHFxcXqlatynfffQfAuHHjqFmzZrpjTZ06lcDAwLTrAwYMoHPnzrz11luULFmSihUrArBgwQLq1q2Lu7s7vr6+PP7440RFRaU71sGDB2nfvj0eHh64u7vTtGlTTpw4wW+//YajoyMRERHp+g8fPpymTZve9jUREZHskRtrFypK3SOzxcr4NWFkNtjtRtv4NWGayiciks9ZrVauJadm6RKXmMLY1Qdv+dkxbnUYcYkpWTqe1Zp9nzGvvfYa77zzDocOHaJ69erEx8fz6KOPsmHDBnbv3k2bNm3o0KEDZ8+eveVxxo8fT48ePdi3bx+PPvooTzzxBNHR0XeVaefOnfTo0YNevXqxf/9+xo0bx+jRo5k7dy4AO3bs4IUXXmDChAkcOXKEtWvX0qxZM8A2KqZ3794MGjSIQ4cOsWnTJrp27Zqtr5n8Q++D9O7mfTBnzhzatWuHp6cnffr0YdasWelunzFjBs899xxDhgxh//79rF69mnLlygFgsVho27YtmzdvZuHChYSFhfHOO+9gb29/R89/w4YNHDlyhHXr1qUVtFJSUpg4cSJ79+5l1apVnD59mgEDBqTd58KFCzRr1gxnZ2c2btzIzp07GTRoEKmpqTRr1oyyZcuyYMGCtP4pKSksWrSIQYMG3VE2ERG5O7m1dqHpe/co9FR0hirjv1mB8JhEQk9F0yi4eM4FExGRHHU9xUzImJ+y5VhWICI2kWrjfs5S/7AJrSnklD0f6RMmTKBVq1Zp14sVK0aNGjXSrk+cOJGVK1eyevXqdKMz/mvAgAH07t0bgLfffpuPP/6Y0NBQ2rRpc8eZpkyZQosWLRg9ejQAFSpUICwsjPfff58BAwZw9uxZChcuTPv27XF3dycgIIBatWoBtqJUamoqXbt2JSAgAIBq1ardcQbJGr0P0rvT94HFYmHu3LlMmzYNgF69ejFy5EhOnTpFUFAQAJMmTWLkyJG8+OKLaferV68eAOvXryc0NJRDhw6lLWhftmzZO37+hQsX5ssvv0w3be/fxaOyZcvy8ccfU69ePeLj43Fzc+OTTz7B09OTpUuXpu3++O9F9QcPHsycOXP4v//7PwDWrFlDYmIiPXr0uON8IiKSdYkpZg6Fx/Ltnou5snahkVL3KCru5v+od9NPRETESHXr1k13PT4+npdffpnKlStTpEgR3NzcOHTo0G1HiFSvXj3t74ULF8bDwyPDVJ+sOnToEA888EC6tgceeIBjx45hNptp1aoVAQEBlC1blr59+7Jo0SKuXbsGQI0aNWjRogXVqlXjscce44svvuCvv/66qxxScBj1Pli3bh0JCQk8+uijAJQoUYJWrVoxe/ZsAKKiorh48SItWrTI9P579uyhdOnS97zDYrVq1TKsI7Vz5046dOhAmTJlcHd3p3nz5gBpr8GePXto2rRpWkHqvwYMGMDx48f5888/AZg7dy49evSgcOHC95RVRET+kWq2cCg8lmXbz/L6yv20n/Y7Vcf+RJdPtzB3y+ksHSOnaxcaKXWPvN2ztvBkVvuJiEje5OpoT9iE1lnqG3oqmgFztt+239yB9agfVCxLj51d/vsL4ssvv8y6dev44IMPKFeuHK6urnTv3p3k5ORbHue/v5iaTCYsFku25fw3d3d3du3axaZNm/j5558ZM2YM48aNY/v27RQpUoR169axZcsWfv75Z6ZNm8Ybb7zBtm3b0kaeSPbR+yC9O30fzJo1i+joaFxdXdPaLBYL+/btY/z48enaM3O72+3s7DJMc0xJScnQ77/PPyEhgdatW9O6dWsWLVqEl5cXZ8+epXXr1mmvwe0e29vbmw4dOjBnzhyCgoL48ccf2bRp0y3vIyIiN2e1Wjl95Rr7zl9l77kY9p2/ysGLsVxPMWfoW7ywE/7FXNlzLua2x83p2oWKUveoflAx/DxdiIhJzHRuJthWss/KyZSIiORdJpMpy1OHmpb3uuVnhwnw9XShaXkv7O1M2ZrzTm3evJkBAwbQpUsXwDZi5PTp0zmaoXLlymzevDlDrgoVKqStlePg4EDLli1p2bIlY8eOpUiRImzcuJGuXbtiMpl44IEHeOCBBxgzZgwBAQGsXLmSESNG5OjzKAj0Prh7V65c4dtvv2Xp0qVUqVIlrd1sNtOkSRN+/vln2rRpQ2BgIBs2bOChhx7KcIzq1atz/vx5jh49muloKS8vLyIiIrBarZhMttd0z549t812+PBhrly5wjvvvIO/vz9gW8vtv489b948UlJSbjpa6sknn6R3796ULl2a4ODgDCMgRUQkc1arlYjYxLTi077ztj9jE1Mz9HVzdqBaKU+q+3tSo3QRqpf2pFQRVyxWaPLuxtt+7uZ07UJFqXtkb2dibIcQhi7chQky/cft0zDA8JMpERHJPW712XHj02Jsh5Bc8dlRvnx5VqxYQYcOHTCZTIwePfq+jXi6dOlShl+Q/fz8GDlyJPXq1WPixIn07NmTrVu3Mn36dD799FMAvvvuO06ePEmzZs0oWrQoP/zwAxaLhYoVK7Jt2zY2bNjAI488gre3N9u2bePSpUtUrlz5vjwHyTq9D9JbsGABxYsXp0ePHmkFoxseffRRZs2aRZs2bRg3bhzPPPMM3t7etG3blri4ODZv3szzzz9P8+bNadasGd26dWPKlCmUK1eOw4cPYzKZaNOmDQ8++CCXLl3ivffeo3v37qxdu5Yff/wRDw+PW2YrU6YMTk5OTJs2jWeeeYYDBw4wceLEdH2GDRvGtGnT6NWrF6NGjcLT05M///yT+vXrp+3g17p1azw8PJg0aRITJkzI1tdPRCQ/+SshmX0XYth77qptJNT5GC7FJWXo5+RgR5WSHmnFp+qli1C2RGHsMvnstDeRKz93taZUNmhT1Y8ZfWrj65l+mNuNYeTLd5wjISljBVNERAqum312+Hq6MKNPbdpU9TMoWXpTpkyhaNGiNG7cmA4dOtC6dWtq1659Xx5r8eLF1KpVK93liy++oHbt2ixfvpylS5dStWpVxowZw4QJE9J2/ipSpAgrVqzg4YcfpnLlysycOZMlS5ZQpUoVPDw8+O2333j00UepUKECb775Jh9++CFt27a9L89B7ozeB/+YPXs2Xbp0yVCQAujWrRurV6/m8uXL9O/fn6lTp/Lpp59SpUoV2rdvz7Fjx9L6fvPNN9SrV4/evXsTEhLCK6+8gtlsm8pRuXJlPv30Uz755BNq1KhBaGgoL7/88m2zeXl5MXfuXL766itCQkJ45513+OCDD9L1KV68OBs3biQ+Pp7mzZtTp04dvvjii3Sjpuzs7BgwYABms5l+/frd7UslIpLrmC1Wtp64wrd7LrD1xJU72sEuISmVbSev8MVvJxm2eBfN3vuFWhPX0X92KFPWHWX9oSguxSVhb2eisp8Hver583aXanz3fBMOjm/NymcfYFzHKnStXZpy3m6ZFqRuyI2fuyZrAdsTOTY2Fk9PT2JiYm77rdCdMlushJ6KJiouEW93Fyr5udP+4z+4cPU6vev7M7lr9dsfRERE8oTExMS0HbFcXO5+7v1/PzvqBxXLFSNDCqpb/bvez3OI3OxWz1vvA7lTgwcP5tKlS6xevdroKFmWXf/PRSR/WnsgnPFrwtLtbOfn6cLYDiEZijxJqWYOh8eljX7ad/4qx6PiyayGFVSicNropxqlPalS0hNXp+xZPzEnPnezet6k6XvZyN7OlGHrxA8eq8HjX/7JktBzPFzJh1YhPgalExGR3Cizzw6Rgkbvg/wvJiaG/fv3s3jx4jxVkBIRuZW1B8IZunBXhmV8ImISGbpwF2+2D8HdxSFtHajD4XEkmzNO//bzdPlXAaoI1Up74uma+fp82SE3fe6qKHWfNQouzlNNy/L5byd57Zt91PRvhpe7s9GxRERERERyTKdOnQgNDeWZZ56hVatWRscREblnZouV8WvCMl1X+kbbxO/CMtxWtJBj2uin6qWLUN3fM8d3vMtNVJTKASMfqcBvRy9xOCKOUSv28UW/upmuFyAiIiIikh9t2rTJ6AgiItki5loKhyNi+WF/eLopezdT2dedphW8qF7athte6aKuqgf8i4pSOcDZwZ6pvWrScdpm1h+KYun2c/SuX8boWCIiIiIiIiKSCbPFyqnLCRyOiOVQeCyHw+M4FB7LxSwUov7tmQeD6VSz1H1KmfepKJVDKvl68H+tK/LWD4eY+F0YjcoWJ7BEYaNjiYiIiIiIiBRoV68lcyg87p8CVEQcRyLiSErNuP4TQKkirvh4uLDr7F+3PXZBnpqXFSpK5aDBTYLYeDiKrSev8NLyPXz1dCMc7O2MjiUiIveggG1im+9ZLJmffIqIiEjel2q2cPpKAmHhcRwO/6cAdbNpeK6O9lT0daeynweV/Wx/VvR1x8PFEbPFSpN3NxIRk5jpulImwNfTtrOd3JyKUjnIzs7EBz1q0Gbqb+w+e5VPN53ghRbljY4lIiJ3wdHREZPJxKVLl/Dy8tLaAHmc1WolOTmZS5cuYWdnh5OTk9GRRERECjSzxUroqWii4hLxdrcVd+ztsn6+9VdCMociYm0joP4uPh2NvPnoJ/9irlTy9bAVoHzdqeTnQUCxQtjd5DHt7UyM7RDC0IW7MEG6wtSNe4ztEHJHmQsiFaVyWKkirkzsVJXhy/bw0YZjNK/gRQ3/IkbHEhGRO2Rvb0/p0qU5f/48p0+fNjqOZJNChQpRpkwZ7Ow0kllERMQoaw+EM35NWLoRTH6eLoztEEKbqn7p+qaYLZy6nMCh8Ni0KXiHw+OIiM189FMhJ3sq/V10ulGAqujrjruL4x3nbFPVjxl9amfI6nuTrJKRilIG6FSzJOsPRfLdvnBeWraH719oiquTvdGxRETkDrm5uVG+fHlSUlKMjiLZwN7eHgcHB416ExERMdDaA+EMXbgrw5S4iJhEhi7cxYstyuPm4pBWgDoWGU+yOfPRT2WKFaKyn/s/I6D83PEvevPRT3ejTVU/WoX43tOoroJMRSkDmEwmJnWuyo7Tf3HycgJv/3CIiZ2rGh1LRETugr29Pfb2+mJBpKB58MEHqVmzJlOnTgUgMDCQ4cOHM3z48Jvex2QysXLlSjp37nxPj51dxxERyW3MFivj14RlukbTjbapG45luK2wk/3fI59uFKDcqejrgZtzzpQ87O1MNAouniOPld+oKGWQIoWc+OCxGvSZtY0Ff57h4crePFTR2+hYIiIiIjnPYoYzWyA+Etx8IKAx2N2fYm+HDh1ISUlh7dq1GW77/fffadasGXv37qV69ep3dNzt27dTuHD27qw8btw4Vq1axZ49e9K1h4eHU7Ro0Wx9rJu5fv06pUqVws7OjgsXLuDs7JwjjysiBVPoqSs3XXT83+oFFqVJOS8q+blT2deD0kVds3X0k+QcFaUM1KR8CQY+EMiczad55et9/DS8GcUKa2FVERERKUDCVsPaVyH24j9tHiWhzbsQ0jHbH27w4MF069aN8+fPU7p06XS3zZkzh7p1695xQQrAy8sruyLelq+vb4491jfffEOVKlWwWq2sWrWKnj175thj/5fVasVsNuPgoF9hRPKb6IRkVuw6z5e/n8xS/z4NA+hUs9R9TpWP5eCXQbejVTwN9mqbSpT3duNSXBKvr9ivrcVFRESk4AhbDcv7pS9IAcSG29rDVmf7Q7Zv3x4vLy/mzp2brj0+Pp6vvvqKwYMHc+XKFXr37k2pUqUoVKgQ1apVY8mSJbc8bmBgYNpUPoBjx47RrFkzXFxcCAkJYd26dRnu8+qrr1KhQgUKFSpE2bJlGT16dNoadXPnzmX8+PHs3bsXk8mEyWRKy2wymVi1alXacfbv38/DDz+Mq6srxYsXZ8iQIcTHx6fdPmDAADp37swHH3yAn58fxYsX57nnnsvSenizZs2iT58+9OnTh1mzZmW4/eDBg7Rv3x4PDw/c3d1p2rQpJ06cSLt99uzZVKlSBWdnZ/z8/Bg2bBgAp0+fxmQypRsFdvXqVUwmE5s2bQJg06ZNmEwmfvzxR+rUqYOzszN//PEHJ06coFOnTvj4+ODm5ka9evVYv359ulxJSUm8+uqr+Pv74+zsTLly5Zg1axZWq5Vy5crxwQcfpOu/Z88eTCYTx48fv+1rIiLZw2yx8uvRSzy3aBcN3l7PpO8PERGblKX7eru73Od0+VjYaphaFea1h28G2/6cWvW+fOZmRa4oSn3yyScEBgbi4uJCgwYNCA0NvWnfuXPnpn0w37i4uOTd/5Aujvb8r2dNHO1NrD0Ywdc7zxsdSUREROTuWK2QnJC1S2Is/PgK3GrlkLWv2vpl5XhZ/GLPwcGBfv36MXfu3HRfBn711VeYzWZ69+5NYmIiderU4fvvv+fAgQMMGTKEvn373vIc9d8sFgtdu3bFycmJbdu2MXPmTF599dUM/dzd3Zk7dy5hYWF89NFHfPHFF/zvf/8DoGfPnowcOZIqVaoQHh5OeHh4pqOUEhISaN26NUWLFmX79u189dVXrF+/Pq34c8Mvv/zCiRMn+OWXX5g3bx5z587NUJj7rxMnTrB161Z69OhBjx49+P333zlz5kza7RcuXKBZs2Y4OzuzceNGdu7cyaBBg0hNTQVgxowZPPfccwwZMoT9+/ezevVqypUrl6XX8N9ee+013nnnHQ4dOkT16tWJj4/n0UcfZcOGDezevZs2bdrQoUMHzp49m3affv36sWTJEj7++GMOHTrEZ599hpubGyaTiUGDBjFnzpx0jzFnzhyaNWt2V/lE5M6c/+sa/1t3lGbv/UL/2aF8vz+cFLOV6qU9mdCpCj4eztxsIp4J2y589YOK5WTk/MOAL4Nux/Cxr8uWLWPEiBHMnDmTBg0aMHXqVFq3bs2RI0fw9s58jSUPDw+OHDmSdj2v75JTtZQnL7WqwHtrjzB+TRgNyxbHv1gho2OJiIiI3JmUa/B2yWw6mNV20vyOf9a6v34RnLK2ptOgQYN4//33+fXXX3nwwQcBW1GiW7dueHp64unpycsvv5zW//nnn+enn35i+fLl1K9f/7bHX79+PYcPH+ann36iZEnb6/H222/Ttm3bdP3efPPNtL8HBgby8ssvs3TpUl555RVcXV1xc3PDwcHhltP1Fi9eTGJiIvPnz09b02r69Ol06NCBd999Fx8fHwCKFi3K9OnTsbe3p1KlSrRr144NGzbw1FNP3fTYs2fPpm3btmnrV7Vu3Zo5c+Ywbtw4wPbFsqenJ0uXLsXR0baVeoUKFdLuP2nSJEaOHMmLL76Y1lavXr3bvn7/NWHCBFq1apV2vVixYtSoUSPt+sSJE1m5ciWrV69m2LBhHD16lOXLl7Nu3TpatmwJQNmyZdP6DxgwgDFjxhAaGkr9+vVJSUlh8eLFGUZPiUj2SUo1sz4siqXbz/LH8ctp3yN4ujrSpVYpetT1J6SkBwDe7s4MXbgLE+m/trjxW//YDiHa2e5uWMy2L3tu+mWQCda+BpXa5ehUPsNHSk2ZMoWnnnqKgQMHEhISwsyZMylUqBCzZ8++6X1MJhO+vr5plxsftnnZ082CqRdYlPikVEYs34PZoml8IiIiIvdDpUqVaNy4cdr55vHjx/n9998ZPHgwAGazmYkTJ1KtWjWKFSuGm5sbP/30U7qROLdy6NAh/P390wpSAI0aNcrQb9myZTzwwAP4+vri5ubGm2++meXH+Pdj1ahRI90i6w888AAWiyXdl7hVqlRJt1Oon58fUVFRNz2u2Wxm3rx59OnTJ62tT58+zJ07F4vFtvX6nj17aNq0aVpB6t+ioqK4ePEiLVq0uKPnk5m6deumux4fH8/LL79M5cqVKVKkCG5ubhw6dCjttduzZw/29vY0b9480+OVLFmSdu3apf37r1mzhqSkJB577LF7zioi6R2NjGPid2E0fHsDzy3exe/HbAWpxsHF+ahXTba93oJxHaukFaQA2lT1Y0af2vh6pp8R5evpwow+tWlT1S+nn0b+cGZLxhFS6Vgh9oKtXw4ydKRUcnIyO3fuZNSoUWltdnZ2tGzZkq1bt970fvHx8QQEBGCxWKhduzZvv/02VapUybRvUlISSUn/zEuNjY3NvieQjeztTEzpUZO2H/3O9tN/8dlvJ3j2QQ0fFhERkTzEsZBtxFJWnNkCi7rfvt8TX9sWYM3KY9+BwYMH8/zzz/PJJ58wZ84cgoOD04oY77//Ph999BFTp06lWrVqFC5cmOHDh5OcnHxHj3ErW7du5YknnmD8+PG0bt06bcTRhx9+mG2P8W//LRyZTKa04lJmfvrpJy5cuJBhyqDZbGbDhg20atUKV1fXm97/VreB7ZwfSDeF8mZrXP13V8OXX36ZdevW8cEHH1CuXDlcXV3p3r172r/P7R4b4Mknn6Rv377873//Y86cOfTs2ZNChTRTQSQ7xCel8t3eiyzbcY7dZ6+mtft4OPNYHX961PWnTPFbv9/aVPWjVYgvoaeiiYpLxNvdNmVPI6TuwrVoOP077Jhz+75gW/w8BxlalLp8+TJmsznDSCcfHx8OHz6c6X0qVqzI7NmzqV69OjExMXzwwQc0btyYgwcPZthBBWDy5MmMHz/+vuTPbv7FCjG2Qwj/9/U+2xzb8l5ULeVpdCwRERGRrDGZsjyFjuCHbbvsxYaT+VQCk+324IfvyzSCHj168OKLL7J48WLmz5/P0KFD05aE2Lx5M506dUobJWSxWDh69CghISFZOnblypU5d+4c4eHh+PnZvtH/888/0/XZsmULAQEBvPHGG2lt/16vCcDJyQmz2Xzbx5o7dy4JCQlpxZvNmzdjZ2dHxYoVs5Q3M7NmzaJXr17p8gG89dZbzJo1i1atWlG9enXmzZtHSkpKhqKXu7s7gYGBbNiwgYceeijD8W/sVhgeHk6tWrUA0i16fiubN29mwIABdOnSBbB9YX369Om026tVq4bFYuHXX39Nm773X48++iiFCxdmxowZrF27lt9++y1Ljy0imbNarew6e5Vl28/y3b5wriXbfnY52JloUdmbnvX8aVbeCwf7rE/Wsrcz0Si4+P2KnH8lxcPZrXByE5z6DSL2k/nn7E245exMNMPXlLpTjRo1Sjf8uXHjxlSuXJnPPvuMiRMnZug/atQoRowYkXY9NjYWf/8srk1ggO51SrP+UCQ/HYzkpWV7WPN8E1wcjdmaUUREROS+sbOHNu/aFla92cohbd65b+tauLm50bNnT0aNGkVsbCwDBgxIu618+fJ8/fXXbNmyhaJFizJlyhQiIyOzXJRq2bIlFSpUoH///rz//vvExsZmKO6UL1+es2fPsnTpUurVq8f333/PypUr0/UJDAzk1KlT7Nmzh9KlS+Pu7o6zs3O6Pk888QRjx46lf//+jBs3jkuXLvH888/Tt2/fu17i4tKlS6xZs4bVq1dTtWrVdLf169ePLl26EB0dzbBhw5g2bRq9evVi1KhReHp68ueff1K/fn0qVqzIuHHjeOaZZ/D29qZt27bExcWxefNmnn/+eVxdXWnYsCHvvPMOQUFBREVFpVtj61bKly/PihUr6NChAyaTidGjR6cb9RUYGEj//v0ZNGgQH3/8MTVq1ODMmTNERUXRo0cPAOzt7RkwYACjRo2ifPnymU6vFJHbuxKfxIpdF1i24xzHo/7Z9bNsicL0rOdP19ql8XJ3vsUR5J6lJML57bYC1Klf4cJOsKSm7+NVCQKbwIEVcP0vbvllUFZGJ2cjQ9eUKlGiBPb29kRGph8eFhkZecsFHf/N0dGRWrVq3XT7VmdnZzw8PNJdcjOTycTkrtXxcnfmWFQ8767NfMSYiIiISJ4X0hF6zAeP/6wP4lHS1h7S8b4+/ODBg/nrr79o3bp1uvWf3nzzTWrXrk3r1q158MEH8fX1pXPnzlk+rp2dHStXruT69evUr1+fJ598krfeeitdn44dO/LSSy8xbNgwatasyZYtWxg9enS6Pt26daNNmzY89NBDeHl5sWTJkgyPVahQIX766Seio6OpV68e3bt3p0WLFkyfPv3OXox/ubFoembrQbVo0QJXV1cWLlxI8eLF2bhxI/Hx8TRv3pw6derwxRdfpI2a6t+/P1OnTuXTTz+lSpUqtG/fnmPHjqUda/bs2aSmplKnTh2GDx/OpEmTspRvypQpFC1alMaNG9OhQwdat25N7dq10/WZMWMG3bt359lnn6VSpUo89dRTJCQkpOszePBgkpOTGThw4J2+RCIFmtliZdORKIYu3EnDyRt464dDHI+Kx9XRnu51SvPVM43YMLI5TzcPVkHqfjCnwvkd8PuHML8TvBsA89rDb+/BuW22glSRAKjVF7p+CSOPwnPboN2H0OGjvw/y32mQ9//LoJsxWa1Z3D/3PmnQoAH169dn2rRpgG14dJkyZRg2bBivvfbabe9vNpupUqUKjz76KFOmTLlt/9jYWDw9PYmJicnVBapfjkQxcM52ABYObkCT8iUMTiQiIlKw5ZVziOx2q+edmJjIqVOnCAoKwsXF5SZHyAKL2bbGVHykbdpAQOMcPymWguf333+nRYsWnDt37pajyrLt/7lIHncu+hpf7TzP1zvOcTEmMa29RmlPetYrQ4cafri7ZNz4QO6RxQKXDsHJX22joc5shqT/rJXt5gNBzf65FA28+fHCVtt24fv3oucepWwFqWz8Miir502GT98bMWIE/fv3p27dutSvX5+pU6eSkJCQ9o1Fv379KFWqFJMnTwZsW8I2bNiQcuXKcfXqVd5//33OnDnDk08+aeTTyHYPVfSmT8MyLPzzLC9/tZe1w5tSpJCT0bFEREREsp+dPQQ1NTqFFBBJSUlcunSJcePG8dhjj+WLnbxF7pekVDM/H4xk+Y5z/HHctnMeQJFCjnSuWYqe9fyp7FdwvqjJEVYrRJ/8Zzreqd/h2uX0fVw8IbApBDW3FaG8KtrWdcyKkI5QqV2u+TLI8KJUz549uXTpEmPGjCEiIoKaNWuydu3atA+Hs2fPpu3OAfDXX3/x1FNPERERQdGiRalTpw5btmzJ8hz/vOSNR0PYcvwKJy8n8OaqA0zrXSttAU4REREREblzS5YsYfDgwdSsWZP58+cbHUckVzocEcuy7edYtfsCf137Z2fMJuVK0KOeP4+E+Gjt4+wUe9FWhLoxGir2fPrbHQvZCkc3RkL5Vr+3IlIu+jLI8Ol7OS2vDb3fe+4qXWdswWyx8lGvmnSqWcroSCIiIgVSXjuHyC45Mn1PJBfT/3PJL8wWK6GnoomKS8Tb3YX6QcWwt/tn0ENcYgrf7Qtn6fZz7D13Na3d18OFHnVL81hdf/yLFTIgeR5wp9PQE67A6d//GQ115T9rZNs5gn/9f0ZClaoDDnlr5lSemb4nt1bDvwgvPFye/60/ypurDlA3sBilirgaHUtERERERETyiLUHwhm/Jozwf60F5efpwpj2IXi5O7Ns+zm+2xfO9RQzAA52JlpW9qFnfX+alfdKV7yS/8h0jaaSth1mb6zRlBRnK1rdKEJF7E9/DJMd+NW0FaDKNgf/huBUMAqAKkrlAc89FMymo1HsPnuVl5fvZdGTDbDTDwURERERERG5jbUHwhm6cBf/nSIVHpPI0EW70rUFexWmZz1/utYuTQk37Zx3W2GrYXk/+O+rGxsOy/tC5Y4QFwEXdoLVnL6Pd8jf0/Ga20ZWuRbJqdS5iopSeYCDvR3/61GTth/9ztaTV5i9+RRPNi1rdCwRERERAArYahBSwOj/t+RlZouV8WvCMhSk/qt77VL0blCG2mWKah3jrLKYbSOkMn11/247tPqfpqJB6XfIc/POiZS5nopSeURgicKMbh/C6yv3897aIzQpX4JKvgVnPQsRERHJfRwdHTGZTFy6dAkvLy/9IiP5jtVq5dKlS5hMJhwdtdW95D2hp6LTTdm7mW51/KkTUCwHEuUjZ7akn7J3Mw+8CPWehCJl7n+mPEhFqTykd31/NhyKZMPhKIYv3cO3wx7A2UE7HoiIiIgx7O3tKV26NOfPn+f06dNGxxG5L0wmE6VLl8beXufdkvdsP30lS/2i4m5fuJK/Wa1wYRf8+m7W+vtWV0HqFlSUykNMJhPvdKtOm6m/cTgijik/H2XUo5WNjiUiIiIFmJubG+XLlyclJeX2nUXyIEdHRxWkJM8JuxjLlHVHWH8oKkv9vd21s+RtXYuGfctg13yICsv6/dx87l+mfEBFqTzGy92Zd7pV56n5O/j895M8VMmbhmWLGx1LRERECjB7e3v90i4ikgscj4rnf+uP8v2+cABMgIujfdquev9lAnw9XagfpKl7mbJY4NQmWyHq8PdgTra1O7jYFjE/sRGuXSHzdaVMtl34AhrnYOC8R0WpPKhViA+96vmzdPs5Ri7fy4/Dm+LhojnuIiIiIiIiBdG56Gt8tOEYK3adx/J3faR9dT9ealWBY5FxDF1o22Xv36WTG6sAju0Qgr12d08v5jzsXgS7F0LM2X/a/WpC7b5Qtbttt7y03fdMZPrqtnkH7PSlza2oKJVHvdk+hC0nrnA2+hrjvj3IlJ41jY4kIiIiIiIiOSgyNpFpG4+xbPs5Usy2okjLyj6MfKQClf1sG2MFe7kxo09txq8JS7foua+nC2M7hNCmqp8h2XOd1GQ48gPsXgDHN5BWZHLxhOo9oVZf8Kue/j4hHaHHfNsufP9e9NyjpK0gFdIxx+LnVSZrAdvjNDY2Fk9PT2JiYvDwyNu71+088xePzdyCxQqfPF6bdtX1w0REROR+yU/nEHeioD5vEZHc7Ep8EjM2nWDBn2dISrUA0LR8CUa0qkCtMkUzvY/ZYiX0VDRRcYl4u9um7GmEFBB12FaI2rvk76l4fwtsCrX7Q+X24Oh662NYzLbd+OIjbWtIBTQu8COksnr+oJFSeVidgKI891A5pm08zusr91MnoCi+nlqgTkREpCAwm82MGzeOhQsXEhERQcmSJRkwYABvvvkmJpPtl4wBAwYwb968dPdr3bo1a9euNSKyiIjco5jrKXzx20lmbz7FtWTbOlF1A4rycuuKt11r2N7ORKNgrUcMQFI8HFwBuxbA+dB/2t39oObjUKsPFCub9ePZ2UNQ0+zPWQCoKJXHvdCiPJuOXGL/hRj+7+u9zBtYHztVu0VERPK9d999lxkzZjBv3jyqVKnCjh07GDhwIJ6enrzwwgtp/dq0acOcOXPSrjs7OxsRV0RE7kFCUipzNp/i899OEpuYCkC1Up6MfKQCzSt4pX0ZIbdgtcL5HbBrHhxcCcnxtnaTPVRsa5ueV64l2KtMkpP0audxjvZ2/K9nTdpP+53fj11m/tbTDHggyOhYIiIicp9t2bKFTp060a5dOwACAwNZsmQJoaGh6fo5Ozvj6+trREQREblHiSlmFv55hhmbTnAlwbbzWwUfN0a0qkjrKj4qRmVFwhXYt9S2g96lw/+0FwuG2v2gRm9w9zEuXwGnolQ+UM7bjdcfrcyYbw8y+cfDPFCuBOV93I2OJSIiIvdR48aN+fzzzzl69CgVKlRg7969/PHHH0yZMiVdv02bNuHt7U3RokV5+OGHmTRpEsWLa/qGiEhulpxqYfmOc0zfeJyIWNvi5AHFC/FSywp0qFFSa0HdjsUMJ3+xFaIO/wCWFFu7gytU6WwrRpVpBCrqGU5FqXyib8MA1h+K4rejl3hp+R5WDH0AJwc7o2OJiIjIffLaa68RGxtLpUqVsLe3x2w289Zbb/HEE0+k9WnTpg1du3YlKCiIEydO8Prrr9O2bVu2bt2KvX3mC7AmJSWRlJSUdj02Nva+PxcREbExW6ys3H2BjzYc5Vz0dQBKerrwQovydKtTGkd7/Y53S1fPwu5FsHshxJ7/p71kLVshqmo32256kmuoKJVPmEwm3u9endZTf+PAhVg+2nCU/2tdyehYIiIicp8sX76cRYsWsXjxYqpUqcKePXsYPnw4JUuWpH///gD06tUrrX+1atWoXr06wcHBbNq0iRYtWmR63MmTJzN+/PgceQ4iImJjsVj58UAEU9Yd4cSlBABKuDkz7KFgejcog7NDwd7J7ZZSk+Dw97Yd9E78Alht7S5FoHpPqN0XfKsZmVBuwWS1Wq1Gh8hJ+X1b4x/3hzN00S7sTLD86UbUDSxmdCQREZF8IbedQ/j7+/Paa6/x3HPPpbVNmjSJhQsXcvjw4Zvez8vLi0mTJvH0009nentmI6X8/f1zzfMWEclPrFYrGw9H8eHPRwkLt41M9XR15JnmwfRvHEAhpwI8jsRihjNbID4S3HwgoLFtl7sbIsNshai9S+F69D/tQc1to6IqtQdH7U5vlKyeNxXg/+H5U9tqfnStXYoVuy7w0vI9/PhiM9yc9c8sIiKS31y7dg07u/TTOOzt7bFYLDe9z/nz57ly5Qp+fn437ePs7Kwd+kREcsDm45f54Ocj7D57FQA3ZwcGNwlicNMgPFwcjQ1ntLDVsPZViL34T5tHSWg5DlKuw64FcGHHP7e5l4RaT0DNJ6CYNv7KS1StyIfGdazCtpPRnIu+zoQ1B3mvew2jI4mIiEg269ChA2+99RZlypShSpUq7N69mylTpjBo0CAA4uPjGT9+PN26dcPX15cTJ07wyiuvUK5cOVq3bm1wehGRgmvnmWg++OkoW09eAcDF0Y7+jQN5plkwRQs7GZwuFwhbDcv7kTYN74bYi7BiyD/X7RygYluo1Q/KtUg/ikryDBWl8iEPF0em9KhBry/+ZPmO87So7EPrKtoKWkREJD+ZNm0ao0eP5tlnnyUqKoqSJUvy9NNPM2bMGMA2amrfvn3MmzePq1evUrJkSR555BEmTpyokVAiIgY4cCGGD38+wi9HLgHgZG/H4w3K8OyDwXh7aJoZYJuyt/ZVMhSk/s3OAR4eDTUfBzfvHIsm94fWlMrHJv94iM9+PUmxwk6sHd4Ub3f9oBMREblbBekc4t8K6vMWEckuxyLjmLLuKD8eiADA3s7EY3VK83yL8pQq4mpwulzm1O8wr/3t+/X/DoKa3v88cte0ppQwolUFfjt6mUPhsbz69T5mD6iHyWQyOpaIiIiIiEieZ7ZYCT0VTVRcIt7uLtQPKoa93T+/b525ksDU9cdYtecCViuYTNCxRkmGt6xAUInCBibPpVKTYe+SrPWNj7y/WSTHqCiVjzk72DO1Z006TP+DX45cYtG2s/RpGGB0LBERERERkTxt7YFwxq8JIzwmMa3Nz9OFsR1CqF66CNM2HuerHedItdgmJrWu4sOIVhWp6OtuVOTcy5wK+5bCpnch5mzW7uPmc38zSY5RUSqfq+jrziutKzLp+0O89f0hGgcXp6yXm9GxRERERERE8qS1B8IZunBXhlWPwmMSeWbhLhzsTGnFqOYVvBj5SAWqly6S4zlzPYsFDq6ATZPhynFbW2EfMCdCYiyZrytlsu3CF9A4J5PKfWR3+y6S1w16IIgHyhXneoqZl5bvJcV8862iRUREREREJHNmi5Xxa8JutQw3qRYr9QKLsvzpRswbVF8Fqf+yWuHw9zCzCXwz2FaQci0Gj0yCF/dAx+l/d/zv0jN/X2/zjnbay0dUlCoA7OxMfPBYDTxcHNh77irTNx43OpKIiIiIiEieE3oqOt2UvZsZ0aoC9YOK5UCiPMRqhRMb4csWsPRxiDoIzh7w0BswfB80fh6cCkFIR+gxHzz80t/fo6StPaSjMfnlvtD0vQLCz9OViZ2r8uLSPUz/5TgPVvSiVpmiRscSERERERHJM6Libl+QsvVLus9J8pgzW2HjRDiz2XbdsRA0eMZWiCqUSfEupCNUagdnttgWNXfzsU3Z0wipfEdFqQKkU81SbDgUxeq9FxmxfC+rhz3AgQuxN90tQkRERERERP5RtJBjlvp5u7vc5yR5xIVdsHESnNhgu27vDPUGQ5OXwM371ve1s4egpvc/oxhKRakCZmKnqmw/Hc2pywk0eHsD15LNabfd2C2iTVW/WxxBRERERESk4Nl5Jprxa8Ju2ccE+Hq6aOpeZBj88hYc/s523c4BavWFZv8HnqWMzSa5itaUKmA8CznSs64/QLqCFEBETCJDF+5i7YFwI6KJiIiIiIjkOglJqYxbfZDuM7dy4lIC7i62sR03WYabsR1CCu4MlCsn4JsnYUbjvwtSJqjeC4Zthw5TVZCSDDRSqoAxW6ws23Eu09us2H6Qjl8TRqsQ34L7g1RERERERAT49eglXl+xnwtXrwPQvU5p3mxXmT9PXmH8mrB0i577FuSZJ1fPwa/vwp7FYP178ENIJ3jwdfCuZGw2ydVUlCpgbrdbhBUIj0kk9FQ0jYKL51wwERERERGRXOLqtWQmfneIb3adB6B0UVfe7lKNZhW8AGhT1Y9WIb6Enoou2Gv0xkXC7x/CzjlgTra1lW8ND78BfjWMzSZ5gopSBUzWd4vIWj8REREREZH8wmq18sP+CMauPsDl+GRMJhjQOJCXH6lIYef0vz7b25kK7hf516Jh81TY9jmk2kaREdgUHh4NZRoYGk3yFhWlCpis7gKh3SJERERERKQgiYxNZPSqA/wcFglAOW833u1WnToBRQ1OloskxsLWT2yX5DhbW+l6tmJU2ebGZpM8SUWpAqZ+UDH8PF2IiEnEepM+ftotQkRERERECgir1cqy7ed464dDxCWm4mBn4tmHyvHcQ8E4O9gbHS93SE6A0C9so6Ou/2Vr861mK0aVfwRMBWzaomQbFaUKGHs7E2M7hDB04S5MkGlh6rW2lQreXGgRERERESlwzlxJYNSK/Ww5cQWA6qU9ebdbdSr7eRicLJdITYKdc+G3DyAhytZWoiI89DpU7gh2dobGk7xPRakCqE1VP2b0qZ1htwg7E1issC4sko41SmJStVtERERERPIhs8XKnM2n+ODnIySmWHBxtGNkq4oMfCAQB3sVWjCn2HbS+/U9iLUt9k6RAHhwFFTvAXYaQSbZQ0WpAiqz3SJMJujz5Ta+2xdO9dKeDGkWbHRMERERERGRbHU4IpZXv9nP3nNXAWhUtjjvdKtGQPHCxgbLDSxmOPANbJoM0Sdtbe4lofn/Qa2+YO9obD7Jd1SUKsAy2y1ibIcQRn97kHd+PEyInydNypcwKJ2IiIiIiEj2SUo188kvJ/j0l+OkWqy4uzjwxqOV6VnPv2DMErGY4cwWiI8ENx8IaPzPiCerFQ6tgV/ehkuHbG2FSkDTkVB3EDhqIyy5P1SUknT6NAxg3/kYvtp5nmFLdrFmWBP8ixUyOpaIiIiIiMhd23X2L179eh/HouIBaBXiw6TOVfHxKCDFlrDVsPZViL34T5tHSWjzDjgWho0TIXyPrd3FExq/AA2eAWc3Q+JKwaGilKRjMpmY2LkqRyPj2Hs+hiELdrJiaGNcnTRnWERERERE8paEpFQ++PkIc7ecxmqFEm5OjO9YlUer+RaM0VFgK0gt70eGba5iL/7d/jcnN2g4FBoNA9ciOZlQCjCt4CYZuDjaM6NPHUq4OXEoPJbXVuzDas1snz4REREREZHc6fdjl2g99TfmbLYVpLrWLsW6l5rTrrpfwSlIWcy2EVKZ7rv+Lw2fhRf3wsNvqiAlOUpFKclUySKufPJ4bRzsTHy75yKz/jhldCQREREREZHbirmWwv99tZe+s0I5/9d1ShVxZd6g+kzpUZOihZ2MjpezzmxJP2XvZio+CoW1nrDkPBWl5KYalC3Om+0qAzD5x8NsOX7Z4EQiIiIiIiI39+P+cFpM+ZWvdp7HZIIBjQP56aVmNK/gZXQ0Y8RHZm8/kWymopTcUv/GgXStXQqzxcqwJbs5/9c1oyOJiIiIiIikExWbyDMLdjJ00S4uxycR7FWYr59pxLiOVXBzLsBLKVvMWevn5nN/c4jchIpScksmk4m3u1SjWilPohOSeWbhThJTsviDTURERERE5D6yWq0s336OllN+Ze3BCBzsTDz/cDm+f6EpdQKKGR3POOZU+GMqrH7+Nh1N4FEKAhrnRCqRDFSUkttycbRnZt86FCvsxIELsYxasV8Ln4uIiIiIiKHOXrlG31mhvPLNPmITU6lWypPVw5ow8pGKuDgW4N3DI/bDlw/D+rFgTgKfqoDp78u//X29zTtgV4BfLzGUilKSJaWKuDL98VrY25lYufsCc7ecNjqSiIiIiIgUQGaLlVl/nKL11N/44/hlnB3seP3RSqx8tjEhJT2MjmeclETYMAE+fxDC94JLEeg8A575A3rMBw+/9P09StraQzoakVYEgAI8uVbuVOPgErz+aGUmfhfGpO8PUdnPg4ZlixsdS0RERERECoijkXG88vU+9py7CkCDoGK82606gSUKGxvMaGf/hG+HwZVjtushnaDt++D+91pRIR2hUjvbbnzxkbY1pAIaa4SUGE5FKbkjgx4IZP/5q6zac5HnFu1izfNNKFnE1ehYIiIiIiKSjyWnWvh003E++eU4KWYr7s4OjHq0Mr3q+WNn999paQVIUpxtdFToF4DVVmx69IPMRz/Z2UNQ0xyPKHIrKkrJHTGZTEzuWp2jkfGEhcfyzMKdLH+6UcGesy0iIiIiItnCbLESeiqaqLhEvN1dqB9UjH3nr/LaN/s5EhkHQMvK3kzqXA1fTxeD0xrs2Hr4bjjEnLNdr9UXHpkIrkUNjSVyJ1SUkjvm6mTPZ33r0HH6H+w7H8MbKw/wwWPVMZkK8DcUIiIiIiJyT9YeCGf8mjDCYxLT2go72ZOQbNv9u3hhJ8Z1rEL76n4F+3ePa9GwdhTsW2q7XiQAOnwEwQ8Zm0vkLmihc7kr/sUKMf3x2tiZ4Jtd51nw5xmjI4mIiIiISB619kA4QxfuSleQAtIKUg2CirF+RHM61ChZcAtSViscWAHT69kKUiY7aPgcPLtVBSnJs1SUkrv2QLkSjGpbGYAJa8IIPRVtcCIREREREclrzBYr49eEYb1Fn7PR1/BwdcyxTLlO7EVY+jh8PRCuXQavyjB4HbR5G5wK+CLvkqepKCX35MmmQXSoUZJUi5VnF+0kPOa60ZFERERERCQPCT0VnWGE1H+FxyQWzC/BrVbYORc+aQBHfgA7R3hwFDz9G5Sua3Q6kXumopTcE5PJxLvdqlHJ153L8ck8s3AXSalmo2OJiIiIiEgeERV364LUnfbLN66cgHkdYM2LkBQLperYilEPvgYOTkanE8kWKkrJPSvk5MDnfevi6erI3nNXGbPqIFbrrQbfioiIiIiI2CSmZO1LbW/3ArLbnjkVNn8MMx6A07+DYyFoPdk2Xc8nxOh0ItlKRSnJFmWKF2L647WwM8GyHedYtO2s0ZFERERERCSX23byChO/C7tlHxPg5+lC/aBiORPKSBEHYFZLWDcaUq9DUHMYugUaPQt29kanE8l2KkpJtmla3otX2lQCYPyag+w4XQDnfIuIiIiISJb8dDCCvrNDiU8yU87LDRO2AtS/3bg+tkMI9nb5eNe91CTYOAk+bw4Xd4OzJ3ScDv2+hWJBRqcTuW9UlJJs9XSzsrSr5keK2crQRbuIjC1g875FREREROS2Fm87y9CFO0lOtdAqxIfvXmjCjD618fVMP0XP19OFGX1q06aqn0FJc8DZbTCzKfz2PlhSoVJ7GBYKtfuCKR8X4kQAB6MDSP5iMpl4r3t1jkfFcyQyjqELd7JkSEOcHTTUVERERESkoLNarUzbeJwp644C0Lu+PxM7VcXB3o42Vf1oFeJL6KloouIS8Xa3TdnLtyOkkuJh40TY9hlghcLe0O4DCOlkdDKRHKOilGS7ws4OfN6vDh2m/cGus1cZtzqMyV2rGR1LREREREQMZLZYGb/mIPO3ngHghYfL8VKrCpj+NRrI3s5Eo+DiRkXMOcc3wJrhEPP3Wrw1n4BHJkGhArBulsi/aPqe3BcBxQvzce9amEywJPQsi7XwuYiIiIhIgZWUaub5JbuYv/UMJhOM71iFEY9UTFeQKhCuRcPKobCwq60gVaQM9FkBnT9VQUoKJBWl5L55sKI3Lz9SEYCxqw+w88xfBicSEREREZGcFpeYwoDZ2/lhfwRO9nZM612L/o0DjY6Vs6xWOLgKPqkPexcDJmgwFIZuhXItjE4nYhgVpeS+evbBYNpW9bUtfL5wJ1Fa+FxEREREpMCIikuk52d/svXkFdycHZg7sB7tq5c0OlbOig2HZX3gq/6QcAlKVITBP0Pbd8DZzeh0IoZSUUruK5PJxPuP1aC8txtRcUk8u2gXyakWo2OJiIiIiMh9dvpyAt1nbCUsPJYSbk4sHdKQxuVKGB0r51itsGs+fNIADn8Hdg7Q7BV45nfwr290OpFcQUUpue/cnB34vF9d3F0c2HHmLyZ+F2Z0JBERERERuY8OXIih+8wtnI2+RplihfhmaGOqlvI0OlbOiT4J8zvC6uchKQZK1oIhv8LDb4CDs9HpRHKNXFGU+uSTTwgMDMTFxYUGDRoQGhqapfstXboUk8lE586d729AuWdBJQrzUa+amEyw4M8zLN9+zuhIIiIieZrZbGb06NEEBQXh6upKcHAwEydOxGq1pvWxWq2MGTMGPz8/XF1dadmyJceOHTMwtYgUBJuPX6bnZ1u5HJ9MlZIefDO0MQHFCxsdK/tZzHDqd9j/te1Pi9l22TIdPm0Mp34DB1fbrnqD14NvVaMTi+Q6DkYHWLZsGSNGjGDmzJk0aNCAqVOn0rp1a44cOYK3t/dN73f69GlefvllmjZtmoNp5V48XMmHES0r8OG6o7y56gAVfN2p6V/E6FgiIiJ50rvvvsuMGTOYN28eVapUYceOHQwcOBBPT09eeOEFAN577z0+/vhj5s2bR1BQEKNHj6Z169aEhYXh4uJi8DMQkfzou30XeWnZHlLMVhoHF+ezvnVwd3E0Olb2C1sNa1+F2Iv/tBX2tq0RFX3Sdj2wKXT8GIqVNSajSB5g+EipKVOm8NRTTzFw4EBCQkKYOXMmhQoVYvbs2Te9j9ls5oknnmD8+PGULas3eF7y3EPleCTEh2SzhWcW7ORSXJLRkURERPKkLVu20KlTJ9q1a0dgYCDdu3fnkUceSRtxbrVamTp1Km+++SadOnWievXqzJ8/n4sXL7Jq1Spjw4tIvjRvy2meX7KbFLOVdtX8mDOwXv4tSC3vl74gBZAQZStIObhCh4+h/xoVpERuw9CiVHJyMjt37qRly5ZpbXZ2drRs2ZKtW7fe9H4TJkzA29ubwYMH3/YxkpKSiI2NTXcR49jZmfiwRw2CvQoTEZvIc4t2kWLWwuciIiJ3qnHjxmzYsIGjR48CsHfvXv744w/atm0LwKlTp4iIiEh3nuXp6UmDBg1ueZ4lInKnrFYrH/x0hLGrD2K1Qr9GAXzcuxbODvZGR8t+FrNthBTWm/dx9YRafcBkyrFYInmVoUWpy5cvYzab8fHxSdfu4+NDREREpvf5448/mDVrFl988UWWHmPy5Ml4enqmXfz9/e85t9wbdxdHPu9XFzdnB0JPR/PW94eMjiQiIpLnvPbaa/Tq1YtKlSrh6OhIrVq1GD58OE888QRA2rnUnZxngb7QE5E7k2q28No3+5n+y3EARraqwPiOVbC3y6cFmTNbMo6Q+q+4CFs/Ebktw6fv3Ym4uDj69u3LF198QYkSWdtKdNSoUcTExKRdzp3TAtu5QbCXG//rWROAuVtO89UO/buIiIjcieXLl7No0SIWL17Mrl27mDdvHh988AHz5s27p+PqCz0RyarEFDNDF+1i2Y5z2JlgctdqPN+iPKb8PEIoPjJ7+4kUcIYudF6iRAns7e2JjEz/ho2MjMTX1zdD/xMnTnD69Gk6dOiQ1max2KZ+OTg4cOTIEYKDg9Pdx9nZGWdnbbmZG7UK8WF4y/JMXX+MN1YdoKKvO9VLFzE6loiISJ7wf//3f2mjpQCqVavGmTNnmDx5Mv379087l4qMjMTPzy/tfpGRkdSsWfOmxx01ahQjRoxIux4bG6vClIhkEHMthSfnb2f76b9wdrDj4961aF0l4+9w+cr1v2DPkqz1dfO5fR8RMXaklJOTE3Xq1GHDhg1pbRaLhQ0bNtCoUaMM/StVqsT+/fvZs2dP2qVjx4489NBD7NmzRydMedALD5enZWVvklNtC59fjtfC5yIiIllx7do17OzSn8rZ29unfWEXFBSEr69vuvOs2NhYtm3blul51g3Ozs54eHiku4iI/FtETCI9PtvK9tN/4e7iwILBDfJ/QSpsNXzSAE6sv01HE3iUgoDGORJLJK8zdKQUwIgRI+jfvz9169alfv36TJ06lYSEBAYOHAhAv379KFWqFJMnT8bFxYWqVaumu3+RIkUAMrRL3mBnZ2JKz5p0nr6Zk5cTeG7RLhY+2QBH+zw1s1RERCTHdejQgbfeeosyZcpQpUoVdu/ezZQpUxg0aBAAJpOJ4cOHM2nSJMqXL09QUBCjR4+mZMmSdO7c2djwIpJnHY+Kp//sUC5cvY63uzPzB9enkm8+Ll7HRcAPL8OhNbbrJSpA9Z6wcdLfHf694Pnf0xbbvAN2+XCRd5H7wPCiVM+ePbl06RJjxowhIiKCmjVrsnbt2rRFOc+ePZvhW0DJXzxcHPm8Xx06Td/MtlPRTP7hMGM6hBgdS0REJFebNm0ao0eP5tlnnyUqKoqSJUvy9NNPM2bMmLQ+r7zyCgkJCQwZMoSrV6/SpEkT1q5di4uLi4HJRSSv2n32LwbN3c5f11IoW6Iw8wbVx79YIaNj3R9WK+xZBD+9DokxYOcADwyHZv8Hji624tTaV9Mveu5R0laQCuloWGyRvMZktVpvsZdl/hMbG4unpycxMTEajp7L/HQwgqcX7ATgfz1r0KVWaYMTiYiI/KOgnkMU1OctIultOhLF0IW7uJ5ipoZ/EeYMqEexwk5Gx7o//joNa16Ek5ts1/1qQqfp4FstfT+L2bbLXnykbQ2pgMYaISXyt6yePxg+UkrkhtZVfHnh4XJ8vPE4r32zn/Le7lQt5Wl0LBERERGRAm3FrvO88vU+Ui1WmlXwYsYTtSnsnA9/lbSYIfRz2DABUq6Bgws89Do0fA7sM3m+dvYQ1DTnc4rkI5oXJ7nK8JYVeKiiF0mpFp5esJPohGSjI4mIiIiIFFhf/HaSEcv3kmqx0qVWKb7sVzd/FqSiDsGsR2Dta7aCVEATGLoFHngx84KUiGQLFaUkV7GzMzG1Vy0CixfiwtXrDFu8i1SzxehYIiIiIiIFisVi5e0fDvHWD4cAeLJJEB8+VgMnh3z2K2RqMmx6F2Y2hQs7wNkD2v8P+q+B4sFGpxPJ9/LZTxTJDzxdHfm8X10KOdmz5cQV3l172OhIIiIiIiIFRorZwstf7eXz304C8PqjlXizfQh2diaDk2Wz8zvh8+aw6W2wpECFNvDsn1B3EGizLZEcoXea5EoVfNz58LEaAHzx+ym+3XMBs8XK1hNX+HbPBbaeuILZUqDW6BcRERERue+uJafy1PwdrNh9AXs7Ex8+VoMhzfLZiKHkBPjpDZjVEqLCoFBx6DYLei8Fz1JGpxMpUDQ5VnKtttX8eO6hYD755QQvf7WXid+FcTn+nzWm/DxdGNshhDZV/QxMKSIiIiKSP0QnJDNo7nb2nLuKi6MdM56ow0OVvI2Olb1O/gprXrDtsAdQvSe0ngyFixsaS6Sg0kgpydVGtKpIiJ8HKWZruoIUQERMIkMX7mLtgXCD0omIiIiI5A/n/7pG95lb2HPuKkUKObL4qYb5qyB1/Sqsfh7md7QVpDxKw+NfQdfPVZASMZBGSkmudyUhKdN2K2ACxq8Jo1WIL/b5bY67iIiIiEgOOBIRR//ZoUTEJlLS04X5g+tTztvd6FjZ59B38P1IiI+wXa/3JLQYCy4exuYSERWlJHcLPRVNZGzmRSmwFabCYxIJPRVNo2B9wyEiIiIicie2n45m8NztxCamUt7bjfmD6+Pn6Wp0rOwRHwU//B+ErbJdL14OOk6DgMaGxhKRf6goJblaVFxitvYTERERERGbdWGRDFu8i6RUC3UDivJl/7oUKeRkdKx7Z7XC3iWwdhQkXgWTPTzwIjR/FRxdjE4nIv+iopTkat7uWfvQyGo/ERERERGBZdvPMmrFfixWaFnZm2m9a+PqZG90rHv31xn4bjic2Gi77lsdOk0HvxqGxhKRzKkoJbla/aBi+Hm6EBGTiDWT202Ar6cL9YOK5XQ0EREREZFcz2yxEnoqmqi4RLzdXagXWJTPfjvJ+z8dAaBH3dK83aUaDvZ5fA8sixm2fwnrx0NKAtg7w0OjoNEwsHc0Op2I3ISKUpKr2duZGNshhKELd2GCDIUpKzC6XYgWORcRERER+Y+1B8IZvyaM8Jh/lroo5GTPtWQzAM89FMzLj1TEZMrj59KXjsC3w+B8qO16mca2taNKlDM2l4jcVh4vh0tB0KaqHzP61MbXM/MpegcuxuRwIhERERGR3G3tgXCGLtyVriAFpBWketQtzf+1rpS3C1LmFPj1fZjZxFaQcnKHdh/CgO9VkBLJIzRSSvKENlX9aBXim27ocUTMdV5avpdPN52gailPHq3mZ3RMERERERHDmS1Wxq8Jy3T5ixt+P3YZs8Wad2ccXNgFq5+HyAO26+VbQ/sp4Fna2FwickdUlJI8w97ORKPg4unawsJj+eL3U7z81V7KebtRwcfdoHQiIiIiIrlD6KnoDCOk/is8JpHQU9EZzq9zveRrsOlt2PoJWC3gWgzavgfVukNeHvUlUkBp+p7kaa+2qcQD5YpzLdnMkPk7iLmWYnQkERERERFDRcXduiB1p/1yjVO/w4zGsGWarSBV7TEYth2qP6aClEgepaKU5GkO9nZM612bUkVcOX3lGi8u243ZcquByiIiIiIi+Zu3e+Zrsd5tvxxlMduKT/u/tv1pMUNiDKx5Eea1h79OgXtJ6L0Mun0JhUsYnVhE7oGm70meV6ywE5/1rUO3GVvYdOQSU9cfZeQjFY2OJSIiIiJiiOqlPXGytyPZbMn0dhPg6+lC/aBiORvsdsJWw9pXIfbiP22uxWyjohKv2q7XHQQtx4OLhyERRSR7aaSU5AtVS3nyTrdqAEzbeJy1ByIMTiQiIiIikvOSUs0MW7zrlgUpgLEdQnLXIudhq2F5v/QFKYDr0baClJuPbVe99v9TQUokH1FRSvKNLrVKM+iBIABGLt/D8ag4gxOJiIiIiOScFLOF5xfv5pcjl3BxtGNEqwr4eaafoufr6cKMPrVpUzUX7VxtMdtGSN1qv0A7eyjTKMciiUjO0PQ9yVdGPVqJsPAY/jwZzZD5O1k17AE8XByNjiUiIiIicl+ZLVZGLN/Lz2GRODnY8WW/ejQpX4LnHipH6KloouIS8Xa3TdnLVSOkAM5syThC6r9iL9r6BTXNmUwikiM0UkryFUd7O6Y/XpuSni6cvJzAS0v3YNHC5yIiIiKSj1ksVl75eh9r9l7E0d7EzD61aVLetgC4vZ2JRsHF6VSzFI2Ci+e+ghRAfGT29hORPENFKcl3Srg581nfujg52LHhcBQfbThmdCQRERERkfvCarUy+tsDfLPrPPZ2Jqb1rsXDlXyMjnVnrpzIWj+3PPa8ROS2VJSSfKlaaU8md7EtfP7RhmOsC9O3KiIiIiKSv1itViZ+d4hF285iMsGUHjVy11pRt2NOhZ9Hw6a3b9PRBB6lIKBxjsQSkZyjopTkW93qlGZA40AAXlq2h+NR8cYGEhERERHJJlarlfd/OsLszacAeLdbdTrVLGVwqjsQHwULOsOWj23XK7TFtjfgf6cX/n29zTu2xc5FJF9RUUrytTfaVaZ+YDHik1J5esEO4hJTjI4kIiIiInLPpm08zqebbNPeJnaqQo+6/gYnugNnt8FnzeD07+DkBo/Ng8eXQo/54PGfkV4eJW3tIR2NySoi95V235N8zdHejk+eqE2HaX9w4lICI5bv5bM+dbDLjQs8ioiIiIhkwee/nWDKuqMAvNmuMn0bBRobKKusVtj2Gfz8BlhSoURF6LkQvCrYbg/pCJXa2XbZi4+0rSEV0FgjpETyMY2UknzPy92ZmX3r4ORgx7qwSKb/ctzoSCIiIiIid2XeltO8/cNhAF5+pAJPNi1rcKIsSoqHbwbD2ldtBakqXeGpjf8UpG6ws4egplCtu+1PFaRE8jUVpaRAqOlfhEmdqwLwv/VH2XBIC5+LiIiISN6yNPQsY1cfBGDYQ+UY9nB5gxNl0aWj8GULOPAN2DnY1ofqPhuc3YxOJiIGU1FKCowedf3p2zAAqxWGL93DyUta+FxERERE8oaVu88zauV+AJ5sEsTIRyrc5h65RNi38MVDcOkwuPnCgO+h4VAwaTkNEVFRSgqY0e1DqBtQlLikVJ5esJP4pFSjI4mIiIiI3NL3+8IZuXwvViv0bRjAG+0qY8rtRR1zKvz8JizvB8nxENAEnv4NyjQ0OpmI5CIqSkmB4uRgx6d9auPj4cyxqHheXr4Xq9VqdCwRERERkUytC4vkxaW7sVihZ11/xneskvsLUnGRML8jbJlmu974eej3Lbj7GJtLRHIdFaWkwPF2d2FGnzo42ptYezAibStdEREREZHc5Nejl3hu0S5SLVY61SzJ212r5f5dpM9shc+awZnN4OQOPebDI5PAXhu/i0hGKkpJgVS7TFEmdLItfP7Bz0f45UiUwYlERERERP6x9cQVhszfQbLZQtuqvnz4WA3sc3NBymqFrZ/CvPYQHwFelWDILxDSyehkIpKLqSglBVbv+mV4vEEZrFZ4ccluTl9OMDqSiIiIiAg7z0QzeN52klIttKjkzUe9auFgn4t/dUuKh68HwU+jwJIKVbvDkxugRB7ZHVBEDJOLf7KJ3H9jO4RQu0wRYhNtC58naOFzERERETHQvvNXGTB7O9eSzTQtX4JPnqiNk0Mu/rXt0lH44mE4uALsHKDte9DtS3B2MzqZiOQBufinm8j95+xgz4w+dfByd+ZIZBz/97UWPhcRERERYxwKj6XvrFDiklKpH1SMz/vWxcXR3uhYN3dwFXzxEFw+Au5+MOAHaPA05PaF2EUk11BRSgo8Hw8XZjxRG0d7Ez/sj2DmryeNjiQiIiIiBczxqDj6fLmNmOsp1CpThNkD6uHqlEsLUuYU+OkN+Ko/JMdDYFN4+jco08DoZCKSx6goJQLUDSzG2A5VAHjvp8P8evSSwYlEREREpKA4fTmBx7/YxpWEZKqW8mDuwPq4OefS3eriImBeR9g63Xb9gReh7ypw8zY0lojkTSpKifztiQZl6FnXH6sVXliym7NXrhkdSURERETyufN/XeOJL7cRFZdERR93FgxqgKero9GxMndmC3zWDM5uASd36LkQWk0A+1xaQBORXE9FKZG/mUwmJnSuQk3/IsRcT2HIgh1cS9bC5yIiIiJyf0TEJPL4F9u4cPU6Zb0Ks/DJBhQt7GR0rIysVtgyHea2h/hI8A6BIZugcgejk4lIHqeilMi/ODvYM7NPHUq4OXM4Io5Xv9mvhc9FREREJNtdikvi8S//5Gz0NcoUK8TiJxvi5e5sdKyMkuLgqwHw8xtgNUO1x+DJ9VCinNHJRCQfUFFK5D98PV349InaONiZWLP3Il/8roXPRURERCT7RCck0+fLbZy8lEBJTxcWP9UAX08Xo2NldOkIfPEwhK0CO0d49APo+gU4FTY6mYjkEypKiWSiflAxxnQIAeCdHw/zx7HLBicSERERkfwg5noKfWdt40hkHN7uzix+qiGlixYyOlZGB1bA5w/B5aPgXhIG/gD1nwKTyehkIpKPqCglchN9GwbQvU5pLFYYtmQX56K18LmIiIiI3L34pFQGzAnl4MVYihd2YvFTDQgskctGHZlTYO0o+HogpCRAYFN4+jfwr290MhHJh1SUErkJk8nEpM5VqV7ak6vXUnh6wU6uJ5uNjiUiInlcYGAgEyZM4OzZs/d8HJPJlOHy3HPPAfDggw9muO2ZZ57JjqcgInfherKZQXO3s/vsVYoUcmThkw0o5+1udKz0YsNti5n/+antepOXoO8qcPMyNJaI5F8qSoncgoujbeHz4oWdCAuPZdSKfVr4XERE7snw4cNZsWIFZcuWpVWrVixdupSkpKQ7Ps727dsJDw9Pu6xbtw6Axx57LK3PU089la7Pe++9l23PQ0SyLjHFzFPzdxB6Khp3ZwcWDGpAZT8Po2Old/oP+KwZnPsTnD2g5yJoOQ7sHYxOJiL5mIpSIrdRsogrnzxRG3s7E6v2XGTWH6eMjiQiInnY8OHD2bNnD6GhoVSuXJnnn38ePz8/hg0bxq5du7J8HC8vL3x9fdMu3333HcHBwTRv3jytT6FChdL18fDIZb8EixQAyakWnl20iz+OX6aQkz1zB9WjWmlPo2P9w2qFzR/DvI6QEAXeVWDIJqjc3uhkIlIAqCglkgUNyxbnzXaVAZj842G2HNfC5yIicm9q167Nxx9/zMWLFxk7dixffvkl9erVo2bNmsyePfuORuYmJyezcOFCBg0ahOlfixAvWrSIEiVKULVqVUaNGsW1a7dfHzEpKYnY2Nh0FxG5O6lmCy8u3c3Gw1E4O9gxq3896gQUMzrWPxJjYXk/WDcarGao3hOeXAfFg41OJiIFhMZiimTRgMaB7D8fw4rdFxi2ZDerhz2QO3dKERGRPCElJYWVK1cyZ84c1q1bR8OGDRk8eDDnz5/n9ddfZ/369SxevDhLx1q1ahVXr15lwIABaW2PP/44AQEBlCxZkn379vHqq69y5MgRVqxYcctjTZ48mfHjx9/LUxMRwGyxMvKrvfx4IAInezu+6FeXRsHFjY71j6hDsKwvXDkGdo7QZjLUe1K764lIjjJZC9gCObGxsXh6ehITE6Mh7HLHElPMdJuxhYMXY6layoOvn2mMi6O90bFERCQHZNc5xK5du5gzZw5LlizBzs6Ofv368eSTT1KpUqW0PgcOHKBevXpcv349S8ds3bo1Tk5OrFmz5qZ9Nm7cSIsWLTh+/DjBwTcfBZGUlJRujavY2Fj8/f117iRyBywWK69+s4+vdp7Hwc7EzD51aBniY1AYM5zZAvGR4OYDAY3h4EpY/YJtdz2PUvDYPPCvZ0w+EcmXsnrepJFSInfAxdGez/rWoeP0zRy4EMvrK/fz4WM10k2VEBERuZV69erRqlUrZsyYQefOnXF0dMzQJygoiF69emXpeGfOnGH9+vW3HQHVoEEDgNsWpZydnXF2ds7SY4tIRlarlTGrD/DVzvPYmeCjXrWMK0iFrYa1r0LsxX/anApDcoLt70HNoftsKFzCmHwiUuCpKCVyh0oXLcT0x2vRd1YoK3ZdoFopTwY+EGR0LBERySNOnjxJQEDALfsULlyYOXPmZOl4c+bMwdvbm3bt2t2y3549ewDw8/PL0nFF5M5ZrVbe+v4QC/88i8kEH/aoQbvqBr3nwlbb1oviPxNjbhSkKneEx+aCnUb9i4hxtNC5yF1oHFyCUW1t0ywmfX+IP09eMTiRiIjkFVFRUWzbti1D+7Zt29ixY8cdHctisTBnzhz69++Pg8M/3zWeOHGCiRMnsnPnTk6fPs3q1avp168fzZo1o3r16vf8HEQkcx/+fJQv/96peXKXanSpVdqYIBazbYTUfwtS/3ZhZ47FERG5GRWlRO7S4CZBdKpZErPFynOLdnHxatbW/RARkYLtueee49y5cxnaL1y4wHPPPXdHx1q/fj1nz55l0KBB6dqdnJxYv349jzzyCJUqVWLkyJF069btlmtOici9mb7xGNN/OQ7A+I5V6FW/jHFhzmxJP2UvM7EXbP1ERAyk6Xsid8lkMvFO1+ocjYznUHgszyzcyfKnG2nhcxERuaWwsDBq166dob1WrVqEhYXd0bEeeeQRMtuzxt/fn19//fWuM4rIzZktVkJPRRMVl4i3uwv1g4oxZ/MpPvj5KACj2laif+NAY0PGR2ZvPxGR+0RFKZF74Opkz+d969Bh+h/sOx/Dm6sO8H736lr4XEREbsrZ2ZnIyEjKli2brj08PDzdFDwRyX3WHghn/JowwmMS09o8XByITUwF4KWWFXi6+c03Esgxhb2z1s/NoAXYRUT+pul7IvfIv1ghpveujZ0Jvt55noV/njE6koiI5GKPPPIIo0aNIiYmJq3t6tWrvP7667Rq1crAZCJyK2sPhDN04a50BSkgrSDVuooPL7QoZ0S09MwpsHvBbTqZwKMUBDTOkUgiIjejr+NEskGT8iV4rW0l3v7hMOPXhFHe2x0rpBvWbW+n0VMiIgIffPABzZo1IyAggFq1agG2nfF8fHxYsOB2v0iKiBHMFivj14Tdatlw9p2PwWIFeyNP+ZITYHl/OL4O2/gDC2Ai/YLnfwds84523hMRw6koJZJNnmpaln3nY/huXziPf/knln999vt5ujC2QwhtqmobbhGRgq5UqVLs27ePRYsWsXfvXlxdXRk4cCC9e/fG0dHR6HgikonQU9EZRkj9V3hMIqGnomkUXDyHUv3HtWhY9Bhc2AEOrtBjHqQm2Xbh+/ei5x4lbQWpkI7G5BQR+RcVpUSyiclkolWID9/tC09XkAKIiElk6MJdzOhTW4UpERGhcOHCDBkyxOgYIpJFUXG3Lkjdab9sd/UcLOwKl4+Ca1F4fDn417fdVqmdbZe9+EjbGlIBjTVCSkRyDRWlRLKJ2WLlnR8PZ3qbFdtA6fFrwmgV4qupfCIiQlhYGGfPniU5OTlde8eOGr0gktt4u7tka79sFRkGC7tB3EXwKA19V4BXxX9ut7OHoKY5n0tEJAtUlBLJJrcb1m0lFwzrFhERw508eZIuXbqwf/9+TCYTVqtteO2NnVvNZrOR8UQkE/WDilGssBPRCcmZ3m4CfD1t64jmqDNbYUlPSIwBr0rQ5xvwLJ2zGURE7sFd7b537tw5zp8/n3Y9NDSU4cOH8/nnn2dbMJG8JtcP6xYRkVzhxRdfJCgoiKioKAoVKsTBgwf57bffqFu3Lps2bTI6nohkYs+5qyQkpWZ6243x72M7hOTsaPjDP8CCzraClH8DGPijClIikufcVVHq8ccf55dffgEgIiKCVq1aERoayhtvvMGECROyNaBIXpGrh3WLiEiusXXrViZMmECJEiWws7PDzs6OJk2aMHnyZF544QWj44nIfxy4EMOAOaEkpVqo6OOGr4dzutt9PV1yft3QXfNh2ROQmggV2kDfVVAoh0dpiYhkg7uavnfgwAHq17ctnLd8+XKqVq3K5s2b+fnnn3nmmWcYM2ZMtoYUyQvqBxXDz9OFiJjEm24X7O3unPPDukVEJFcxm824u7sDUKJECS5evEjFihUJCAjgyJEjBqcTkX87HBFLn1nbiEtMpV5gUeYNqo+zgz2hp6KJikvE2902ZS/HRkhZrfD7h7Bxou16zT7Q4SOw16osIpI33dVIqZSUFJydbd8QrF+/Pm1BzkqVKhEeHn7Hx/vkk08IDAzExcWFBg0aEBoaetO+K1asoG7duhQpUoTChQtTs2ZNFixYcDdPQyRb2duZGNshBPhnGPd/OdqbuJ6itUJERAqyqlWrsnfvXgAaNGjAe++9x+bNm5kwYQJly5Y1OJ2I3HA8Kp4+X27j6rUUavgXYfaAehRycsDezkSj4OJ0qlmKRsHFc64gZbHAj6/+U5BqMgI6TVdBSkTytLsqSlWpUoWZM2fy+++/s27dOtq0aQPAxYsXKV78zhZwXrZsGSNGjGDs2LHs2rWLGjVq0Lp1a6KiojLtX6xYMd544w22bt3Kvn37GDhwIAMHDuSnn366m6cikq3aVPVjRp/a+Hqmn6Ln7e6Mu4sDF64mMmzxLlLNFoMSioiI0d58800sFtvnwIQJEzh16hRNmzblhx9+4OOPPzY4nYgAnLmSwBNf/snl+GRC/DyYP7A+7i6OxgVKTYJvBkPoZ7brbd6BlmPBpB2dRSRvM1lvbPlyBzZt2kSXLl2IjY2lf//+zJ49G4DXX3+dw4cPs2LFiiwfq0GDBtSrV4/p06cDYLFY8Pf35/nnn+e1117L0jFq165Nu3btmDhx4m37xsbG4unpSUxMDB4eHlnOKXInzBZrhmHd+y/E0OvzrSSmWOjbMIAJnaqk7bQkIiK53/08h4iOjqZo0aK58nNB505S0Fy4ep0eM7dy4ep1ynu7sXRIQ4q7Od/+jvdLUhws6wMnN4GdI3SZCdW6G5dHRCQLsnr+cFdjPR988EEuX75MbGwsRYsWTWsfMmQIhQoVyvJxkpOT2blzJ6NGjUprs7Ozo2XLlmzduvW297darWzcuJEjR47w7rvv3tmTELmPbgzr/rea/kWY2rMmQxftYsGfZwgsUZjBTYIMSigiIkZISUnB1dWVPXv2ULVq1bT2YsW03qBIbhAZm8jjX/zJhavXCSpRmEVPNTC2IBV/CRZ1g/C94FgYei2E4IeNyyMiks3uavre9evXSUpKSitInTlzhqlTp3LkyBG8vb2zfJzLly9jNpvx8fFJ1+7j40NERMRN7xcTE4ObmxtOTk60a9eOadOm0apVq0z7JiUlERsbm+4iYpQ2Vf0Y1bYSAJO+D+Pngzf/fy4iIvmPo6MjZcqUwWzW+oIiuc3l+CQe/+JPzly5Rumirix6soGxuyZHn4LZj9gKUoWKw4DvVJASkXznropSnTp1Yv78+QBcvXqVBg0a8OGHH9K5c2dmzJiRrQEz4+7uzp49e9i+fTtvvfUWI0aMYNOmTZn2nTx5Mp6enmkXf3//+55P5FaealqWxxuUwWqFF5fuYd/5q0ZHEhGRHPTGG2/w+uuvEx0dbXQUEfnb1WvJ9PlyGycuJeDn6cKSpxpSsoircYHC98GsRyD6JBQpA4N+hlK1jcsjInKf3FVRateuXTRt2hSAr7/+Gh8fH86cOcP8+fPvaIHOEiVKYG9vT2RkZLr2yMhIfH19bx7azo5y5cpRs2ZNRo4cSffu3Zk8eXKmfUeNGkVMTEza5dy5c1nOJ3I/mEwmJnSsQrMKXlxPMTN43g4uXL1udCwREckh06dP57fffqNkyZJUrFiR2rVrp7uISM6KTUyh76xQDkfE4eXuzOKnGuJfLOtLkmS7U7/BnEchIQp8qsLgdVCinHF5RETuo7taU+ratWu4u7sD8PPPP9O1a1fs7Oxo2LAhZ86cyfJxnJycqFOnDhs2bKBz586AbaHzDRs2MGzYsCwfx2KxkJSUlOltzs7OODsbOA9cJBMO9nZ88ngtHpu5lcMRcQyas52vhzYydlcXERHJETfOeUTEeAlJqQycs539F2IoVtiJxU82IKhEYeMCHVwFK54CczIENIHei8HF07g8IiL32V0VpcqVK8eqVavo0qULP/30Ey+99BIAUVFRd7wry4gRI+jfvz9169alfv36TJ06lYSEBAYOHAhAv379KFWqVNpIqMmTJ1O3bl2Cg4NJSkrihx9+YMGCBTkybVAkO7m7ODJrQD06f7KZI5FxPLtoF7MH1MPR/q4GMIqISB4xduxYoyOICHA92czgedvZeeYvPFwcWDC4PuV93I0LtP1L+P5lwAqVO0DXL8HRwDWtRERywF0VpcaMGcPjjz/OSy+9xMMPP0yjRo0A26ipWrVq3dGxevbsyaVLlxgzZgwRERHUrFmTtWvXpi1+fvbsWezs/vklPSEhgWeffZbz58/j6upKpUqVWLhwIT179rybpyJiqFJFXJndvx49PtvK78cuM3b1Qd7qXDVXbgkuIiIikl8kppgZsmAHf56Mxs3ZgQWDG1ClpEEjkqxW2DQZfv17N/E6A6Hdh2Bnb0weEZEcZLJarda7uWNERATh4eHUqFEjrWgUGhqKh4cHlSpVytaQ2Sk2NhZPT09iYmLueFSXyP3y88EInl64E6sV3ni0Mk81K2t0JBER+Y/sOoews7O75ZcPuW1nPp07SX6TnGrh2UU7WX8oCldHe+YPrk+9wGLGhLGY4fsRsHOu7fqDo6D5q6AvKEUkj8vq+cNdjZQC8PX1xdfXl/PnzwNQunRp6tevf7eHEynQHqniy5vtQpj4XRhv/3gI/2KutKnqZ3QsERG5D1auXJnuekpKCrt372bevHmMHz/eoFQiBUOq2cLwZbtZfygKZwc7ZvWva1xBKiURvhkMh78DTLbRUfUGG5NFRMQgd1WUslgsTJo0iQ8//JD4+HgA3N3dGTlyJG+88Ua66XYikjWDHgjkzJUE5m89w/Ble1jq6UpN/yJGxxIRkWzWqVOnDG3du3enSpUqLFu2jMGD9UupyP1gtlj5v6/38cP+CBztTXzWtw6Ny5UwJsz1q7D0cTizGeydoNuXEJLxZ4OISH53V9WjN954g+nTp/POO++we/dudu/ezdtvv820adMYPXp0dmcUKRBMJhNj2ofwYEUvElMsPDlvO+eirxkdS0REckjDhg3ZsGGD0TFE8iWLxcobK/ezcvcF7O1MTH+8Ng9W9DYmTGw4zHnUVpBy9oA+K1SQEpEC666KUvPmzePLL79k6NChVK9enerVq/Pss8/yxRdfMHfu3GyOKFJwONjbMf3x2lTydedyfDKD5m4n5nqK0bFEROQ+u379Oh9//DGlSpUyOopIvmO1Whm/5iBLt5/DzgRTe9akdRVfY8JcPg6zH4Gog+DmAwN/gKCmxmQREckF7mr6XnR0dKaLmVeqVIno6Oh7DiVSkLk5OzBnYD06f7KZY1HxPLdoF3MG1sPRXtNiRUTyg6JFi6Zb6NxqtRIXF0ehQoVYuHChgclE8h+r1co7Px5m3tYzALzXvQYdapQ0JsyFnbDoMbh2BYqVtY2QKhZkTBYRkVziropSNWrUYPr06Xz88cfp2qdPn0716tWzJZhIQebn6cqs/vXo8dlW/jh+mTdXHuCdbtVuuVuTiIjkDf/73//S/Ty3s7PDy8uLBg0aULRoUQOTieQ//1t/jM9+OwnA212q0b1OaWOCHN8Ay/pCSgL41YQnvgY3L2OyiIjkIndVlHrvvfdo164d69evp1GjRgBs3bqVc+fO8cMPP2RrQJGCqmopT6b1rsVT83ewbMc5AksUZuiDwUbHEhGRezRgwACjI4gUCJ9uOs7HG44BMLZDCI83KGNMkH1fwapnwJIKZR+EngvB2d2YLCIiucxdzQdq3rw5R48epUuXLly9epWrV6/StWtXDh48yIIFC7I7o0iB1aKyD2PahwDw7trD/LA/3OBEIiJyr+bMmcNXX32Vof2rr75i3rx5BiQSyX9m/XGK99YeAeDVNpUY+IBB0+S2fgornrQVpKp2g8e/UkFKRORfTFar1ZpdB9u7dy+1a9fGbDZn1yGzXWxsLJ6ensTExODh4WF0HJEsGbf6IHO3nMbZwY4lQxpSu4ymd4iI5LTsOoeoUKECn332GQ899FC69l9//ZUhQ4Zw5MiRe42arXTuJHnNom1neGPlAQBebFGel1pVyPkQViusHwebp9quN3gGWk8GO60RKiIFQ1bPH/RTUSQPGN0+hJaVvUlKtfDUvB2ci75mdCQREblLZ8+eJSgo46iNgIAAzp49a0Aikfzj653n0wpSTzcvy/CW5XM+hDkVvn3un4JUi7HQ5h0VpEREMqGfjCJ5gL2diY961aJKSQ+uJCQzYE4oMddSjI4lIiJ3wdvbm3379mVo37t3L8WLFzcgkUj+sGbvRV75ei8AAxoH8lqbSjm/SUzyNVj2BOxZBCZ76Dgdmo4AbVYjIpIpFaVE8ojCzg7MHlAPP08XTlxKYOiinSSnWoyOJSIid6h379688MIL/PLLL5jNZsxmMxs3buTFF1+kV69eRscTyZPWHohg+LI9WKzQu74/YzuE5HxB6lo0zO8ER9eCgwv0WgS1++ZsBhGRPOaOdt/r2rXrLW+/evXqvWQRkdvw8XBhVv96PDZzC1tOXOGNlft5r3v1nD/pEhGRuzZx4kROnz5NixYtcHCwnYpZLBb69evH22+/bXA6kbznl8NRPL9kF2aLla61SvFW52r399zIYoYzWyA+Etx8IKAxxIXDgq5w+Qi4eMLjy6FMw/uXQUQkn7ijopSnp+dtb+/Xr989BRKRWwsp6cH0x2szeN52vtp5nsAShXnuoXJGxxIRkSxycnJi2bJlTJo0iT179uDq6kq1atUICAgwOppInrP5+GWeXriTFLOVdtX8eK97dezs7mNBKmw1rH0VYi/+01bY27a73vVocC8JfVeAd+X7l0FEJB/J1t338gLtICP5xYKtpxn97UEApvWuRYcaJQ1OJCKSvxXUc4iC+rwl9ws9FU3/2aFcTzHTsrIPM/rUxtH+Pq5OErYalvcDbvLrk7sfDF4HRfzvXwaR/2/vvsOjqvI/jr9nJj0kIYU0aigCoUkN1YoKKooiKL2IrIgFUX/q7iqyFmzrspbFpYgi1YqgggqidEIv0iH0FEJgUiBt5v7+GIkb6ZlJJpl8Xs8zj5k7Z8793lGZwyfnnCtSQejueyIebmCHOjzY2XH3pqc+38KGQxlurkhERK5Er169eOONN847/uabb9K7d283VCRS8Ww+cpphH6/jbIGN666pxgf9W5ZuIGW3OWZIXSyQOidYvyQUEbkaCqVEKrC/3t6YW+KjyC+089D0DRw6mePukkRE5DKWLVvG7bffft7x7t27s2zZMjdUJFKxbD9mZdDUtWTnFdKhbjj/HdAaXy9L6Z700KriS/YuJCvZ0U5ERK6YQimRCsxiNvHvB66lWfUQMnLyGfrxOk6fyXd3WSIicgnZ2dn4+Picd9zb25vMzEw3VCRScexJzWLg1LVk5hbSpnYoUwa3wd+nlAMpcGxq7sp2IiICKJQSqfACfLyYOrgNsSF+HDiRw18+3UB+od3dZYmIyEU0a9aMuXPnnnd8zpw5xMfHu6EikYrhwIls+k1ey6kzBTSvEcJHQ9sS6HtV920quSpRrm0nIiLAVd59T0TKp8hgPz4a2pb7Jq5mbVIGz321lX/2blG6t0MWEZESeeGFF7j33nvZv38/N910EwBLlixh1qxZfPHFF26uTqR8OpJxhv5T1pKenUfjmGCmD2tHsJ932RWQnwOYuPieUibHflK1O5ZdTSIiHkAzpUQ8RKPoYD7o3wqL2cRXG4/x3s/73F2SiIhcQI8ePZg3bx779u3jkUce4amnnuLYsWP8/PPP1K9f393liZQ7x0+fpe/kNSRbc6kfWYUZD7ajasD5S2BLhd0GS1+D2Q/wRyD151/6/f682+tgLoOlhCIiHkShlIgHuf6aarx8d1MA3vlpD/M2HXNzRSIiciF33HEHK1euJCcnhwMHDtCnTx+efvppWrRo4e7SRMqVtMxc+k9Zy9FTZ6kTHsCs4QmEV/Etm5OfyYBZfeDXNwAD2jwI930EwTHF2wXHQp/pEH9X2dQlIuJBtHxPxMP0S6jFwZM5TFp2gP/7YiuxVf1pFxfm7rJERORPli1bxtSpU/nyyy+JjY3l3nvv5YMPPnB3WSLlxsnsPPpPWUtSeg7Vq/oz86H2RAb7lc3Jj22EzwaD9TB4+UOPCdDiAcdr8T0dd9nLTnXsIVW7o2ZIiYiUkEIpEQ/0XLdGHD55hkW/pfCXT9fz1SOdiIsIdHdZIiKVXkpKCh9//DFTp04lMzOTPn36kJeXx7x587TJucj/sJ4pYODURPamZRMd7Mfsh9pTvap/6Z/YMGDjJ/D9M2DLh9A4uH8GRDf9o43ZAnFdSr8WEZFKQMv3RDyQ2WziX/dfS4saIZw6U8Cwj9dxKiff3WWJiFRqPXr0oGHDhmzdupUJEyZw/Phx3nvvvRL3V6dOHUwm03mPUaNGAZCbm8uoUaMIDw+nSpUq9OrVi9RU3a5eyieb3WD1/pN8s/kYP+9MZeBHa9mRnElEFV9mPpRArfCA0i+i4Cx88ygseMIRSDW8HUb8UjyQEhERl9JMKREP5e9jYfLgNtzzwSqS0nP4y6cb+HR4O3y9NL1cRMQdFi5cyOOPP87IkSNp0KCB0/2tW7cOm81W9Hz79u3ccsst9O7dG4Ann3yS7777js8//5yQkBAeffRR7r33XlauXOn0uUVcadH2ZMYt2EGyNbfY8UAfCzOHJ1CvWpXSLyIjCT4bBClbwWSGm/4OnZ4Es36HLyJSmvSnrIgHiwzyY9rQtgT5epF4MINnv9iKYVzsVsYiIlKaVqxYQVZWFq1btyYhIYH333+f9PT0EvdXrVo1oqOjix7ffvst9erV4/rrr8dqtTJ16lTeeecdbrrpJlq3bs20adNYtWoVa9asceFViThn0fZkRs7YeF4gBZCTbyMpPbv0i9jzA0y63hFIBUTAwK+hy1MKpEREyoD+pBXxcNdEBTFxQGu8zCbmbT7OhMV73V2SiEil1L59eyZPnkxycjJ/+ctfmDNnDrGxsdjtdn766SeysrJK3Hd+fj4zZsxg2LBhmEwmNmzYQEFBAV27di1q06hRI2rVqsXq1atdcTkiTrPZDcYt2MHFfl1mAsYt2IHNXkq/ULPb4OdXHXfYy7VC9Tbwl2VQ94bSOZ+IiJxHoZRIJdC5QQSv9HTsh/DvJXv5csNRN1ckIlJ5BQYGMmzYMFasWMG2bdt46qmneP3114mMjOSuu0p2S/l58+Zx+vRphgwZAjg2VPfx8aFq1arF2kVFRZGSknLJvvLy8sjMzCz2ECkNiUkZF5whdY4BJFtzSUzKcP3Jc07CzPtg2ZuO520fgqELIaS6688lIiIXpVBKpJJ4oF0tRt5QD4DnvtrKmgMn3VyRiIg0bNiQN998k6NHjzJ79uwS9zN16lS6d+9ObGys0zWNHz+ekJCQokfNmjWd7lPkQtKyLh5IlaTdFTu2wbFcb//P4OUP906GO94GLx/XnkdERC5LoZRIJfLMrQ25o1kMBTaDv3y6gf0nymCfBhERuSyLxULPnj2ZP3/+Vb/30KFDLF68mOHDhxcdi46OJj8/n9OnTxdrm5qaSnR09CX7e/7557FarUWPI0eOXHVNIleiWhXfK2oXGeTnmhMaBqyfBh91A+sRCKsLDy2B5n1c07+IiFw1hVIilYjZbOKffVrQslZVrGcLGPbxOjJy8t1dloiIOGHatGlERkZyxx13FB1r3bo13t7eLFmypOjY7t27OXz4MB06dLhkf76+vgQHBxd7iLiaYRjM33r8km1MQEyIH+3iwpw/YcFZmPcIfDsabPnQ6E4Y8QtENXG+bxERKTGFUiKVjJ+3hcmD2lAzzJ9DJ88wYvp6cvIKWb3/JN9sPsbq/SdLb0NRERFxKbvdzrRp0xg8eDBeXl5Fx0NCQnjwwQcZM2YMS5cuZcOGDQwdOpQOHTrQvn17N1Ys4gik/vHtDuYk/jELz/SnNueej+0Rj8X851evUsYBmHILbJkFJjN0fQnunwF+Ic71KyIiTvO6fBMR8TQRVXyZNqQt9/xnFesPnaL1Kz+RW2Avej0mxI+xPeLp1jTGjVWKiMjlLF68mMOHDzNs2LDzXvvXv/6F2WymV69e5OXlcdttt/Gf//zHDVWK/MEwDN78YTfTVh4E4K37mhPk58W4BTuKbXoe7aqxyO5F8NUIyLNCQATc9xHUvd65PkVExGVMhmFUqikRmZmZhISEYLVaNR1dKr0JP+1hwpK95x0/9/vIiQNaKZgSEfldZR1DVNbrltLx78V7+dfiPQC83LMpA9vXBsBmN0hMyiAtK5fIIMeSPadmSNltsPQ1WP6243mNttD7E91dT0SkjFzp+EEzpUQqKZvdYO76C29ea+AIpsYt2MEt8dHOT5sXERGRSu+/v+4vCqT+fkfjokAKwGI20aFeuGtOlHMSvnwQDix1PG/3F7j1Fd1dT0SkHNKeUiKVVGJSRrFp8n9mAMnWXBKTMsquKBEREfFIH69MYvzCXQA8c1tDhnepWzonOroB/nudI5DyDoB7p8DtbyqQEhEppzRTSqSSSsu6eCBVknYiIiIiFzJr7WFeWrADgMduqs+oG+u7/iSGAes/goXPgr0AwutDn08hKt715xIREZdRKCVSSUUG+bm0nYiIiMiffbXxKH+btw2Ah7rEMeaWa1x/kvwz8N0Y2DLb8bzRndBzIvhpDzQRkfJOoZRIJdUuLoyYED9SrLlc7G4HVf29aRcXVqZ1iYiIiGf4dutxnv58C4YBgzrU5q+3N8ZkcvE+lSf3w2eDIHU7mMzQ9SXo+Di4+jwiIlIqtKeUSCVlMZsY28Mxpf1iw7bTZwv4/CKboYuIiIhczI+/pTB6zmbsBtzfpiYv9Wji+kBq1/cw6UZHIBVYDQbNh05PKJASEalAFEqJVGLdmsYwcUArokOKL9GLCfHjxobVAHjuq23MXHvIHeWJiIhIBfTrnhM8OmsThXaDntfG8tq9zTC78k6+dhssHgdz+kKeFWomwF+WQVwX151DRETKhJbviVRy3ZrGcEt8NIlJGaRl5RIZ5Ee7uDDMJnjlu51MXZHE377ejs1uMKhDHXeXKyIiIuXYqv3pjJi+nnybndubRfN27xZYXBlI5aTDF8Mg6VfH84SH4ZaXdXc9EZEKSqGUiGAxm+hQL/y843+/ozEWs4lJyw7w4je/UWgzGNY5zg0VioiISHm3/mAGwz9ZT16hna6NI5lwf0u8LC5cmHF0vWP/qMxj4B0Ad70Hze5zXf8iIlLmFEqJyEWZTCae794Ii9nExF/2849vd2A3DIZ3qevu0kRERKQc2Xr0NEOnreNMvo0uDSJ4v18rfLxcFEgZBqybAoueB3sBhNeH+2dAZGPX9C8iIm6jUEpELslkMvF/tzXEy2zivZ/38cp3Oym0Gzx8fT13lyYiIiLlwI7jmQycmkhWXiEJcWFMGtgGP2+LazrPPwPfjoatcx3PG/eAu/8DfsGu6V9ERNxKoZSIXJbJZOKpWxtiMZuYsHgvry/chc1uMOrG+u4uTURERNxob2oWA6euxXq2gFa1qjJ1SFv8fUoQSNltcGgVZKdClSio3RFOHYS5AyHtNzBZ4JZx0OFR3V1PRMSDKJQSkSs2uus1WEwm/vnTHt76YTc2u8HjNzdwd1kiIiLiBknpOfSfspaTOfk0rR7MtKHtqOJbgr9e7JgPi56FzON/HPMPg4KzUHgWAiOh9zSo09l1xYuISLmgUEpErspjNzfAYjHx5qLdvPPTHgrtBk92bYBJv7UUERGpNI5knKH/5DWkZeXRKDqIT4clEOLvffUd7Zjv2Lwco/jxsxmOf4ZfA4PnQ3CM0zWLiEj548LbYYhIZfHIDfX56+2NAHh3yV7++eMeDMO4zLtERETEEyRbz9JvyhqOW3OpVy2QTx9MIDTQ5+o7stscM6T+HEj9r4IcqBJZ4lpFRKR8UyglIiUy4rp6/P0Ox11v3l+6jzcW7VYwJSIi4uHSsnLpP3ktRzLOUissgJnD21MtyLdknR1aVXzJ3oVkHnO0ExERj6RQSkRKbHiXurzUIx6AD3/dz2vf71QwJSIi4qEycvIZMGUtB9JzqF7Vn1kPJRAd4lfyDrNTXdtOREQqHIVSIuKUIZ3iePnuJgBMXp7EP77doWBKRETEw1jPFDBw6lr2pGYTGeTLzOEJ1AgNcK7TKlGubSciIhWOQikRcdrADnV47Z5mAExbeZCX5v+mYEpERMRDZOcVMnhaIr8dzyQ80IdZDyVQJyLQ+Y5DaoDJcokGJgiuDrU7On8uEREplxRKiYhL9EuoxZu9mmMywSerD/HCN9ux2xVMiYiIVGRn8gsZNm0dm4+cpmqANzOGJ1A/Msj5jjOPw6f3gGH7/cCf7+L7+/Nur4P5UsGViIhUZAqlRMRl+rStyVv3tcBkghlrDvO3edsUTImIiFRQuQU2RkzfQOLBDIL8vPh0WAKNY4Kd7zj7BEy/G04lQdXacOe/ITimeJvgWOgzHeLvcv58IiJSbnm5uwAR8Sz3ta6BxQxPfbaF2YlHKLQZvN6rORbzn38DKiIiIuVVfqGdR2ZuZMW+dAJ8LHw8tB3NaoQ43/GZDEcglb4HgmvA4AUQWhtaDXTcZS871bGHVO2OmiElIlIJKJQSEZe7p2UNLGYzT87dzOcbjmIzDN66r4WCKRERkQqg0Gbn8dmb+HlXGn7eZj4a0pbWtUOd7/jsaceSvbTfoEo0DJ7vCKTAEUDFdXH+HCIiUqFo+Z6IlIq7WsTy7gMtsZhNfLXxGGM+20yhze7uskREROQSbHaDMZ9tYdFvKfhYzEwa2Ib2dcOd7zgvC2b2huTNEBAOg76B8HrO9ysiIhWaQikRKTV3NI/h/b4t8TKb+GbzcUbPVTAlIiJSXtntBs9+uZX5W47jZTbxn/6tuO6aas53nH8GZj0ARxPBr6ojkIps5Hy/IiJS4SmUEpFS1b1ZDP/p3wpvi4lvtybz+JxNFCiYEhERKVcMw+DF+dv5YsNRzCZ4t29LusZHOd9xQS7M7Q+HVoBvMAz8CqKbOd+viIh4BIVSIlLqbm0SzYcDWuNjMfP9thQenbWR/EIFUyIiIuWBYRi88t1OZqw5jMkE7/S5ltubxVz+jZdTmA+fD4H9P4N3IPT/Aqq3dr5fERHxGAqlRKRM3Nw4iv8ObI2Pl5kffkvlkZkbySu0ubssERGRSu/tH3czdUUSAK/f24yeLas736mtEL4aDnsWgpcf9JsLtRKc71dERDyKQikRKTM3Nopk8qA2+HqZWbwzlZEzNpJboGBKRETEXd5bspcPlu4H4B93N+H+trWc79Rug3kjYcc3YPGBB2bqznoiInJBCqVEpExdf001pg5ui5+3mZ93pfGXTzcomBIREXGDycsO8M+f9gDw19sbMahDHec7tdthwROw7TMwe0HvT6B+V+f7FRERj6RQSkTKXOcGEXw0pC3+3hZ+3XOCh6avVzAlIiJShqavPsir3+8EYMwt1zDiunrOd2oYsPD/YNOnYDJDrynQ6Hbn+xUREY+lUEpE3KJjvQg+HtqWAB8Ly/emM+zjdZzNVzAlIiJS2uauO8yL3/wGwCM31OOxm+o736lhwE8vwLrJgAl6ToQm9zjfr4iIeLRyEUp98MEH1KlTBz8/PxISEkhMTLxo28mTJ9OlSxdCQ0MJDQ2la9eul2wvIuVXQt1wpg9rR6CPhVX7TzL040Ry8grdXZaIiIjHmrfpGM99tQ2AYZ3ieOa2hphMJuc7XvoarHrP8XOPCdDiAef7FBERj+f2UGru3LmMGTOGsWPHsnHjRlq0aMFtt91GWlraBdv/8ssv9O3bl6VLl7J69Wpq1qzJrbfeyrFjx8q4chFxhTZ1wpj+YAJVfL1YcyCDodPWka1gSkRExOW+35bMU59vwTBgQPtavHBnY9cEUsv/CcvedPzc/U1oPcT5PkVEpFIwGYZhuLOAhIQE2rZty/vvvw+A3W6nZs2aPPbYYzz33HOXfb/NZiM0NJT333+fQYMGXbZ9ZmYmISEhWK1WgoODna5fRFxj0+FTDPookazcQtrUDmXa0LYE+Xm7uywRkSKVdQxRWa+7orPZDRKTMkjLyiUyyI+sswU8MmsjhXaD3q1r8Eav5pjNLgikVv8Hfnje8XPXcdB5tPN9iohIhXel4wevMqzpPPn5+WzYsIHnn3++6JjZbKZr166sXr36ivo4c+YMBQUFhIWFlVaZIlIGWtYKZebwBAZMWcv6Q46A6pNh7QhWMCUiInJVFm1PZtyCHSRbc8977a4WsbzuqkBq3dQ/AqkbnlcgJSIiV82ty/fS09Ox2WxERUUVOx4VFUVKSsoV9fHss88SGxtL164XvtVsXl4emZmZxR4iUj41r1GVWQ+1p2qAN5sOn2bglLVYzxa4uywREZEKY9H2ZEbO2HjBQArg1iZRWFwRSG2aCd+NcfzcaTRc/6zzfYqISKXj9j2lnPH6668zZ84cvv76a/z8/C7YZvz48YSEhBQ9atasWcZVisjVaFo9hFnD2xMa4M2Wo1YGTFnL6TP57i5LRESk3LPZDcYt2MHF9uYwAa9+txOb3cndO7Z9AfMfdfycMBK6vgSu2JtKREQqHbeGUhEREVgsFlJTU4sdT01NJTo6+pLvffvtt3n99df58ccfad68+UXbPf/881it1qLHkSNHXFK7iJSe+NhgZo9oT3igD9uOWek3eS2nchRMiYiIXEpiUsZFZ0gBGECyNZfEpIySn2TnAvhqBBh2aD0Uuo1XICUiIiXm1lDKx8eH1q1bs2TJkqJjdrudJUuW0KFDh4u+78033+Tll19m0aJFtGnT5pLn8PX1JTg4uNhDRMq/RtHBzBnRnogqvuxIzqTv5DWczM5zd1kiIiLlVlrWxQOpkrQ7z54f4fOhYNigRT+44x0FUiIi4hS3L98bM2YMkydP5pNPPmHnzp2MHDmSnJwchg4dCsCgQYOKbYT+xhtv8MILL/DRRx9Rp04dUlJSSElJITs7212XICKlpEFUEHNGtKdakC+7UrLoN3kt6dl52OwGq/ef5JvNx1i9/6TzyxBEREQ8QGTQhbezKGm7YvYvhbkDwF4ATe6Fu98Hs9v/KiEiIhWcW+++B3D//fdz4sQJXnzxRVJSUrj22mtZtGhR0ebnhw8fxvw/X3gTJ04kPz+f++67r1g/Y8eO5aWXXirL0kWkDNSPrMKcEe3pN3kNu1Oz6PHuCmyGQVrWH7OmYkL8GNsjnm5NY9xYqYiIiHtFBftiNsHFfldjAqJD/GgXd5V3rT60Cmb3BVseNLoT7p0EZovT9YqIiJgMw6hUUwwyMzMJCQnBarVqKZ9IBXIwPYee/1nJ6TPn343v3MKBiQNaKZgSkVJTWccQlfW6K5qjp85w/3/XcOz0WcDx3fi/g/wSf1ceXQ/T74b8bKjfFR6YBV6+ripbREQ81JWOHzTnVkQqhJphAXhfZJnAuUH3uAU7tJRPREQqnRRrLv2nrOXY6bPUjQjkjV7NiA4pvkQvOsTv6gOp5C0w415HIBV3Hdw/Q4GUiIi4lNuX74mIXInEpAxOXGKj8/+9o1CHeuFlV5iIiIgbpWfn0X/KGg6dPEPNMH9mPpRATIg/97WuSWJSBmlZuUQGOZbsWcxXsSl56g6Y3hNyrVCzPfSdA97+pXYdIiJSOSmUEpEKodTvKCQiIlLBnMrJZ8CUtew/kUNsiB+zhrcnJsQRHFnMppL/kiZ9n2PJ3tkMiG0F/T8Hn0AXVi4iIuKg5XsiUiGU6h2FREQqqGPHjjFgwADCw8Px9/enWbNmrF+/vuj1IUOGYDKZij26devmxorFVaxnCxj0USK7UrKIDPJl5kPtqRkW4HzHGUnwSQ/ISYOoZjDgS/DTXmIiIlI6NFNKRCqEdnFhxIT4kWLN5VK7Ru1IttK+bhgm01UsURARqYBOnTpFp06duPHGG1m4cCHVqlVj7969hIaGFmvXrVs3pk2bVvTc11d7AlV02XmFDJmWyLZjVsICfZg5PIG4CBfMZLIehel3QdZxqNYIBs2DgKu8U5+IiMhVUCglIhWCxWxibI94Rs7YeN4dhf7Xy9/uZPnedN66rwXVgvQXLxHxXG+88QY1a9YsFjjFxcWd187X15fo6OiyLE1K0dl8G8M+Xsemw6cJ8fdmxoMJNIgKcr7jrBTHDKnThyGsLgz6BgIjnO9XRETkErR8T0QqjG5NY5g4oNV5dxSKCfFjYv9W/OPuJvh6mfll9wm6/3sZS3elualSEZHSN3/+fNq0aUPv3r2JjIykZcuWTJ48+bx2v/zyC5GRkTRs2JCRI0dy8uTJS/abl5dHZmZmsYeUD7kFNkZ8up7EpAyCfL2YPqwd8bEuWFqXfQI+uQsyDkDVWjB4AQQpyBQRkdJnMgyjUt0/PTMzk5CQEKxWK8HBWh8vUhHZ7MZF7yi0OyWLx2dvYndqFgBDOtbhue6N8PO2uLNkEfEA5W0M4efnCOjHjBlD7969WbduHU888QQffvghgwcPBmDOnDkEBAQQFxfH/v37+etf/0qVKlVYvXo1FsuF/1x86aWXGDdu3HnHy8t1V1b5hXZGztjAkl1pBPhYmD6sHW3quGBp3ZkMxwyp1O0QXB2Gfg+hdZzvV0REKrUrHTcplBIRj5NbYOP1hbv4eNVBABpFB/HvB1rSMNoFyxtEpNIqb2MIHx8f2rRpw6pVq4qOPf7446xbt47Vq1df8D0HDhygXr16LF68mJtvvvmCbfLy8sjLyyt6npmZSc2aNcvNdVdGhTY7j83exMLtKfh6mZk2tC0d67lgaV2u1XGXveOboEoUDPkeIuo736+IiFR6Vzpu0vI9EfE4ft4WXrqrCdOGtCWiig+7UrK46/0VTF99kEqWw4uIB4uJiSE+Pr7YscaNG3P48OGLvqdu3bpERESwb9++i7bx9fUlODi42EPcx2Y3ePrzLSzcnoKPxcx/B7Z2TSCVlw0zezsCqYBwxx5SCqRERKSMKZQSEY91Y6NIFj5xHddfU428QjsvfvMbwz9Zz8nsvMu/WUSknOvUqRO7d+8udmzPnj3Url37ou85evQoJ0+eJCYmprTLExew2w3++tU25m0+jpfZxPv9WnJDw0jnOy44C7MfgCNrwS8EBs6DyMbO9ysiInKVFEqJiEerFuTLtCFtefHOeHwsZpbsSqPbv5ezbM8Jd5cmIuKUJ598kjVr1vDaa6+xb98+Zs2axaRJkxg1ahQA2dnZPPPMM6xZs4aDBw+yZMkS7r77burXr89tt93m5urlcgzD4KUFvzF3/RHMJpjwwLXc2sQFm48X5sGc/nBwOfgEwYCvIaa58/2KiIiUgEIpEfF4ZrOJYZ3j+ObRTjSIrMKJrDwGfZTIK9/uIK/Q5u7yRERKpG3btnz99dfMnj2bpk2b8vLLLzNhwgT69+8PgMViYevWrdx1111cc801PPjgg7Ru3Zrly5fj6+vr5urlUgzDYPzCXUxffQiTCd66rwV3No91vmNbAXw+FPYvAe8A6P851GjtfL8iIiIlpI3ORaRSyS2w8ep3O/l0zSEA4mOCebfvtdSP1CboInJplXUMUVmv253e+XE37/7s2PfrtXua0S+hlvOd2grhq+Hw29dg8YX+n0HdG5zvV0RE5AK00bmIyAX4eVt4uWdTJg9qQ1igDzuSM7nzvRXMXHtIm6CLiIjbfbB0X1Eg9VKP+JIHUnYbJC2HbV/AgWUwb6QjkDJ7wwMzFUiJiEi54OXuAkRE3OGW+Cha1OjCU59vYfnedP729XZ+2X2CN3o1JyzQx93liYhIJTR1RRJv/eDYvP657o0Y0imuZB3tmA+LnoXM4396wQy9p0GDW5wrVERExEU0U0pEKq3IYD8+GdqOv9/RGG+LiZ92pNL938tYuS/d3aWJiEglM2PNIV7+dgcAo7s24OHr65Wsox3z4bNBFwikAOygWcEiIlKOKJQSkUrNbDYxvEtdvn6kE3WrBZKamceAqWsZ//1O8gvt7i5PREQqgc/WH+Hv87YD8PD19Xji5gYl68huc8yQ4mLBkwkWPedoJyIiUg4olBIRAZpWD+HbxzrTt10tDAP+u+wAvSau4sCJbHeXJiIiHuybzcd49sutAAzpWIdnuzXEZDKVrLNDqy4yQ+ocAzKPOdqJiIiUAwqlRER+F+Djxfh7m/HhgNZUDfBm2zErd7y7grnrDmsTdBERcblF25MZ89kWDAP6tqvF2B7xJQ+kALJTXdtORESklCmUEhH5k25No1n0xHV0qBvO2QIbz365jUdmbuT0mXx3lyYiIh5i6a40Hpu9CZvd4N5W1Xm1Z1PnAimAKlGubSciIlLKFEqJiFxAdIgfM4Yn8Gy3RniZTSzcnkL3fy9n9f6T7i5NREQquBV70/nLjA0U2AzuaB7Dm72aYzY7GUgBpO+5TAMTBFeH2h2dP5eIiIgLKJQSEbkIi9nEyBvq8dUjHYmLCCTZmku/KWt464ddFNi0CbqIiFy9xKQMhk9fR36hnVvio5hw/7V4WVwwJN88G7576n8O/Dnk+v15t9fBbHH+fCIiIi6gUEpE5DKa16jKt491pk+bGhgGfLB0P/d9uJqD6TnuLk1ERCqQTYdPMXRaIrkFdq6/phrv92uJtysCqe1fwjePAAa0+wv0mQ7BMcXbBMc6jsff5fz5REREXMTL3QWIiFQEgb5evHlfC66/JpLnv9rKliOnuePd5Yy7uym9WlV3fh8QERHxaNuPWRn8USI5+TY61gvnvwNb4+vlghlLu76DLx8Cww6tBv0+E8oMje503GUvO9Wxh1TtjpohJSIi5Y5CKRGRq3BH8xha1qrK6LmbSUzK4OnPt/DL7jRevacZIf7e7i5PRETKod0pWQycupbM3ELa1A5lyuA2+Hm7ICDauxg+HwKGDZrfD3dOcARS4Aig4ro4fw4REZFSpOV7IiJXKbaqP7Mfas8ztzXEYjbx7dZkbv/3chKTMtxdmoiIlDMHTmTTf8paTp0poEWNEKYNbUuAjwt+L3zgV5jbH2z5EN8T7v6PZkKJiEiFo1BKRKQELGYTo26szxcPd6BWWADHTp/lgUmreefH3RRqE3QREQEOnzxDv8lrSc/Oo3FMMJ8Ma0eQnwtm1R5eA7MfgMJcuKY79JoCFi2AEBGRikehlIiIE1rWCuX7J7rQq1UN7Aa8+/M+ev93NYdPngHAZjdYvf8k32w+xur9J7HZDTdXLCIiZeH46bP0m7KGlMxcGkRWYcaD7aga4ON8x8c2wIz7oOAM1LsJen8MFi0fFxGRikm/UhERcVIVXy/+2acF1zesxt++2samw6e5/d3l9G5TnUXbU0m25ha1jQnxY2yPeLo1jblEjyIiUpGlZebSb/Iajp46S53wAGYOTyC8iq/zHadsg0/vhfwsqNMF7p8J3n7O9ysiIuImmiklIuIid7WI5fsnutCmdijZeYVMW3moWCAFkGLNZeSMjSzanuymKkVEpDSdzM6j/5S1HDx5hhqh/sx6qD2RwS4IjtJ2wfS7Ifc01GgHfeeAT4Dz/YqIiLiRQikREReqGeb4jXgV3wtPRD23eG/cgh1ayici4mFOn8lnwNRE9qZlEx3sx+yH2hNb1d/5jk/uh+l3wZmTENsSBnwBvlWc71dERMTNFEqJiLjYxsOnyc4rvOjrBpBszdXd+kREPEhmbgGDPkpkZ3ImEVV8mfVQAjXDXDCT6dRB+KQHZKdCVFMY8BX4hTjfr4iISDmgUEpExMXSsnIv3+gq2omISPmWk1fI0Gnr2HrUSmiANzOHJ1C3mgtmMlmPwSd3QeYxiGgIA+dBQJjz/YqIiJQTCqVERFwsMujK9g5Ze+AkuQW2Uq5GRERKU26BjeGfrGfDoVME+3nx6YMJNIwOcr7jrFTHkr3ThyA0DgZ9A1WqOd+viIhIOaJQSkTExdrFhRET4ofpMu1mJR7hxrd/4bP1R7S/lIhIBZRXaGPEpxtYfeAkVXy9mP5gAk2ru2BpXc5Jx6bmJ/dBSC0YvACCdddWERHxPAqlRERczGI2MbZHPMB5wZTp98egDrWJDfEj2ZrL/32xlW4TlvHjbykYhsIpEZHyyGY3WL3/JN9sPsbq/Y6Zro/O2sSyPSfw97YwbWhbrq1Z1fkTnT0Fn94NJ3ZCUAwM/gaq1nS+XxERkXLIZFSyvwFlZmYSEhKC1WolODjY3eWIiAdbtD2ZcQt2kGz9Y++omBA/xvaIp1vTGHILbHy6+hDvL92H9WwBAK1rh/Jc90a0raM9Q0TKm8o6hqis1/2/LvTnuZ+3mdwCOz5eZqYNaUun+hHOnyg3Ez7tCcc2QGA1GPI9VLvG+X5FRETK2JWOHxRKiYiUIpvdIDEpg7SsXCKD/GgXF4bFXHz+lPVsAf/9dT8frUwit8AOQNfGkTxzWyPX7EsiIi5RWccQlfW6z1m0PZmRMzZysQHzqBvr8cxtjZw/UX4OzOgFh1eDfygM+Q6imjjfr4iIiBtc6fhBy/dEREqRxWyiQ71w7r62Oh3qhZ8XSAGE+Hvzf90a8eszN9K3XS0sZhOLd6bR/d/LePrzLRw7fdYNlYuIiM1uMG7BjosGUgBfbTzm/L6ABWdhdl9HIOUb4rjLngIpERGpBBRKiYiUE1HBfoy/txk/Pnkd3ZtGYzfgiw1HufHtX3j1ux2cysl3d4kiIpVKYlJGsSV7F5JszSUxKaPkJynMh88GQdKv4FMFBnwJsdeWvD8REZEKRKGUiEg5U69aFSYOaM1Xj3QkIS6M/EI7k5cncd1bS/lg6T7O5tvcXaKISKWQlnXpQOpq253HVgBfDIW9P4KXP/T7DGq2LVlfIiIiFZBCKRGRcqpVrVDmjGjPtKFtaRQdRFZuIW/9sJsb3l7KrLWHKbTZ3V2iiIhHiwzyc2m7Yuw2+PovsOtbsPhC31lQp9PV9yMiIlKBKZQSESnHTCYTNzaM5PvHu/Cv+1tQvao/qZl5/PXrbdw6YRmLtidTye5XISJSZtrFhRHk53XR10047qraLu4q75hqt8P8x2D7l2D2gj7Tod5NzhUrIiJSASmUEhGpAMxmE/e0rMHPT1/Pi3fGExrgzYETOTw8YyP3/GcVq/efdHeJIiIeZ/rqg2TlFl7wtXO3rRjbI/6CN7G4KMOA75+GzTPBZIH7PoKG3ZwvVkREpAJSKCUiUoH4elkY1jmOZf93I4/fVB9/bwubj5ym7+Q1DJmWyI7jme4uUUTEI8xae5hxC3YAcHvTaGJCii/Riw7xY+KAVnRrGnPlnRoG/PA3WD8VMME9/4X4u11YtYiISMVy8fnIIiJSbgX5eTPm1oYM6FCbd5fsZU7iEX7ZfYJf95yg57XVGXPLNdQMC3B3mSIiFdKXG47yt3nbABhxXV2e794Iu+G4G19aVi6RQY4le1c1Qwrg55dhzQeOn+9+H5r3dnHlIiIiFYvJqGSbkWRmZhISEoLVaiU4ONjd5YiIuERSeg5v/7ib77YmA+BjMdO/fS0evbE+4VV83VydiGeorGOIynbdC7Yc54k5m7AbMLhDbV66qwkm01WGTxfy61uw9BXHz7e/De0ecr5PERGRcupKxw9avici4gHiIgL5oF8r5j/aiU71w8m32Zm28iDXv/UL7y7ZS07ehfdEERGRP/z4Wwqj527GbsADbWsytoeLAqmV7/4RSN36qgIpERGR3ymUEhHxIM1rVGXm8PZ8+mA7msQGk51XyDs/7eH6t37h09UHKbDZ3V2iiEi59MvuNB6dtQmb3eCeltV59Z5mmK92ed6FrJ0EP73g+Pmmv0PHR53vU0RExEMolBIR8UBdGlRjwaOdebdvS2qFBZCenccL3/zGLe/8yrdbj2O3V6qV2yIil7RqXzp/+XQD+TY7dzSL4a37ml/9flEXsuETWPiM4+cuT8N1zzjfp4iIiAdRKCUi4qHMZhN3tYhl8Zjr+cfdTYio4sPBk2d4dNYm7v5gJSv3pZ/3HpvdYPX+k3yz+Rir95/EpvBKRDzc+oMZPPjJevIK7XRtHMmEB67Fy+KCIfKWubDgCcfPHR51zJISERGRYnT3PRERD+fjZWZQhzrc26oGU5cnMWnZfrYds9J/ylq6NIjg2W6NaFo9hEXbkxm3YAfJ1tyi98aE+DG2R/zV3fJcRKSC2HLkNEOmreNsgY0uDSJ4v18rvF0RSP02D+Y9DBjQdjjc+gq4Ym8qERERD6O774mIVDLp2Xm8//M+Zq49RIHN8RXQpnYo6w+dOq/tub9CTRzQSsGUVHqVdQzhqde943gmfSevwXq2gPZ1w5g2pB3+PhbnO969EOYOAHshtBwAPd4DsxYniIhI5aK774mIyAVFVPHlpbuasGTMDdx9bSzABQMpgHO/tRi3YIeW8omIx9ibmsWAqWuxni2gVa2qTB3c1jWB1L4l8NkgRyDVrDf0eFeBlIiIyCXoW1JEpJKqFR7Avx9oyWv3NL1kOwNItuaSmJRRNoWJiJSipPQc+k1ZS0ZOPs2qh/DxsHYE+rpgR4uDK2BOf7DlQ+Me0PNDMLsg6BIREfFgCqVERCq5K/3LWFpW7uUbiYiUY0cyztBv8hpOZOXRKDqI6cPaEezn7YKOE2FmHyg8Cw1ug14fgUVbt4qIiFyOQikRkUouMsjvitqlZuZSybYhFBEPkmw9S78pa0i25lKvWiAzhicQGujjfMfHN8GMXlCQA3VvgD7TwcsF/YqIiFQCCqVERCq5dnFhxIT4cbn7Qr32/S66/3s5X2w4Sl6hrUxqExFxhbSsXPpPXsuRjLPUDg9g1kPtiaji63zHKdvh03sgLxNqd4IHZoP3lQX9IiIiolBKRKTSs5hNjO0RD3BeMHXu+Y0NqxHgY2FXShZPf76FLm8s5YOl+zh9Jr9MaxWR4o4dO8aAAQMIDw/H39+fZs2asX79+qLXDcPgxRdfJCYmBn9/f7p27crevXvdWHHZy8jJZ8CUtRxIz6F6VX9mDk8gKrgEwZHdBknLYdsXjn+m7oTpd8PZU1CjLfSbCz4Brr8AERERD6bF7iIiQremMUwc0IpxC3aQbP1j76joED/G9oinW9MYrGcKmJV4mI9XJZGamcdbP+zm/Z/30btNDYZ1iqNORKAbr0Ck8jl16hSdOnXixhtvZOHChVSrVo29e/cSGhpa1ObNN9/k3Xff5ZNPPiEuLo4XXniB2267jR07duDn5/kzeqxnChgwZS17UrOJCvZl1kMJ1AgtQXC0Yz4sehYyj/9xzGQGww4xLaD/F+Ab5LrCRUREKgmTUck2CMnMzCQkJASr1UpwcLC7yxERKVdsdoPEpAzSsnKJDPKjXVwYFnPx+VP5hXa+23acycuS2JGcCYDJBLc0jmJ4l7q0rROKyXS5xYAiFU95G0M899xzrFy5kuXLl1/wdcMwiI2N5amnnuLpp58GwGq1EhUVxccff8wDDzxwRecpb9d9pbJyCxgwNZEtR04TUcWHOSM6UD+yytV3tGM+fDYIx71IL6DnRLi2n1O1ioiIeJorHT9o+Z6IiBSxmE10qBfO3ddWp0O98PMCKQAfLzP3tKzBd493ZtbwBG5sWA3DgB93pNLnv6vp+cFKFmw5TqHN7oYrEKk85s+fT5s2bejduzeRkZG0bNmSyZMnF72elJRESkoKXbt2LToWEhJCQkICq1evdkfJZeZMfiHDPl7HliOnqRrgzYzhCSULpOw2xwypiwVSmODnVxztRERE5KoplBIRkRIxmUx0rB/BtKHtWDzmOvq2q4mPl5ktR608NnsT17/1C1OWHyArt8DdpYp4pAMHDjBx4kQaNGjADz/8wMiRI3n88cf55JNPAEhJSQEgKiqq2PuioqKKXruQvLw8MjMziz0qktwCGw9NX8+6g6cI8vNixoMJNIou4QyvQ6uKL9k7jwGZxxztRERE5KoplBIREafVjwxi/L3NWfXcTYzu2oDwQB+OnT7LK9/tpMP4n3nl2x0cO33W3WWKeBS73U6rVq147bXXaNmyJSNGjOChhx7iww8/dKrf8ePHExISUvSoWbOmiyouffmFdkbO2MDKfScJ9LHwybB2NK0eUvIOs1Nd205ERESKUSglIiIuE1HFl9Fdr2Hlczfx+r3NqB9Zhey8QqasSOK6N5fy2OxNbDly2t1liniEmJgY4uPjix1r3Lgxhw8fBiA6OhqA1NTigUlqamrRaxfy/PPPY7Vaix5HjhxxceWlo8Bm57HZG1m6+wR+3mY+GtKWVrVCL//GS6kSdfk2V9NOREREilEoJSIiLufnbeGBdrX4cfR1TBvalk71w7HZDRZsOc7dH6ykz4er+eG3FGz2SnWvDRGX6tSpE7t37y52bM+ePdSuXRuAuLg4oqOjWbJkSdHrmZmZrF27lg4dOly0X19fX4KDg4s9yjub3WDMZ1v44bdUfLzMTB7UhoS64c53fNkZUCYIrg61Ozp/LhERkUrIy90FiIiI5zKbTdzYMJIbG0by23ErU1cksWDLcRIPZpB4MIM64QE82DmOXq1rEOCjrySRq/Hkk0/SsWNHXnvtNfr06UNiYiKTJk1i0qRJgGPft9GjR/PKK6/QoEED4uLieOGFF4iNjaVnz57uLd6F7HaDZ7/cyoItx/Eym5jYvxVdGlRzvuPEyfD9M/9zwETxDc9/vxFEt9fBbHH+fCIiIpWQ22dKffDBB9SpUwc/Pz8SEhJITEy8aNvffvuNXr16UadOHUwmExMmTCi7QkVExClNYkN4p8+1LP+/mxh5Qz2C/bw4ePIML3zzGx1f/5m3fthFWmauu8sUqTDatm3L119/zezZs2natCkvv/wyEyZMoH///kVt/u///o/HHnuMESNG0LZtW7Kzs1m0aBF+fn5urNx1DMPghW+288WGo1jMJt7r25KbGzu5lM4wHHfU+/5pwIC2w6H3JxAcU7xdcCz0mQ7xdzl3PhERkUrMZBiG29ZOzJ07l0GDBvHhhx+SkJDAhAkT+Pzzz9m9ezeRkZHntV+3bh2fffYZrVu35sknn+TZZ59l9OjRV3XOzMxMQkJCsFqtFWI6uoiIp8rJK+SLDUf5aGUSh06eAcDbYuKuFtUZ3iWOxjH6M1rKl8o6hiiv120YBi9/u5OPViZhMsGE+6/l7murO9eprRC+exI2Tnc8v/FvcN0zYDKB3ea4y152qmMPqdodNUNKRETkIq50/ODWUCohIYG2bdvy/vvvA467yNSsWZPHHnuM55577pLvrVOnDqNHj1YoJSJSwdnsBj/tSGXK8gOsP3Sq6HiXBhE82DmO66+phslkcmOFIg6VdQxRHq/bMAze+mE3//llPwBv9mpOn7ZO3iWw4Cx88SDs/g5MZrjzX9B6iPPFioiIVEJXOn5w2wYe+fn5bNiwgeeff77omNlspmvXrqxevdpl58nLyyMvL6/oeWZmpsv6FhER51nMJro1jaZb02g2HT7FlBVJLNyWzPK96Szfm841UVUY3rkud10bi5938VkJNrtBYlIGaVm5RAb50S4uDItZAZaIp3vv531FgdQ/7m7ifCB19hTM7guHV4PFF+6bCo17uKBSERERuRS3hVLp6enYbDaiooqv+4+KimLXrl0uO8/48eMZN26cy/oTEZHS07JWKB/0C+VIxhk+XnWQueuOsCc1m//7citv/rCLQR3qMKB9bcICfVi0PZlxC3aQbP1jH6qYED/G9oinW9OYS5xFRCqyScv2885PewD42+2NGdShjnMdZibDjHshbQf4hkDf2VCnk/OFioiIyGW5faPz0vb8889jtVqLHkeOHHF3SSIichk1wwJ44c54Vj1/E3+9vRExIX6kZ+fzzk976DB+CQOnruXhGRuLBVIAKdZcRs7YyKLtyW6qXERK0yerDvLa945fXj51yzU8dF1d5zpM3wtTb3UEUlWiYej3CqRERETKkNtmSkVERGCxWEhNTS12PDU1lejoaJedx9fXF19fX5f1JyIiZSfYz5sR19VjaKc4vt+WzJTlSWw7ZmX53vQLtjdw3KR93IId3BIfraV8Ih5kTuJhxs7/DYBRN9bjsZsbONfh0Q0w8z44mwHh9WHAVxBa2wWVioiIyJVy20wpHx8fWrduzZIlS4qO2e12lixZQocOHdxVloiIlEPeFjN3X1ud+Y924sU7G1+yrQEkW3NJTMoom+JEpNR9vekoz3+9DYAHO8fx9K0Nnetw72L45E5HIBXbCob9oEBKRETEDdw2UwpgzJgxDB48mDZt2tCuXTsmTJhATk4OQ4cOBWDQoEFUr16d8ePHA47N0Xfs2FH087Fjx9i8eTNVqlShfv36brsOEREpGyaTifAqVzb7ddKy/eTb7LSrE4a/j27bLlJRfb8tmac+24JhwID2tfj7HY2duyPnlrnwzSNgL4R6N0GfT8G3iusKFhERkSvm1lDq/vvv58SJE7z44oukpKRw7bXXsmjRoqLNzw8fPozZ/MdkruPHj9OyZcui52+//TZvv/02119/Pb/88ktZly8iIm4QGeR3Re2W7j7B0t0n8LGYaV07lM4NIujSIIImsSFa1idSQSzekcrjszdhN6B36xr8466mzgVSq96HH//m+LlZH7j7A/DycU2xIiIictVMhmEY7i6iLGVmZhISEoLVaiU4ONjd5YiIyFWy2Q06v/EzKdZcLvYFVjXAm1saR7Fq/0mOnT573msd64XTuX41ujSIoGZYQOkXLR6hso4h3HXdy/acYPgn68m32bmrRSz/uv/akgfKdjssHgur3nU8bz8Kbn0FzB5/zx8RERG3uNLxg1tnSomIiFwti9nE2B7xjJyxERMUC6bO/XX19Xub0a1pDIZhkJSew4p96Szfm86a/Sc5faaA77el8P22FABqhwfQqX4EXepH0LFeBCEB3mV9SSLyJ6v3n2TEp45AqluTaN7p06LkgZStAOY/BltmO57f8g/o+Dg4M+NKREREXEIzpUREpEJatD2ZcQt2kGzNLToWE+LH2B7xdGsac8H3FNrsbDlqZcXedFbsO8Gmw6cptP/xNWg2QbMaVelSP4JO9SNoXTsUHy/NpBCHyjqGKOvr3nAog4FTEzmTb+OmRpF8OKB1yf8/zM+BzwbDvp/AZIG734dr+7m2YBERETnPlY4fFEqJiEiFZbMbJCZlkJaVS2SQH+3iwq5qNkV2XiFrD5xk+d50VuxLZ19adrHX/b0tJNQNo3P9CLo0qMY1UVWc289GKrTKOoYozev+8//Dft5mBk1NJCuvkM71I5gyuA1+3iW8UcGZDJjZG46tBy9/6PMJXHObS+sXERGRC9PyPRER8XgWs4kO9cJL/P4qvl7c3DiKmxs7brCRbD3Lir3prNyXzop9J0nPzuOX3Sf4ZfcJYCfVgnzpXD/C8WgQQVTwlW26LiLnu9Bsx3NLctvVCWPSoNYlD6ROH4EZ90L6HvAPhX6fQc12LqlbREREXEehlIiIyO9iQvzp3aYmvdvUxDAMdqVksWJvOsv3pZOYdJITWXl8vekYX286BkCDyCpFd/VLiAsn0PfiX6vOzuoS8SSLticzcsbG825WcO5534RaBPiUcJiaugNm9IKs4xBcAwZ+BdUaOlOuiIiIlBIt3xMREbkCeYU2Nhw69ft+VOlsO2blf79BvS0mWtYKLZpF1bx6CF4Wxz44Jdn/SsqfyjqGcPV1n7uD5v/+//C/TEB0iB8rnr3p6oPbQ6th9v2Qa4VqjWDAVxBS3emaRURE5OpoT6mLqKwDShERca3TZ/JZtf/cflQnOJJxttjrQX5edKwXTmiAD3PWHTnv/ef+qj1xQCsFUxVEZR1DuPq6V+8/Sd/Jay7bbvZD7a9uee6u7+GLoVCYCzUToO8cCAhzolIREREpKe0pJSIiUoqqBvhwe7MYbm/mCJQOncxhxb70oj2pMnML+eG31Iu+38ARTI1bsINb4qO1lE8qjbSsC8+QKmk7ADZOhwVPgGGHa7rBfdPAJ6CEFYqIiEhZUSglIiLiArXDA6kdHkj/hNrY7AbbjlmZtfYQn60/etH3GECyNZeX5v9G96bRNIoJJizQp+yKFnGDyKAru0HAFbUzDFjxDiz5h+P5tQOgx7/BoiGuiIhIRaBvbBERERezmE1cW7Mqh07mXDKUOufTNYf4dM0hACKDfGkUE0yj6KDfH8HUiwzE16uEdyETKWfaxYURE+JHijX3vI3O4Y89pdrFXWbpnd0OPzwPaz90PO88Bm5+EUyadSgiIlJRKJQSEREpJVc6I6RtnVDSsvI4dPIMaVl5pGWdYNmeE0Wve5lN1KtWhUYxQTSMDqJxdDCNYoKIDvbDpL+ASwVjMZsY2yOekTM2YoJiwdS5/5rH9oi/9JLWwjz4+mH47SvH826vQ/uRpVSxiIiIlBaFUiIiIqXkSmeEzBnRAYvZRE5eIbtTs9iVnMXulEx2pmSxKzmTzFzH8d2pWcXeH+LvTaPoIBr/PrOq4e+PAB99vUv51q1pDBMHtDrvrpTRV3JXyrwsmDsADvwCZm+450Nodl/pFy0iIiIup1GriIhIKbnaGSGBvl60qhVKq1qhRe0MwyDZmsuulEx2JmexOyWLXSmZ7D+Rg/VsAWuTMliblPFHvyaoHRZAo99nU51bAlgrLADzVWymbrMbJCZlkJaVS2SQYymVNmMXV+rWNIZb4qOv7r+z7BMwsxckbwHvQHhgBtS7qeyKFhEREZcyGYZxoV/eeqzKejtnERFxn0Xbk8+bERJzJTNCLiGv0Ma+tGx2JTtCql0pWexKyeJEVt4F2wf4WLgmKojGMY6Q6lxYFRLgXSb1eoLKOoYoN9edkQQz7oWMAxAQAf0/h+qt3FePiIiIXNSVjh8USomIiJSBspp5lJ6dx+6ULHYmnwuqMtmTmk1+of2C7WNC/BwB1e9LAE9m5/PytzvOW254rtKJA1pV2mCqso4hysV1J2+FGb0gJw2q1oKB8yC8nntqERERkcu60vGDlu+JiIiUAYvZRId64aV+nogqvkTU96VT/YiiY4U2OwdPnnHMqPp9ZtXO5CyOnT5LsjWXZGsuS3efuESvjqWHJmDcgh3cEh+tpXxSdpKWwex+kJ8FUc1gwBcQFO3uqkRERMQFFEqJiIh4OC+LmfqRVagfWYU7m/9xPDO3gD0pWUUbqq87mMGe1OyL9mMAydZcHp21kRsbRdI4OpgGUVXw87aU/kVI5fTbPPjqIbDlQ+3O0HcW+IW4uyoRERFxEYVSIiIilVSwnzdt6oTRpk4YAN9sPsYTczZf9n0Lt6ewcHsKAGYTxEUE0igmmMbRQTT8fb+qGqH+mEyaTSVOWDcFvnsaMKBxD7h3Cnj7ubsqERERcSGFUiIiIgJAZNCV/YW/e9NorGcL2JmcyakzBew/kcP+Ezl8tzW5qE2QrxcNo4N+vwNgMI1jgrgmKoggv/M3VhcpxjDgl/Hw6xuO522Gwe1vg1kz8kRERDyNQikREREBoF1cGDEhfqRYc8/b6Bwce0pFh/jxfr9WWMwmDMPgRFZe0fK/c3cA3JeWRVZeIesPnWL9oVPF+qgR6l8UUjWKDqZRTBB1wgOd3qOqrDaSFxez2+DQKshOhSpRUDMBFj4DGz52vH7D83D9s6BZdyIiIh5JoZSIiIgAjs3Yx/aIZ+SMjZigWDB1LhIY2yO+KOwxmUxEBvsRGezH9ddUK2pbYLNz4ERO0Ybq5zZYT8nM5eipsxw9dZbFO1OL2vt6mWkYHUTDqKCiZYCNYoIJC/S5oroXbU9m3IIdJFtzi47FhPgxtkd8pb1TYIWwYz4sehYyj/9xzMsPCnMBE9zxT2j7oNvKExERkdJnMgzjQr8M9Vjl4rbGIiIi5VhphTynz+Q7ZlP9PqtqZ0oWe1KyOFtgu2D7yCDf/wmpgmgYFUy9yEB8vf5YxrVoezIjZ2w8b2bXuRBt4oBWLgumKusYolSue8d8+GwQXHBOHtDxMbj1FdecS0RERMrclY4fFEqJiIjIecpqOZzNbnA448z/LP9z/PPQyTMXbO9lNlGvWhUa/b5H1ZTlBzh1puCCbc8tN1zx7E0uqb2yjiFcft12G0xoWnyG1J8FV4fR27SPlIiISAV1peMHLd8TERGR81jMJjrUCy+T88RFBBIXEUj3Zn/MaMrJK2R3aha7kv8IqnYlZ5KZ6zi+OzXrsn0bQLI1l8SkjDK5FrlCh1ZdOpACyDzmaBfXpWxqEhEREbdQKCUiIiLlTqCvF61qhdKqVmjRMcMwSLbmFu1VtWRnKhsPn75sX2lZuZdtI2UoO/Xyba6mnYiIiFRYCqVERESkQjCZTMRW9Se2qj83NYqiVa1Q+k5ec9n3RQb5lUF1csWqRLm2nYiIiFRYZncXICIiIlIS7eLCiAnx42K7RZlwbNDeLi6sLMuSy6ndEYJj4VL/5oKrO9qJiIiIR1MoJSIiIhWSxWxibI944Px449zzsT3iS2WDdnGC2QLd3vj9yUX+zXV7XZuci4iIVAIKpURERKTC6tY0hokDWhEdUnyJXnSIHxMHtKJb05iLvFPcKv4u6DMdgv/07yc41nE8/i731CUiIiJlSntKiYiISIXWrWkMt8RHk5iUQVpWLpFBjiV7miFVzsXfBY3ucNxlLzvVsYdU7Y6aISUiIlKJKJQSERGRCs9iNtGhXri7y5CrZbZAXBd3VyEiIiJuouV7IiIiIiIiIiJS5hRKiYiIiIiIiIhImVMoJSIiIiIiIiIiZU6hlIiIiIiIiIiIlDmFUiIiIiIiIiIiUuYUSomIiIiIiIiISJlTKCUiIiJSAb300kuYTKZij0aNGhW9fsMNN5z3+sMPP+zGikVERESK83J3ASIiIiJSMk2aNGHx4sVFz728ig/tHnroIf7xj38UPQ8ICCiz2kREREQuR6GUiIiISAXl5eVFdHT0RV8PCAi45OsiIiIi7qTleyIiIiIV1N69e4mNjaVu3br079+fw4cPF3t95syZRERE0LRpU55//nnOnDlz2T7z8vLIzMws9hAREREpDZopJSIiIlIBJSQk8PHHH9OwYUOSk5MZN24cXbp0Yfv27QQFBdGvXz9q165NbGwsW7du5dlnn2X37t189dVXl+x3/PjxjBs3royuQkRERCozk2EYhruLKEtWq5WqVaty5MgRgoOD3V2OiIiIVBCZmZnUrFmT06dPExIS4u5yznP69Glq167NO++8w4MPPnje6z///DM333wz+/bto169ehftJy8vj7y8vKLnVquVWrVqaewkIiIiV+xKx02VbqZUVlYWADVr1nRzJSIiIlIRZWVllctQqmrVqlxzzTXs27fvgq8nJCQAXDaU8vX1xdfXt+j5ueV7GjuJiIjI1brcuKnShVKxsbEcOXKEoKAgTCaTy/s/lwbqt4mlQ59v6dFnW3r02ZYufb6lR59tcYZhkJWVRWxsrLtLuaDs7Gz279/PwIEDL/j65s2bAYiJibmqfjV2qrj02ZYefbalS59v6dFnW3r02RZ3peOmShdKmc1matSoUernCQ4O1n+IpUifb+nRZ1t69NmWLn2+pUef7R/K0wypp59+mh49elC7dm2OHz/O2LFjsVgs9O3bl/379zNr1ixuv/12wsPD2bp1K08++STXXXcdzZs3v6rzaOxU8emzLT36bEuXPt/So8+29Oiz/cOVjJsqXSglIiIi4gmOHj1K3759OXnyJNWqVaNz586sWbOGatWqkZuby+LFi5kwYQI5OTnUrFmTXr168fe//93dZYuIiIgUUSglIiIiUgHNmTPnoq/VrFmTX3/9tQyrEREREbl6ZncX4Gl8fX0ZO3ZssQ1CxXX0+ZYefbalR59t6dLnW3r02UpZ0H9npUefbenRZ1u69PmWHn22pUefbcmYDMMw3F2EiIiIiIiIiIhULpopJSIiIiIiIiIiZU6hlIiIiIiIiIiIlDmFUiIiIiIiIiIiUuYUSrnYBx98QJ06dfDz8yMhIYHExER3l1ThjR8/nrZt2xIUFERkZCQ9e/Zk9+7d7i7LI73++uuYTCZGjx7t7lI8xrFjxxgwYADh4eH4+/vTrFkz1q9f7+6yKjybzcYLL7xAXFwc/v7+1KtXj5dffhltk1gyy5Yto0ePHsTGxmIymZg3b16x1w3D4MUXXyQmJgZ/f3+6du3K3r173VOseBSNm0qHxk5lR2Mn19K4qfRo7OQ6Gje5lkIpF5o7dy5jxoxh7NixbNy4kRYtWnDbbbeRlpbm7tIqtF9//ZVRo0axZs0afvrpJwoKCrj11lvJyclxd2keZd26dfz3v/+lefPm7i7FY5w6dYpOnTrh7e3NwoUL2bFjB//85z8JDQ11d2kV3htvvMHEiRN5//332blzJ2+88QZvvvkm7733nrtLq5BycnJo0aIFH3zwwQVff/PNN3n33Xf58MMPWbt2LYGBgdx2223k5uaWcaXiSTRuKj0aO5UNjZ1cS+Om0qWxk+to3ORihrhMu3btjFGjRhU9t9lsRmxsrDF+/Hg3VuV50tLSDMD49ddf3V2Kx8jKyjIaNGhg/PTTT8b1119vPPHEE+4uySM8++yzRufOnd1dhke64447jGHDhhU7du+99xr9+/d3U0WeAzC+/vrroud2u92Ijo423nrrraJjp0+fNnx9fY3Zs2e7oULxFBo3lR2NnVxPYyfX07ipdGnsVDo0bnKeZkq5SH5+Phs2bKBr165Fx8xmM127dmX16tVurMzzWK1WAMLCwtxciecYNWoUd9xxR7H/fsV58+fPp02bNvTu3ZvIyEhatmzJ5MmT3V2WR+jYsSNLlixhz549AGzZsoUVK1bQvXt3N1fmeZKSkkhJSSn250NISAgJCQn6fpMS07ipbGns5HoaO7mexk2lS2OnsqFx09XzcncBniI9PR2bzUZUVFSx41FRUezatctNVXkeu93O6NGj6dSpE02bNnV3OR5hzpw5bNy4kXXr1rm7FI9z4MABJk6cyJgxY/jrX//KunXrePzxx/Hx8WHw4MHuLq9Ce+6558jMzKRRo0ZYLBZsNhuvvvoq/fv3d3dpHiclJQXggt9v514TuVoaN5UdjZ1cT2On0qFxU+nS2KlsaNx09RRKSYUyatQotm/fzooVK9xdikc4cuQITzzxBD/99BN+fn7uLsfj2O122rRpw2uvvQZAy5Yt2b59Ox9++KEGV0767LPPmDlzJrNmzaJJkyZs3ryZ0aNHExsbq89WROR/aOzkWho7lR6Nm0qXxk5SXmn5notERERgsVhITU0tdjw1NZXo6Gg3VeVZHn30Ub799luWLl1KjRo13F2OR9iwYQNpaWm0atUKLy8vvLy8+PXXX3n33Xfx8vLCZrO5u8QKLSYmhvj4+GLHGjduzOHDh91Uked45plneO6553jggQdo1qwZAwcO5Mknn2T8+PHuLs3jnPsO0/ebuJLGTWVDYyfX09ip9GjcVLo0diobGjddPYVSLuLj40Pr1q1ZsmRJ0TG73c6SJUvo0KGDGyur+AzD4NFHH+Xrr7/m559/Ji4uzt0leYybb76Zbdu2sXnz5qJHmzZt6N+/P5s3b8Zisbi7xAqtU6dO592Ce8+ePdSuXdtNFXmOM2fOYDYX/wqzWCzY7XY3VeS54uLiiI6OLvb9lpmZydq1a/X9JiWmcVPp0tip9GjsVHo0bipdGjuVDY2brp6W77nQmDFjGDx4MG3atKFdu3ZMmDCBnJwchg4d6u7SKrRRo0Yxa9YsvvnmG4KCgorW4oaEhODv7+/m6iq2oKCg8/aXCAwMJDw8XPtOuMCTTz5Jx44dee211+jTpw+JiYlMmjSJSZMmubu0Cq9Hjx68+uqr1KpViyZNmrBp0ybeeecdhg0b5u7SKqTs7Gz27dtX9DwpKYnNmzcTFhZGrVq1GD16NK+88goNGjQgLi6OF154gdjYWHr27Om+oqXC07ip9GjsVHo0dio9GjeVLo2dXEfjJhdz9+3/PM17771n1KpVy/Dx8THatWtnrFmzxt0lVXjABR/Tpk1zd2keSbc1dq0FCxYYTZs2NXx9fY1GjRoZkyZNcndJHiEzM9N44oknjFq1ahl+fn5G3bp1jb/97W9GXl6eu0urkJYuXXrBP2cHDx5sGIbj9sYvvPCCERUVZfj6+ho333yzsXv3bvcWLR5B46bSobFT2dLYyXU0bio9Gju5jsZNrmUyDMMoyxBMREREREREREREe0qJiIiIiIiIiEiZUyglIiIiIiIiIiJlTqGUiIiIiIiIiIiUOYVSIiIiIiIiIiJS5hRKiYiIiIiIiIhImVMoJSIiIiIiIiIiZU6hlIiIiIiIiIiIlDmFUiIiIiIiIiIiUuYUSomIuIDJZGLevHnuLkNERESk3NO4SUTOUSglIhXekCFDMJlM5z26devm7tJEREREyhWNm0SkPPFydwEiIq7QrVs3pk2bVuyYr6+vm6oRERERKb80bhKR8kIzpUTEI/j6+hIdHV3sERoaCjimiE+cOJHu3bvj7+9P3bp1+eKLL4q9f9u2bdx00034+/sTHh7OiBEjyM7OLtbmo48+okmTJvj6+hITE8Ojjz5a7PX09HTuueceAgICaNCgAfPnzy/dixYREREpAY2bRKS8UCglIpXCCy+8QK9evdiyZQv9+/fngQceYOfOnQDk5ORw2223ERoayrp16/j8889ZvHhxscHTxIkTGTVqFCNGjGDbtm3Mnz+f+vXrFzvHuHHj6NOnD1u3buX222+nf//+ZGRklOl1ioiIiDhL4yYRKTOGiEgFN3jwYMNisRiBgYHFHq+++qphGIYBGA8//HCx9yQkJBgjR440DMMwJk2aZISGhhrZ2dlFr3/33XeG2Ww2UlJSDMMwjNjYWONvf/vbRWsAjL///e9Fz7Ozsw3AWLhwocuuU0RERMRZGjeJSHmiPaVExCPceOONTJw4sdixsLCwop87dOhQ7LUOHTqwefNmAHbu3EmLFi0IDAwser1Tp07Y7XZ2796NyWTi+PHj3HzzzZesoXnz5kU/BwYGEhwcTFpaWkkvSURERKRUaNwkIuWFQikR8QiBgYHnTQt3FX9//ytq5+3tXey5yWTCbreXRkkiIiIiJaZxk4iUF9pTSkQqhTVr1pz3vHHjxgA0btyYLVu2kJOTU/T6ypUrMZvNNGzYkKCgIOrUqcOSJUvKtGYRERERd9C4SUTKimZKiYhHyMvLIyUlpdgxLy8vIiIiAPj8889p06YNnTt3ZubMmSQmJjJ16lQA+vfvz9ixYxk8eDAvvfQSJ06c4LHHHmPgwIFERUUB8NJLL/Hwww8TGRlJ9+7dycrKYuXKlTz22GNle6EiIiIiTtK4SUTKC4VSIuIRFi1aRExMTLFjDRs2ZNeuXYDjDi9z5szhkUceISYmhtmzZxMfHw9AQEAAP/zwA0888QRt27YlICCAXr168c477xT1NXjwYHJzc/nXv/7F008/TUREBPfdd1/ZXaCIiIiIi2jcJCLlhckwDMPdRYiIlCaTycTXX39Nz5493V2KiIiISLmmcZOIlCXtKSUiIiIiIiIiImVOoZSIiIiIiIiIiJQ5Ld8TEREREREREZEyp5lSIiIiIiIiIiJS5hRKiYiIiIiIiIhImVMoJSIiIiIiIiIiZU6hlIiIiIiIiIiIlDmFUiIiIiIiIiIiUuYUSomIiIiIiIiISJlTKCUiIiIiIiIiImVOoZSIiIiIiIiIiJQ5hVIiIiIiIiIiIlLm/h+faFX/6iA+CAAAAABJRU5ErkJggg==",
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "import matplotlib.pyplot as plt\n",
+ "# Plotting Loss and Accuracy\n",
+ "plt.figure(figsize=(12, 5))\n",
+ "\n",
+ "# Plot Loss\n",
+ "plt.subplot(1, 2, 1)\n",
+ "plt.plot(range(n_epochs), train_losses, label='Train Loss', marker='o')\n",
+ "plt.title('Training Loss')\n",
+ "plt.xlabel('Epoch')\n",
+ "plt.ylabel('Loss')\n",
+ "plt.legend()\n",
+ "\n",
+ "# Plot Accuracy\n",
+ "plt.subplot(1, 2, 2)\n",
+ "plt.plot(range(n_epochs), train_accuracies, label='Train Accuracy', marker='o')\n",
+ "plt.plot(range(n_epochs), val_accuracies, label='Validation Accuracy', marker='o')\n",
+ "plt.title('Accuracy')\n",
+ "plt.xlabel('Epoch')\n",
+ "plt.ylabel('Accuracy')\n",
+ "plt.legend()\n",
+ "\n",
+ "plt.tight_layout()\n",
+ "plt.show()\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "62c6e1d1",
+ "metadata": {
+ "papermill": {
+ "duration": null,
+ "end_time": null,
+ "exception": null,
+ "start_time": null,
+ "status": "pending"
+ },
+ "tags": []
+ },
+ "source": [
+ "BERT model evaluation and illustration"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "4c92f59b",
+ "metadata": {
+ "execution": {
+ "iopub.status.busy": "2024-08-16T06:43:56.273472Z",
+ "iopub.status.idle": "2024-08-16T06:43:56.273909Z",
+ "shell.execute_reply": "2024-08-16T06:43:56.273710Z",
+ "shell.execute_reply.started": "2024-08-16T06:43:56.273691Z"
+ },
+ "papermill": {
+ "duration": null,
+ "end_time": null,
+ "exception": null,
+ "start_time": null,
+ "status": "pending"
+ },
+ "tags": []
+ },
+ "outputs": [],
+ "source": [
+ "\n",
+ "# Assuming you have a test_loader\n",
+ "predictions, true_labels = get_predictions(bert_model, test_loader)\n",
+ "\n",
+ "# Display some sample outputs\n",
+ "for i in range(10):\n",
+ " print(f\"Sample {i+1}: True Label: {true_labels[i]}, Prediction: {predictions[i]}\")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "id": "17e59bc6",
+ "metadata": {
+ "papermill": {
+ "duration": null,
+ "end_time": null,
+ "exception": null,
+ "start_time": null,
+ "status": "pending"
+ },
+ "tags": []
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Accuracy: 0.87\n",
+ "Recall: 0.90\n",
+ "F1 Score: 0.86\n"
+ ]
+ }
+ ],
+ "source": [
+ "from sklearn.metrics import accuracy_score, recall_score, f1_score, confusion_matrix\n",
+ "\n",
+ "\n",
+ "# Compute metrics\n",
+ "accuracy = accuracy_score(true_labels, predictions)\n",
+ "recall = recall_score(true_labels, predictions, average='macro')\n",
+ "f1 = f1_score(true_labels, predictions, average='macro')\n",
+ "conf_matrix = confusion_matrix(true_labels, predictions)\n",
+ "\n",
+ "# Print results\n",
+ "print(f\"Accuracy: {accuracy:.2f}\")\n",
+ "print(f\"Recall: {recall:.2f}\")\n",
+ "print(f\"F1 Score: {f1:.2f}\")\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "88c63d9e",
+ "metadata": {
+ "papermill": {
+ "duration": null,
+ "end_time": null,
+ "exception": null,
+ "start_time": null,
+ "status": "pending"
+ },
+ "tags": []
+ },
+ "outputs": [],
+ "source": [
+ "import pandas as pd\n",
+ "\n",
+ "# Create a DataFrame to display metrics\n",
+ "metrics_df = pd.DataFrame({\n",
+ " \"Metric\": [\"Accuracy\", \"Recall\", \"F1 Score\"],\n",
+ " \"Value\": [accuracy, recall, f1]\n",
+ "})\n",
+ "\n",
+ "print(metrics_df)\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "322d2360",
+ "metadata": {
+ "papermill": {
+ "duration": null,
+ "end_time": null,
+ "exception": null,
+ "start_time": null,
+ "status": "pending"
+ },
+ "tags": []
+ },
+ "outputs": [],
+ "source": []
+ }
+ ],
+ "metadata": {
+ "kaggle": {
+ "accelerator": "gpu",
+ "dataSources": [
+ {
+ "datasetId": 200769,
+ "sourceId": 442620,
+ "sourceType": "datasetVersion"
+ }
+ ],
+ "dockerImageVersionId": 30747,
+ "isGpuEnabled": true,
+ "isInternetEnabled": true,
+ "language": "python",
+ "sourceType": "notebook"
+ },
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.11.4"
+ },
+ "papermill": {
+ "default_parameters": {},
+ "duration": 31745.761136,
+ "end_time": "2024-08-16T16:34:55.665019",
+ "environment_variables": {},
+ "exception": true,
+ "input_path": "__notebook__.ipynb",
+ "output_path": "__notebook__.ipynb",
+ "parameters": {},
+ "start_time": "2024-08-16T07:45:49.903883",
+ "version": "2.5.0"
+ },
+ "widgets": {
+ "application/vnd.jupyter.widget-state+json": {
+ "state": {
+ "0026279dff2e40de81e0d8c7605744eb": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "009c371384e54b85995b7b63801fef8d": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "00ff77498387456492dc62122f37131b": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "037e913b966b4bf4a2f19b2f071deabe": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_66edd09129304187ad4d9f3e76771e8e",
+ "max": 466062,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_5465a5778afa4e539deb9ab67b6017e6",
+ "value": 466062
+ }
+ },
+ "04aef29f148e404baa7320fbd5e4b891": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "0626b4ad1c5542b98b41747e8dffde71": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_ed295deec46c4caf8185615468929d19",
+ "placeholder": "",
+ "style": "IPY_MODEL_c7ec66b27e1f4d9bb28cea6d009b4ad7",
+ "value": "Training: 100%"
+ }
+ },
+ "0841479fa2554bb382290a33ee7ea4c8": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "0957b70c3e0649f8b705048dcd7e4b1f": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "0a0b077673d6402692ff7bfd137e2434": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "0abe9c980f1f4b19939762b120a4e9f5": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_ab584ce8eb4f41198e6346e4531ad493",
+ "IPY_MODEL_6bcd03e4bb20406eb7422d131ba1e296",
+ "IPY_MODEL_f12388ea064e4e71b0ca8a0be8faed2f"
+ ],
+ "layout": "IPY_MODEL_6c7a3fc17ffc46249db6e10ea3eb25c1"
+ }
+ },
+ "0b9694d491ec4a91827f6d250082e103": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "0bbff652f9a147c2ab3a70415ccb074b": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "0cf750434a9e4463b4973f137f655ee5": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_e332f28a74af426f875d689d15bd5c2e",
+ "max": 48,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_1a5460bbd32848358b59010824a5d99e",
+ "value": 48
+ }
+ },
+ "0d9d4f8f1b574969a054e042475c96f6": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_326cf266b5de43b3b10d23e97f270142",
+ "placeholder": "",
+ "style": "IPY_MODEL_c1ed3f5e736548d0bdc2cb48643f4198",
+ "value": " 7547/7547 [1:05:54<00:00, 1.86it/s, acc=0.945, loss=0.148]"
+ }
+ },
+ "11f3c629d2f44b08bd5fa8a308078826": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_c0031081f07443509ae69453aab75604",
+ "max": 7547,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_b50b2479848f45ee867a0dbbde8f6d8f",
+ "value": 7547
+ }
+ },
+ "12bd790252514940bcf03b465f2b3fd0": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "12c4e16b891647ba8fc1dbbb817a7b47": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "154256e94bf14a0fba245d1f9feb0fd7": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "19ffa55ce8444cab8a078bcc0ecb3670": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "1a5460bbd32848358b59010824a5d99e": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "1b9a312c88c040dc80c5b8dd04267461": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_2166b39ecb864e13bfdde283f2aa744c",
+ "placeholder": "",
+ "style": "IPY_MODEL_79dc441504cb49dc9fd5c43f50156066",
+ "value": "tokenizer.json: 100%"
+ }
+ },
+ "1c659987f235405ca7d0222d773895b8": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "1e819ca27b15462b90f629db56eb841b": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_51eafad5f30142e78b58251d91110fc9",
+ "max": 7547,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_990469242d0d4c52bd417cf01f11827e",
+ "value": 7547
+ }
+ },
+ "2017dc69875343289d74338e508db62b": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "2166b39ecb864e13bfdde283f2aa744c": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "2312f78ea28c4697a1d87b80cbc253a0": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_f1c189dd550740d69843828824e5735b",
+ "max": 7547,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_9a8a841247e540c792c99c26078e903d",
+ "value": 7547
+ }
+ },
+ "23900cce4adc41c39e37117b718c2241": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "263cb2228f0f40559a677aa1d73f9aed": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_154256e94bf14a0fba245d1f9feb0fd7",
+ "placeholder": "",
+ "style": "IPY_MODEL_7af249bcbf694dbb8e8dda77e29b8c23",
+ "value": " 440M/440M [00:02<00:00, 264MB/s]"
+ }
+ },
+ "28c86020583c4e4bb62802f7e30c7484": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_d888e47edab341c0a253418203892578",
+ "placeholder": "",
+ "style": "IPY_MODEL_7326df34eb3a4de9972e0aeaa9b2fd1f",
+ "value": " 7547/7547 [1:05:35<00:00, 2.51it/s, acc=0.689, loss=0.581]"
+ }
+ },
+ "28fe8a64113e4eaca3dc104b62c42902": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "2a576dc254ad43e2921a0c8aaedbaadb": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_2afb202b45fb4625a230bc7a73758c2d",
+ "placeholder": "",
+ "style": "IPY_MODEL_00ff77498387456492dc62122f37131b",
+ "value": " 7547/7547 [1:05:56<00:00, 1.94it/s, acc=0.961, loss=0.106]"
+ }
+ },
+ "2afb202b45fb4625a230bc7a73758c2d": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "3133b54afdbc4cfbbb6084efecde9bcd": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "31e9075c977b4e2883392f6d8725ec9e": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "32265ecac400453ea25f8a4c92afc31e": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "326cf266b5de43b3b10d23e97f270142": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "33daaa759ca94a1083ab4a2fe545656c": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "35f59263f4f64e50822de7741e118d75": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "361e0d5bd4284409a6b8a6621eaa4698": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_0626b4ad1c5542b98b41747e8dffde71",
+ "IPY_MODEL_2312f78ea28c4697a1d87b80cbc253a0",
+ "IPY_MODEL_0d9d4f8f1b574969a054e042475c96f6"
+ ],
+ "layout": "IPY_MODEL_009c371384e54b85995b7b63801fef8d"
+ }
+ },
+ "36c952ff7eee4d328161bb0e683936e7": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "37f673a7bc8a4f4b8077df312f039ccd": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "3a129c95277d45f89023bece21c5fe19": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_46110e9eae644bdaa4af3903593d742d",
+ "placeholder": "",
+ "style": "IPY_MODEL_50ecc07a95614865a6262d989f298320",
+ "value": "Training: 100%"
+ }
+ },
+ "3e93902f4bfa43c3ac9a539c9135a8e0": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "46110e9eae644bdaa4af3903593d742d": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "48ac6d6f378944aaad379af7debf6e17": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "49465cda90254e8b864bc3d736bee272": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "4aa1998e3ccb42beb40da2d53ed32f12": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "4b25da0bafa84c129912667dcd7dba12": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "4c155f72da474c24a83eedc9da503764": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_0b9694d491ec4a91827f6d250082e103",
+ "placeholder": "",
+ "style": "IPY_MODEL_ad0097d4f3e34b2ab263dae8146880d7",
+ "value": " 466k/466k [00:00<00:00, 2.37MB/s]"
+ }
+ },
+ "4fce752643934dad80d31803cf67d1b2": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_ce6c4d1c12d143a8a59981a5319d525f",
+ "placeholder": "",
+ "style": "IPY_MODEL_f52bf75346e24a58b86a946e445c550a",
+ "value": " 7547/7547 [1:05:41<00:00, 2.57it/s, acc=0.824, loss=0.394]"
+ }
+ },
+ "50ecc07a95614865a6262d989f298320": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "516ddb3a7b464bcfa015884dd61d92e1": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_f674722fc69b4f239780ee3818846848",
+ "max": 7547,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_c173e0eeb3d646e4b12e2297c52ce991",
+ "value": 7547
+ }
+ },
+ "51eafad5f30142e78b58251d91110fc9": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "535470029ccc40e8ab832472b44a3fe4": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "539713a19ca3478991364fcafc79bb84": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "544dc2c255c84e06b7adae26eae674ab": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "54502783d9554c9382f4c1d0965aa177": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "5465a5778afa4e539deb9ab67b6017e6": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "5511761f4585466aaee7409e784489b2": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "5565186bf2764b0785b68e5ca190f596": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "5645c953a88d4baba0494db69848b454": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "56d34826340843129330dda30ca62224": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_bf1143123b51480babe448ae89d83993",
+ "placeholder": "",
+ "style": "IPY_MODEL_d9993aff0890495da9015bbffd16a287",
+ "value": " 7547/7547 [1:05:53<00:00, 2.49it/s, acc=0.975, loss=0.0718]"
+ }
+ },
+ "58186cd40b804aa4b0f2a0c045e50417": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_a97b469b799d4515b7013c757cfec603",
+ "placeholder": "",
+ "style": "IPY_MODEL_605d80c5aba84c8681067e7c3110df70",
+ "value": "vocab.txt: 100%"
+ }
+ },
+ "582766d0f7b24a498977ad2f21a6447b": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "5cca56e99cf44d98bec988a57ed0a7fc": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_23900cce4adc41c39e37117b718c2241",
+ "placeholder": "",
+ "style": "IPY_MODEL_1c659987f235405ca7d0222d773895b8",
+ "value": "Training: 100%"
+ }
+ },
+ "5e7e66b3893247118316558e9c52a4b6": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_b95eeeb50492414c821b35f511f3d16d",
+ "placeholder": "",
+ "style": "IPY_MODEL_37f673a7bc8a4f4b8077df312f039ccd",
+ "value": "Training: 100%"
+ }
+ },
+ "5f79b913a2454c7fbb5d5edcfcae4058": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "605d80c5aba84c8681067e7c3110df70": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "60797794b7df4496a87c83459d692d82": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_c7f7d269368b42d0aa87df399e83dbe5",
+ "max": 570,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_c4d2628595e748bca4d328eb51d4a704",
+ "value": 570
+ }
+ },
+ "62b77db65c5246d19a80cedafbef582d": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "631b66adaf5c4eeb9b29d5412830b64d": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_48ac6d6f378944aaad379af7debf6e17",
+ "placeholder": "",
+ "style": "IPY_MODEL_2017dc69875343289d74338e508db62b",
+ "value": "model.safetensors: 100%"
+ }
+ },
+ "66edd09129304187ad4d9f3e76771e8e": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "675f0613bd104b398bfc48ea3f107460": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "6bcd03e4bb20406eb7422d131ba1e296": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_675f0613bd104b398bfc48ea3f107460",
+ "max": 301848,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_ddb106428d9b4c89ade88ccfbcf05ae6",
+ "value": 301848
+ }
+ },
+ "6c7a3fc17ffc46249db6e10ea3eb25c1": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "6d2a2a3a03b9470b881a8289e46b5927": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "6f3413a6dc6c4aada6382f2982953dfa": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "7317bbb3f4cf4cce8353606808311cca": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_5cca56e99cf44d98bec988a57ed0a7fc",
+ "IPY_MODEL_1e819ca27b15462b90f629db56eb841b",
+ "IPY_MODEL_2a576dc254ad43e2921a0c8aaedbaadb"
+ ],
+ "layout": "IPY_MODEL_9e2421fe93854c19a11fd979057d1f49"
+ }
+ },
+ "7326df34eb3a4de9972e0aeaa9b2fd1f": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "77804b49967c41f9b77b452fe2cbd6e3": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "79dc441504cb49dc9fd5c43f50156066": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "7af249bcbf694dbb8e8dda77e29b8c23": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "7bd744f9765a46adac34644b330dc2f8": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "7db939b2341e4b1492ce6aa5b0556260": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "7dfc41e9c97b48a58476076c580380e2": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_5e7e66b3893247118316558e9c52a4b6",
+ "IPY_MODEL_516ddb3a7b464bcfa015884dd61d92e1",
+ "IPY_MODEL_8e6df62361204703bc594c10cdfc1228"
+ ],
+ "layout": "IPY_MODEL_be32f402a3e145f3ae3fbfc5625a220e"
+ }
+ },
+ "7e077c3618da4af49234028f0c37e63c": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_3e93902f4bfa43c3ac9a539c9135a8e0",
+ "placeholder": "",
+ "style": "IPY_MODEL_35f59263f4f64e50822de7741e118d75",
+ "value": "Training: 100%"
+ }
+ },
+ "7ff7331862f84772aabdd38890cbeead": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "82802ff781ce4f249f5f9187a091ea81": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_834e61064d024a899ed7df185b5cdebe",
+ "max": 440449768,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_19ffa55ce8444cab8a078bcc0ecb3670",
+ "value": 440449768
+ }
+ },
+ "834e61064d024a899ed7df185b5cdebe": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "83b9381bdeeb417b871ea523ace1458a": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_535470029ccc40e8ab832472b44a3fe4",
+ "placeholder": "",
+ "style": "IPY_MODEL_49465cda90254e8b864bc3d736bee272",
+ "value": "Training: 100%"
+ }
+ },
+ "8d04502224564a5880872f0937afb08b": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_58186cd40b804aa4b0f2a0c045e50417",
+ "IPY_MODEL_c7dd82f15d6b4349aea5aaf2f8ed19de",
+ "IPY_MODEL_db3801b68e644b0ab9d5e22c21afc6d1"
+ ],
+ "layout": "IPY_MODEL_9cdf1ad7867040e395ece46bd5363aaa"
+ }
+ },
+ "8e6df62361204703bc594c10cdfc1228": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_582766d0f7b24a498977ad2f21a6447b",
+ "placeholder": "",
+ "style": "IPY_MODEL_5565186bf2764b0785b68e5ca190f596",
+ "value": " 7547/7547 [1:05:39<00:00, 1.87it/s, acc=0.746, loss=0.512]"
+ }
+ },
+ "91c2a33f9b1843d6a058eeb4414c32ad": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_0841479fa2554bb382290a33ee7ea4c8",
+ "max": 7547,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_62b77db65c5246d19a80cedafbef582d",
+ "value": 7547
+ }
+ },
+ "92245907fc404ba0a89c62dba8ea2349": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "9399bcd4f4284470ab28ad1543ac955b": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_f2905d23298c41bf81d601ec34fe15f3",
+ "IPY_MODEL_0cf750434a9e4463b4973f137f655ee5",
+ "IPY_MODEL_fde6264c319947efb09d337d9fc00ec7"
+ ],
+ "layout": "IPY_MODEL_daada6b727174b6bb43f1e7aaa8ec411"
+ }
+ },
+ "990469242d0d4c52bd417cf01f11827e": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "9a8a841247e540c792c99c26078e903d": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "9ca414ca808e4315a04fa95c4a52c31e": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_77804b49967c41f9b77b452fe2cbd6e3",
+ "placeholder": "",
+ "style": "IPY_MODEL_7ff7331862f84772aabdd38890cbeead",
+ "value": "config.json: 100%"
+ }
+ },
+ "9cdf1ad7867040e395ece46bd5363aaa": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "9d3c88476f7a4803ba078c86f4affb2f": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "9e2421fe93854c19a11fd979057d1f49": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "a107680ccada42129be9e8ab2cbccc8b": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_1b9a312c88c040dc80c5b8dd04267461",
+ "IPY_MODEL_037e913b966b4bf4a2f19b2f071deabe",
+ "IPY_MODEL_4c155f72da474c24a83eedc9da503764"
+ ],
+ "layout": "IPY_MODEL_33daaa759ca94a1083ab4a2fe545656c"
+ }
+ },
+ "a36d1c5b11de4f84bd78a1854808f8b1": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "a87a81850139464b96083bf9107b9310": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "a97b469b799d4515b7013c757cfec603": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "aab527db52fc4fe999fb74122697a803": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_d3a4a145829b40e2aa1dc097820f9ca4",
+ "max": 7547,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_f13d1efc2af8407bad75d677233a7828",
+ "value": 7547
+ }
+ },
+ "ab584ce8eb4f41198e6346e4531ad493": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_3133b54afdbc4cfbbb6084efecde9bcd",
+ "placeholder": "",
+ "style": "IPY_MODEL_fc233b1298994d2e90b2113dd3409385",
+ "value": "Cleaning Text: 100%"
+ }
+ },
+ "ad0097d4f3e34b2ab263dae8146880d7": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "ae2ce919637f4688a4c985f4459ce180": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_83b9381bdeeb417b871ea523ace1458a",
+ "IPY_MODEL_f509141079de4133ac76c449c04b885d",
+ "IPY_MODEL_b5a59fab3f4c497a8e4e50b82ae697ab"
+ ],
+ "layout": "IPY_MODEL_5f79b913a2454c7fbb5d5edcfcae4058"
+ }
+ },
+ "aff788926a314fb58529bcc0c39bacd7": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_32265ecac400453ea25f8a4c92afc31e",
+ "placeholder": "",
+ "style": "IPY_MODEL_5645c953a88d4baba0494db69848b454",
+ "value": " 7547/7547 [1:05:52<00:00, 2.49it/s, acc=0.901, loss=0.247]"
+ }
+ },
+ "b50b2479848f45ee867a0dbbde8f6d8f": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "b5a59fab3f4c497a8e4e50b82ae697ab": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_9d3c88476f7a4803ba078c86f4affb2f",
+ "placeholder": "",
+ "style": "IPY_MODEL_5511761f4585466aaee7409e784489b2",
+ "value": " 7547/7547 [1:05:56<00:00, 1.88it/s, acc=0.97, loss=0.0857]"
+ }
+ },
+ "b63e381e380f48f2ad503716bde9b48b": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "b6ff502ff6f742398834be16b5f193bc": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "b95eeeb50492414c821b35f511f3d16d": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "bdbee59d6ce5414c904512f0da77a2e4": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_f267b5a28abe4d4d81df343021fa95f9",
+ "IPY_MODEL_91c2a33f9b1843d6a058eeb4414c32ad",
+ "IPY_MODEL_aff788926a314fb58529bcc0c39bacd7"
+ ],
+ "layout": "IPY_MODEL_a36d1c5b11de4f84bd78a1854808f8b1"
+ }
+ },
+ "be32f402a3e145f3ae3fbfc5625a220e": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "bf1143123b51480babe448ae89d83993": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "c0031081f07443509ae69453aab75604": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "c173e0eeb3d646e4b12e2297c52ce991": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "c1ed3f5e736548d0bdc2cb48643f4198": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "c4d2628595e748bca4d328eb51d4a704": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "c7b6f8e3a1104ec98bd0aed4448e65d5": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_3a129c95277d45f89023bece21c5fe19",
+ "IPY_MODEL_ef8f74014971488caacd2617e254be38",
+ "IPY_MODEL_28c86020583c4e4bb62802f7e30c7484"
+ ],
+ "layout": "IPY_MODEL_a87a81850139464b96083bf9107b9310"
+ }
+ },
+ "c7dd82f15d6b4349aea5aaf2f8ed19de": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_54502783d9554c9382f4c1d0965aa177",
+ "max": 231508,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_f7906ec377a44891a8874c50a37563fe",
+ "value": 231508
+ }
+ },
+ "c7ec66b27e1f4d9bb28cea6d009b4ad7": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "c7f7d269368b42d0aa87df399e83dbe5": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "cbec508f5ce349de938dac4880b7bb1c": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_cfc3ccae17f64f89af1fd8802a5c0d7b",
+ "IPY_MODEL_11f3c629d2f44b08bd5fa8a308078826",
+ "IPY_MODEL_4fce752643934dad80d31803cf67d1b2"
+ ],
+ "layout": "IPY_MODEL_0026279dff2e40de81e0d8c7605744eb"
+ }
+ },
+ "ce6c4d1c12d143a8a59981a5319d525f": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "cfc3ccae17f64f89af1fd8802a5c0d7b": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_04aef29f148e404baa7320fbd5e4b891",
+ "placeholder": "",
+ "style": "IPY_MODEL_0a0b077673d6402692ff7bfd137e2434",
+ "value": "Training: 100%"
+ }
+ },
+ "d01eecd090584f92989bcbcf5530a427": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_7e077c3618da4af49234028f0c37e63c",
+ "IPY_MODEL_aab527db52fc4fe999fb74122697a803",
+ "IPY_MODEL_56d34826340843129330dda30ca62224"
+ ],
+ "layout": "IPY_MODEL_31e9075c977b4e2883392f6d8725ec9e"
+ }
+ },
+ "d3a4a145829b40e2aa1dc097820f9ca4": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "d888e47edab341c0a253418203892578": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "d8f811a908544cf48db61b0c463bc48c": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_9ca414ca808e4315a04fa95c4a52c31e",
+ "IPY_MODEL_60797794b7df4496a87c83459d692d82",
+ "IPY_MODEL_dfceb03e0398417eb1df52269eb0ce40"
+ ],
+ "layout": "IPY_MODEL_544dc2c255c84e06b7adae26eae674ab"
+ }
+ },
+ "d9993aff0890495da9015bbffd16a287": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "daada6b727174b6bb43f1e7aaa8ec411": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "db3801b68e644b0ab9d5e22c21afc6d1": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_92245907fc404ba0a89c62dba8ea2349",
+ "placeholder": "",
+ "style": "IPY_MODEL_4aa1998e3ccb42beb40da2d53ed32f12",
+ "value": " 232k/232k [00:00<00:00, 7.93MB/s]"
+ }
+ },
+ "dbdb19fb118d4f7e8356dfab355e8f75": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "ddb106428d9b4c89ade88ccfbcf05ae6": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "df62b71be79f46c2a37d4137c6abb88f": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HBoxModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HBoxModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HBoxView",
+ "box_style": "",
+ "children": [
+ "IPY_MODEL_631b66adaf5c4eeb9b29d5412830b64d",
+ "IPY_MODEL_82802ff781ce4f249f5f9187a091ea81",
+ "IPY_MODEL_263cb2228f0f40559a677aa1d73f9aed"
+ ],
+ "layout": "IPY_MODEL_b63e381e380f48f2ad503716bde9b48b"
+ }
+ },
+ "dfceb03e0398417eb1df52269eb0ce40": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_0957b70c3e0649f8b705048dcd7e4b1f",
+ "placeholder": "",
+ "style": "IPY_MODEL_b6ff502ff6f742398834be16b5f193bc",
+ "value": " 570/570 [00:00<00:00, 37.8kB/s]"
+ }
+ },
+ "e332f28a74af426f875d689d15bd5c2e": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "ed295deec46c4caf8185615468929d19": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "ef8f74014971488caacd2617e254be38": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_6d2a2a3a03b9470b881a8289e46b5927",
+ "max": 7547,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_4b25da0bafa84c129912667dcd7dba12",
+ "value": 7547
+ }
+ },
+ "f12388ea064e4e71b0ca8a0be8faed2f": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_0bbff652f9a147c2ab3a70415ccb074b",
+ "placeholder": "",
+ "style": "IPY_MODEL_dbdb19fb118d4f7e8356dfab355e8f75",
+ "value": " 301848/301848 [01:29<00:00, 3421.95it/s]"
+ }
+ },
+ "f13d1efc2af8407bad75d677233a7828": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "f1c189dd550740d69843828824e5735b": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "f267b5a28abe4d4d81df343021fa95f9": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_28fe8a64113e4eaca3dc104b62c42902",
+ "placeholder": "",
+ "style": "IPY_MODEL_12c4e16b891647ba8fc1dbbb817a7b47",
+ "value": "Training: 100%"
+ }
+ },
+ "f2905d23298c41bf81d601ec34fe15f3": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_6f3413a6dc6c4aada6382f2982953dfa",
+ "placeholder": "",
+ "style": "IPY_MODEL_7db939b2341e4b1492ce6aa5b0556260",
+ "value": "tokenizer_config.json: 100%"
+ }
+ },
+ "f509141079de4133ac76c449c04b885d": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "FloatProgressModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "FloatProgressModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "ProgressView",
+ "bar_style": "success",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_539713a19ca3478991364fcafc79bb84",
+ "max": 7547,
+ "min": 0,
+ "orientation": "horizontal",
+ "style": "IPY_MODEL_12bd790252514940bcf03b465f2b3fd0",
+ "value": 7547
+ }
+ },
+ "f52bf75346e24a58b86a946e445c550a": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "f674722fc69b4f239780ee3818846848": {
+ "model_module": "@jupyter-widgets/base",
+ "model_module_version": "1.2.0",
+ "model_name": "LayoutModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/base",
+ "_model_module_version": "1.2.0",
+ "_model_name": "LayoutModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "LayoutView",
+ "align_content": null,
+ "align_items": null,
+ "align_self": null,
+ "border": null,
+ "bottom": null,
+ "display": null,
+ "flex": null,
+ "flex_flow": null,
+ "grid_area": null,
+ "grid_auto_columns": null,
+ "grid_auto_flow": null,
+ "grid_auto_rows": null,
+ "grid_column": null,
+ "grid_gap": null,
+ "grid_row": null,
+ "grid_template_areas": null,
+ "grid_template_columns": null,
+ "grid_template_rows": null,
+ "height": null,
+ "justify_content": null,
+ "justify_items": null,
+ "left": null,
+ "margin": null,
+ "max_height": null,
+ "max_width": null,
+ "min_height": null,
+ "min_width": null,
+ "object_fit": null,
+ "object_position": null,
+ "order": null,
+ "overflow": null,
+ "overflow_x": null,
+ "overflow_y": null,
+ "padding": null,
+ "right": null,
+ "top": null,
+ "visibility": null,
+ "width": null
+ }
+ },
+ "f7906ec377a44891a8874c50a37563fe": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "ProgressStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "ProgressStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "bar_color": null,
+ "description_width": ""
+ }
+ },
+ "fc233b1298994d2e90b2113dd3409385": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "DescriptionStyleModel",
+ "state": {
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "DescriptionStyleModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/base",
+ "_view_module_version": "1.2.0",
+ "_view_name": "StyleView",
+ "description_width": ""
+ }
+ },
+ "fde6264c319947efb09d337d9fc00ec7": {
+ "model_module": "@jupyter-widgets/controls",
+ "model_module_version": "1.5.0",
+ "model_name": "HTMLModel",
+ "state": {
+ "_dom_classes": [],
+ "_model_module": "@jupyter-widgets/controls",
+ "_model_module_version": "1.5.0",
+ "_model_name": "HTMLModel",
+ "_view_count": null,
+ "_view_module": "@jupyter-widgets/controls",
+ "_view_module_version": "1.5.0",
+ "_view_name": "HTMLView",
+ "description": "",
+ "description_tooltip": null,
+ "layout": "IPY_MODEL_36c952ff7eee4d328161bb0e683936e7",
+ "placeholder": "",
+ "style": "IPY_MODEL_7bd744f9765a46adac34644b330dc2f8",
+ "value": " 48.0/48.0 [00:00<00:00, 4.77kB/s]"
+ }
+ }
+ },
+ "version_major": 2,
+ "version_minor": 0
+ }
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}